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Abstract: In this paper we compare the performances of Markowitz portfolio and the portfolio 
closest to normal in distribution. The latter is obtained by fixing the same desired level of expected 
returns and optimizing the Hellinger distance to Gaussian distribution with parameters obtained 
from Markowitz portfolio optimization for the same expected return. We confine ourselves to a 
long-position portfolio only. We found that in contrast to the expectations, the Hellinger-Normal 
portfolio does not smooth enough the extreme losses, but it does not do worse in that re-
gard than Markowitz portfolio. We also found that overall in non-long-run passively managed 
portfolios, the Hellinger-Normal portfolio had better overall realized Sharpe and Kelly ratios. 
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1. Introduction 
Papers exploring and expanding ways of portfolio construction other than Markowitz 

mean-variance portfolio (MP), are numerous. While some of them directly incorporate 
other components in the objective function optimized (like adding skewness (Lai, Lean Yu, 
Shouyang, 2006; De Athayde, Gustavo, Renato, 2003) or smoothing with entropy (Mercurio, 
Yuehua, Hong, 2020), or incorporating tail risk instead of variance (Yao, Zhongfei, Yong-
zeng, 2013)), others take different approaches based on newer ideologies (like in the risk-
budgeting approach (Roncalli, 2013)). 

The uses of Statistical distances in portfolio theories were primarily motivated by 
tracking problems (Svetlozar et. al. 2013), (i.e., the desire to keep closer to chosen maybe 
not-fully-known portfolios).  

However, some emerging literature still managed to incorporate a statistical distance ap-
proach in portfolio optimization problems, arguing to capture better outcomes (Kim et. al., 
2022). For a more thorough analysis of distance-based models, see (Svetlozar et. al. 2008). 
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In this paper we continue our long-lasting research of the portfolio closest to Gaussian 
in distribution, which was proposed and thoroughly studied in (Mesropyan, Mkrtchyan, 
2021; Bardakհchyan, Mesropyan, 2023; Mesropyan, Bardakhchyan, 2023). The distance 
used was taken to be Hellinger’s one, based on purely theoretical and less on practical 
reasons. Here we call the portfolio thus obtained Hellinger-Normal portfolio (HNP). 

Let us first introduce the motivation behind the proposed portfolios.  
 
1.1.  Market structure as a motivation 
While in most of the literature the proposed alternatives to MP are motivated by the 

desire to overcome the drawbacks of MP, which we will also elaborate on in this paper, 
our initial motivation was rather based on a constructive approach to obtain a diagnostic 
tool for market structure. More precisely we were seeking an indicator the abrupt 
changes of which will indicate the change of market structure, in a sense of crucially 
changed correlations between asset returns, or rather a comparable change in vector dis-
tribution of asset returns. 

According to the central limit theorem (CLT), the more independent random variables 
are taken into consideration, the closer their rescaled sum is to a Gaussian distribution (Dur-
rett, 2019). 

On the other hand, if random variables under consideration are initially normally dis-
tributed, this distance is always 0 and does not change. Moreover, in this case non-cor-
relatedness does not play a crucial role, i.e., even the sum of correlated normally distrib-
uted random variables is normally distributed.  

The converse of this result, Cramer’s decomposition theorem, states that if any 
Gaussian random variable can be decomposed into a sum of two independent ones, then 
both of the latter’s are also Gaussian.  

Not contrasting any of the above arguments, still stock markets behave differently in the 
following more precise sense. While most of the stocks at least in theory have close to nor-
mal distribution of their return, or have only slightly heavier tails, the distribution of return 
of their linear combination is not close to normal, or better to say is rather far from Guas-
sianity (Egan, 2007; Shiryaev, Zuoquan, Xun, 2008; Canan, Meterelliyoz, Tinic. 2016). 

One of the reasons behind this is that returns (log-returns) being normal entail the 
price distribution to be log-normal, and the linear combination of log-normally distrib-
uted random variables can substantially deviate from log-normal in tails, being closer at 
average (Beaulieu, Qiong, 2004).   

On the other hand, while dealing with portfolios, one deals with linear combination 
of returns. Thus the non-Guassianity here cannot be addressed the same way as above. 
Rather it can be attributed to the combination of two factors: 1) slight deviations from 
normality in returns of individual stocks and 2) the existing correlation between them.  

The first reason solely cannot capture the non-normality of portfolio returns in big 
enough (meaning having a larger landscape of stocks) portfolios, as thanks to CLT, the 
return of linear combination would converge in distribution in an absence of correlations.  

Thus we argue that the second reason is still more crucial in explanations of the non-
Gaussianity of returns, as CLT is not known to hold even in stationary but correlated 
sequences (Ibragimov, 1975). 

While trying to minimize the distance between the normal distribution and the distri-
bution of returns of our portfolio, we found non-negligible and non-vanishing positive dis-
tance, indicating the existence of correlations (Mesropyan, Bardakhchyan, 2023). Thus the 
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positive minimum Hellinger distance is an indicator of the latter. Even more, the changes 
in the magnitude of this distance will indicate the change of correlational structure.  

