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HELLINGER’S DISTANCE TO NORMAL DISTRIBUTION AS
MARKET INVARIANT

MESROP MESROPYAN, VARDAN BARDAKHCHYAN

Main purpose of distance based portfolio constructions is for portfolio imitation.
Here we used distance from normal distribution for other purpose. We attempted to find
static market invariant within possible linear combinations of given random variables.
We conjectured that “closeness” to normal distribution of possible portfolios in market
may reliably represent market microstructure with possible correlations between assets.
Taking the squared Hellinger’s distance, we sought for each level of desired mean re-
turn the portfolio whose return distribution is closest to Gaussian, with variance taken
from efficient frontier found by initially solving mean-variance problem. We found that
minimal distance differs significantly from market to market. The sensitivity check
showed small average sensitivity for 5% change of a 5% portion of data, small sensitiv-
ity for adding new variables in simulated market, and extreme sensitivity to bin num-
bers. Though distance to normality differed among markets, its sensitivity being small
enough in average sometimes showed extreme changes.

Keywords: Market invariant, Sensitivity analysis, Hellinger’s distance, distance to normal
distribution, financial portfolio theory, simulated market, Student’s distribution

1. Introduction and motivation

The hunt of market invariants has motivated authors to incorporate various
interdisciplinary techniques.

All of them use slightly different definitions of market invariant, use dif-
ferent techniques to derive them, and for different purposes. Invariants in gen-
eral are quantities which are not affected when some transformation of given
class occur. However, in financial data they are perceived slightly differently.
Some authors define market invariants to be random variables or random vec-
tors the distribution of which does not change over time. Some authors treat
market invariants as variables which are enough robust either remaining in
small interval when time changes, or experiencing small or no change when
data is transformed (e.g. scaled).

Also there are several purposes for determining market invariant. For ex-
ample (Reddy and Sebastin 2008) used market invariants to determine market
manipulation. Some authors used market invariants as a tool of market segmen-
tation by their characteristics, i.e different values of market invariants corre-
sponded to different segments of market.

Some authors define market invariants as universal constants.

Latest theory proposed by Kyle and Obizhaeva' take axiomatic approach to

! See (Kyle and Obizhaeva, Market microstructure invariance: Empirical hypotheses 2016)
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define one such possible constant, which later proved good enough empirically®.

R
They proposed N— with R total risk traded, and N number of daily bets

3/2°

(or bettors). This universal constant is applicable to a market in whole.

Other authors use more intuitive approach to finding invariants. Reddy and
Sebastian® proposed as market invariant entropy. Their motivation was based on
dynamical systems theory. Though they name two other possible measure used
to identify (describe) non-linear system, namely Lyapunov exponent and corre-
lation dimension. Pincak® analyzed foreign exchange markets (namely
EUR/USD) series by means of string theory. Their inspiration was from later
developments in physics. As invariant they proposed weighted sum of one lag
correlations between returns in given time interval with weights following
Gibbs distribution.

In these last two papers the market invariant is invariant of specific time
series. On the other hand, Borghesi et.al.’ considered correlations between log-
returns of different groups of assets. After subtracting mean log-return, the cor-
relation between new series was checked for invariance. (Four other form of
correlations were analyzed and compared).

Our purpose of defining possible market invariant is pure for diagnostic
use and differentiating between several markets. Here we treat market invariant
as some measure specific to given market (given class of financial securities)
that is enough robust to changes in data. Our analysis is based on portfolio con-
struction, and as such techniques described here cannot be applied to one secu-
rity time series.

Our analysis is based upon the consideration that log-returns are indeed in-
variants, most of authors take this as granted’. So we do not perform time series
analysis or any other kind of modeling, and treat the log-returns of one time-
series as i.i.d r.v.-s.

The main idea is to construct portfolio closest in distribution to Gaussian.

So we do make use of statistical distances. For each level of expected re-
turn, we find the minimum distance portfolio (expressed in portfolio weights).
And among the collection of these "best" portfolios we determine one which has
minimum of all distances. The distance found will be the measure (we believe
to be a robust), differing from market to market.

In some sense the invariant estimated shows non-gaussianity of the market
considered. Thus it is alike Negentropy’ but with crucial differences that we
hold constant only expectation and we take distance of linear combination of a
strictly bounded set of random variables.®

2 See (Bucci, et al. 2020, Kyle, Obizhaeva and Tuzun, Microstructure invariance in U.S.
stock market trades 2020)

? See (Reddy and Sebastin 2008)

4 See (Pincak 2013)

> See (Borghesi, Marsili and Micciché 2007)

6 See for example (Attilio 2005)

7 For details see in book (Hyvirinen, Karhunen and Oja 2001)

We don't use Ex-Kurtosis measure as well due to the drawbacks described in (Hyvérinen,

Karhunen and Oja 2001).
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Here we use the Hellinger's distance’ for simplicity of its form, though
other statistical distances can also be used.

The use of normal distribution is inspired by central limit theorem (CLT),
and thus by the hope that big markets will eventually yield these distances to be
0. The second reason to use normal distribution is based on pure practical con-
siderations. The class of elliptic distributions is easier to analyze, as two pa-
rameters (mean and variance) is enough to describe portfolio and it is easier to
make any form of predictions.

Market invariant based on portfolio construction means that we analyze
properties of linear combinations (in our case convex combinations, with non-
negative weights), instead of using any other functional form of given data. One
reason for this is obvious: generally trading is linear combination of securities.
If something is internally constant in linear combination of given securities
returns, it will be useful to derive it explicitly.

The other reason is that constructing portfolio in the manner is pure static
procedure (though based on historical data, when we analyze distributions), so
if something remains close to constant, it wouldn't vary much when time passes.
So internally formulation in form of static optimization is preferred without
regard to specific future time horizons. While most authors take invariant to be
internal characteristic of one or several time series over specific time intervals,
we prefer to analyze one time characteristics.

We conduct sensitivity analysis on pure empirical basis, to check robust-
ness of the distance. The techniques used can be treated as solving portfolio
optimization problem, where squared Hellinger's distance is used as risk meas-
ure. As thus sensitivity analysis of minimal squared Hellinger's distance is in
fact portfolio sensitivity analysis (like ones for mean-variance or VaR meas-
ures'’). As Hellinger's distance is formulated by probability measures (distribu-
tion functions), the matrix perturbation techniques used by Best and Grauer''
cannot be applied.

The paper is organized as follows. In section 2 the general problem of con-
structing portfolio with minimal Hellinger distance from normal distribution is
stated, computational techniques are showed and result are briefly summarized.
In section 3 result of sensitivity analysis are shown. The paper ends with discus-
sion and conclusion.

2. Hellinger's distance based portfolio construction
Classical formulation of mean-variance portfolio is the following.

° For general approach to probability we refer to (Svetlozar, et al. 2011)
Two main papers on this topic are (Gourieroux, Laurent and Scaillet 2000., Stoyanov, Rachev
and Fabozzi 2013)
' See the seminal paper by authors (Best and Grauer 1991)

66



( E(X)=¢
Var{X) = min

| x=)x (1)
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Solving the system above one get the portfolio with minimum variance for
each level of expected return. X;-s represent returns of each asset. We confine
ourselves to the case of logarithmic return. The weights w;-s represent the per-
centage of money in each asset. We assume only long positions i.e. w; = 0.

Our goal of constructing portfolio with minimum Hellinger's distance (or
squared one) can be formulated by following problem.

{ E(X)=¢
HI{X N) = min

Where H{X,Y)—is Hellinger’s distance between X, Y r.v.-s.

Here we use (X,¥Y) , H(Fy, F,) and in absolutely continuous case
H(f%.fy) interchangeably.

In other words, Hellinger’s distance should be the least from normally dis-
tributed random variable. Parameters of desired normal distribution are got from
solving (1) problem. So More generally we solve the following.

EX)="F¢
H? (X ,N(e, Vm"[X ® {:e}}) — min
w; =0 )

Zu’E':l

with X *{e) being solution of (1).
After solving (3) we take minimum of all Hellinger distances
(H*): =m in{H: {:E}).
For continuous case
H¥f.g)=1— j W Fx)glx)dx 4

To solve the problem with discrete data we do binning process'”, which
will yield by to continuous distribution represented by simple function.
The distance between these kind of distributions will take the following
form:
a o sa2nn e
Where X is the distribution got by binning process, thus take fixed values
on subintervals of [a, b). Let [a;a;4q) be exactly the intervals where f5(x)

2
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take fixed values (j = 0,11 — 1), with @; = @ and a,, = b. Denoting those val-

12 We exactly use binning, instead of kernel methods as of simplicity of calculations, and
one more reason. The kernel methods have one more parameter which (as we checked) will add
sensitivity to given solutions. The method is sensitive to what kernel is used.
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ues by 0; for each interval, we will have the following form
n—1

HEY =1-) o JRGoa ©
1= aj

Generally 0;-s are any numbers, not bound to be different. We take the in-

terval cut enough fine to have one value for each interval.

Whenever the counterpart’s (Y’s) distribution is normal (i.e. fi(x) is den-

sity of normal distribution), we will the following:
[+ —— 1 [ Ll e=eE o Lo oo g
j . \,’jyilxj = i LJ ) 1= = A P Y LY L LI =L.i"J‘,"'k'.¢'.j+1i_:'..¢'J :il )I-
) a2(2m)s e

We noted that for different types of market the minimum squared Hellin-
ger's distance is different.

More formally we found the following result for 3 different markets -
Stock market of specific types of stock, exchange market and purely simulated
market of correlated student's distributions with different degrees of freedom.

We used 4 randomly generated Student’s distributions with 4, 3, 3 and 2
degrees of freedom. We got correlated variables with Cholesky decomposition
of randomly taken correlation matrix. The data was taken to be 810 data, for
each (approx. 3 years). We took 4 stocks of nearly the same branch (Cisco,
Intel, Microsoft, NVIDIA), for the period of 3 years. And lastly we analyzed
foreign exchange market data. We took data up to 7th month of 2020, of ap-
proximately 3 years (After that war started at Nagorno-Karabakh, which influ-
enced our money market, and exchange rates).”. Squared Hellinger’s distance
for each market are shown in Table 1.

=

N .
GG ()

Table 1
Squared Hellinger’s distance calculated for 3 different markets
Simulated data market Stock Market Exchange market
H: 0.0127 0.027 0.0149

3. Sensitivity Analysis

Generally, under sensitivity analysis in optimization problems it is meant
sensitivity checking depending of initial conditions or parameters. In this gen-
eral form sensitivity of our problem seems infeasible as we deal with general
distributions. So we checked sensitivity by randomly "editing" data.

We did 2 types of sensitivity check.

First we changed randomly taken portion of data, by random but restricted
magnitude. We then computed percentage change, per 5 (smaller choices make
to minor differences) of changed data. Here we report both absolute values of
change and percentage.

Next we checked effect of changes in binning number. All the analysis was
done by Python 3.10. We used Excel 2019 (for data preprocessing).

For the last part it is reasonable to expect that adding new variable will de-
crease the minimal Hellinger distance by CLT. However, when we speak about
initial small number of variables it is not straightforward with adding one new.

'3 The data is in open access, so anybody can conduct the same analysis (we made use of
Central bank of Armenia cba.am provided data for exchange market).
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For binning procedure change of number of bins must be expected to bring to
extreme changes in Hellinger.

For the first two procedures nothing exact can be expected.

We randomly changed a portion of initial data by random amount up to
1000 times and calculated average change in each case. The sensitivity in per-
centages and respective average absolute values are shown in Table II.

Table 2
Change in squared Hellinger due to change of 5% of data of maximum 5% of their
value
Simulated data Stock ForEx
Percentages 3.02% 1.01% 5.51%
Absolute values 0.00039125 0.000299 0.00092

We got the result for binning procedure and adding new variable (with
student distribution with 3 degree of freedom, correlations chosen at random
between (-1,1) but confining to correlation matrix remaining positive definite)
for simulated data presented in Table III.

Table 3
Change in Hellinger due to change in bin number by 1 or adding new variable
(results stated in percentages)
Simulated data market
Binning ~10.1%
New variable ~2.04%
4. Discussion and conclusion
We have conducted a general sensitivity analysis for the minimum squared
Hellinger's distance for 3 different financial markets.

There are several reasons to cast doubt about the results presented.

This sensitivity analysis lacks statistical background, i.e. we can't check
statistically whether the results found reveal the true picture. However, we have
conducted big enough number of simulation to check.

Second, the optimization procedure is not smooth one. Thus the initial
guess of weights had crucial role. (We checked for enough fine grid, but we
didn't combine finite difference techniques).

But generally the procedure revealed that only substantial changes can
bring to changes minimum squared Hellinger's distance. Though we found gen-
erally less than 5% change in response to 5% change of initial data, one should
note that we considered 5% change in only 5% of data. Anyway, small changes
had extremely less effect. Obviously adding some dominant (in mean-variance
sense) and normally distributed random variables to the market, it would drug
the Hellinger down. So the measure proposed is showing how much efficient
frontier is composed of close to normal elements.

Two things to note, is that obviously if all returns in market considered are
normally distributed, one will get O Hellinger. However, though it can be sup-
posed, that the bigger the market, the smaller Hellinger it would have, there are
some source of doubt about it.

As we consider the distance to normal with mean and variance that of efti-
cient frontier. It is generally known that Markowitz's mean-variance portfolio
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tends to use only small number of instrument for each level mean return. If this
small number can be combined to get closer to normal, the Hellinger will de-
crease substantially, otherwise the changes will be not that big.

Much further work should be done to find out whether the minimal Hellin-
ger is indeed market invariants or not, both empirical and theoretical. One must
keep in mind that this is not smooth (or even continuous) optimization problem,
so convergent iterative methods will not be best choices.

For nonlinear combinations uniquely (or close to uniquely) representing
market more steps are needed to be taken.
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MECPOII MECPOIISIH, BAPJIAH BAPJAAXYSH — Paccmosanue Xennunze-
Pa om HOPMANbHO20 pacnpedenenus Kak pblHOuHblil uneapuanm. — OCHOBHAs Lelb
UCIIOJIb30BaHMSI BEPOSTHOCTHBIX METPUK B TEOPHSIX MOPT(hens — uMuTanus noprdenei
OCTalIbHBIX YYaCTHUKOB PBIHKA. 31€Ch MBI HCIIOJIb3yEM PacCTOSHHS OT HOPMalIbHBIX
pacrpeziesieH!i B MHBIX LesiX. Mbl MIIeM PbIHOYHBIN MHBapUaHT CPeH BCEX JIMHEH-
HBIX KOMOMHAIW{ JaHHBIX CIly4alHBIX BEJIMUMH (IPUOBUIBHOCTH LEHHBIX Oymar). Msl
HPEANOIOKWIN, YTO JAIBHOCTh OT HOPMAIBHOTO PACHpE/ICNICHHS MOXKET CUUTATHCS
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KaHIUAATOM, KOTOpash XapaKTepU3yeT pPHIHOYHYIO MUKPOCTPYKTYPY, NpPUHUMAs BO
BHUMAaHUE BCE BO3MOJKHBIE KOPPEJSLUM MEXKAY HHCTpyMEHTamMH. Mbl BBIYHCISIEM
KBaJ[paT pacCTOsHUs XeJUTMHIepa JaHHbIX noptdeneit ot ['ayccoBckoro pacmpezerne-
HUS IS KaXIOTO YPOBHS OKHAAaeMOW NMPHOBUILHOCTH, W BapHaluel, MOIydeHHOH OT
MpeIBApUTEIHLHOTO PEIIeHNS 3a1a4i MapKoBUIa, U JAHHOTO YPOBHS MPHOBIIFHOCTH.
MBI yCTaHOBWIIH, YTO Takas JAIBHOCTh CHJIBHO OTIIMYACTCA OT PBHIHKA K PBHIHKY. MBI
TIPOBEJI aHAJM3 YyBCTBUTEIBHOCTH, KOTOPBIA IMOKA3all, HU3KYIO CPEIHIOI YYBCTBH-
TENBHOCTh K M3MEHEHHUIO OPIMH MaHHEIX (5% MaHHBIX, C MAaKCUMAIBHO 5%-1 H3MeHe-
HUSIMH), HU3KYIO CPEIHIOI YYBCTBHTEIHHOCTh K JTIOOABIIEHUIO HOBOMW CIydaitHOM Tepe-
MEHHOHM, W BBICOKYHO UYYBCTBUTCIHHOCTh K OWHHPOBAHUIO (KOJIUYCCTBY Pas3psloB B
rucrorpamMme). XOTs, B CPEIHEM, U3y4aeMOE PACCTOSIHAE MOKA3bIBACT HU3KYIO YYBCT-
BUTEJIBHOCTh, MHOTIAa UMENIUCh PE3KHE U3MEHEHUS! OT U3MEHEHUI HavaJbHBIX MapaMeT-
pOB.

KuroueBble ciioBa: pblHO'-lelL? uneaparm, anaius 4yecmeumeilbHocmu, paccmaosinue Xen-

JUHEEPd, PACCMOSAHUE OM HOPMATLHOZO0 PACHpedeNeHUs, Meopus GUHAHCO8bIX nopmeenel, cMo-
0enuposanuwlil pulHoK, pacnpedenenue Cmvlooenma
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