 
1.2.  The drawbacks of MP as a motivation. 
Several drawbacks of MP motivated further investigation into other methods of portfolio 

construction. Some more or less viable drawbacks that may be deemed to be not entirely 
rational are the following: 

(i) In several cases MP gives 0 weights to most of the assets, even for not close to 
extremes desired expected returns. This feature would not be regarded as a violation of 
common sense, if we explore all assets given 0 weight to be dominated by the others. 
While often this is indeed the case, there are situations where the dropped assets are not 
dominated. This, together with the insufficiency of historical returns, gave rise to expert-
based and more smoothed portfolios like entropy-added and Black-Litterman models. 

Cevizci, 2016; Michaud, Tongshu, 2015) 
(ii) In some cases, MP is still too sensitive to small changes in perceived expected 

returns, leading to minor changes in expected return estimates that entail some extreme 
changes of portfolio weights. This can be even combined with the pervious point, sug-
gesting to get rid of some assets which had not so small weights previously. In a setting 
where assets have an internal bid-ask spread or are tangible and require transportation 
costs, this may lead to substantial money outflow. Some portfolios like Black-Litterman 
still overcome even this drawback. (Becker, Marc, 2010; Qian, Gorman, 2001). 

(iii) MP does not incorporate all the information. MP portfolios rely heavily on only 
two descriptive statistics: expectation and variance. While in all-Gaussian framework, 
these two are enough, in reality there are at least two other features of interest: skewness 
and kurtosis/VaR/CVaR (as indicators of extreme events). It has been shown that some 
of the investors extremely value positive skewness and are very averse to extreme losses. 
These gave rise to several other portfolio theories (Lai, Lean Yu, Shouyang, 2006; Kraus, 
Litzenberger. 1976; Post, Vliet, Levy, 2008; Kane, 1982). 

HNP can handle some of these drawbacks. We had shown previously that it over-
comes the (i), may overcome (ii), in that it is less sensitive. And still in most cases fixes 
(iii). While one should be cautious, that it does not maximize the skewness or minimize 
the kurtosis, but rather struggles to keep them fixed.  

In addition to the above, HNP also brings some predictability with itself; in contrast 
to what entropy theory would suggest for normal distributions, the predictability here 
should be understood in a sense that having chosen HNP one can indeed confine himself 
to two measurements, estimation of expected return and variance. 

More precisely, while MP exploits these two estimates, ignoring others, HNP does 
drive us to the domain, where the latter are of, indeed, lesser importance (as they would 
not change substantially). 

One other crucial feature of HNP, is that it incorporates correlations in a non-linear 
manner. While the correlational structure in MP is included through the variance, HNP 
still enables one to keep (but not to observe directly) the track of changes in correlations.  

 
1.3.  Hellinger-Normal portfolios construction 
Typical construction of HNP portfolio has been described in our previous works [11]. 

Here we briefly recall main steps. First, the classical MP problem is solved for a given set 
of assets that will not change during any step of the problem. 



Economic and Mathematical Modeling                     

 

115

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐸(𝑋) = 𝑒
𝑉𝑎𝑟(𝑋) → 𝑚𝑖𝑛

𝑋 = ෍ 𝑋௜

௡

௜ୀଵ

𝑤௜ ≥ 0

෍ 𝑤௜

௡

௜ୀଵ
= 1

 (1) 

Here 𝑋௜-s are returns of each asset. We assume only a finite number of assets. We 
confine ourselves to the case of logarithmic return. The weights 𝑤௜-s represent the per-
centage of money in each asset. We assume only long positions i.e. 𝑤௜ ≥ 0. 

After solving (1), we make use of found minimal variances (𝜎
ଶ) for each level of 

expected return1. 
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Where 𝐻(𝑋, 𝑌) – is Hellinger’s distance between X, Y r.v.-s2.  
Here, the parameter 𝜎

ଶ is just short hand notation for the found minimal variance 
corresponding to given level of  𝑒. 

Let us keep track of the main calculations, by adding the definition of squared 
Hellinger distance. For a continuous case  

 𝐻ଶ(𝑓, 𝑔) = 1 − න ඥ𝑓(𝑥)𝑔(𝑥)𝑑𝑥 (3) 

While with one of the random variables being continuous but made constant over 
bins in histogram construction, we have the following formula 

 𝐻ଶ(𝑋, 𝑌) = 1 − ෍ 𝑂௝ න ඥ𝑓௒(𝑥)𝑑𝑥
௔ೕశభ

௔ೕ

௡ିଵ

௝ୀ଴
 (4) 

Generally 𝑂௝-s are any numbers, not bound to be different. We take the interval cut 
enough fine to have one value for each interval. 

Whenever the counterpart’s (Y’s) distribution is normal each element of (4) will take 
the following form: 
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(5) 

Hereafter we are less interested in the values of squared Hellinger dis-
tances than in the optimizing portfolio, i.e., the vector of optimal weights. We 
strive to compare the portfolios obtained by solving (1) and (2) respectively. We denote 

                                                 
1 Solving (1) one gets two things for each fixed level of expected return: the weights’ vector (i.e. the risk-
minimizing portfolio) and the precise value of variance (i.e. some correspondence 𝑒̅ → 𝜎ଶതതത).  
2 Here we use (𝑋, 𝑌) , 𝐻(𝐹௑, 𝐹௒) and in absolutely continuous case 𝐻(𝑓௑, 𝑓௒) interchangeably.  
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the solving vectors by 𝑤ெ௉ and 𝑤ுே. 
In the next section we describe the empirical procedure and data used, and compare 

performances of both portfolios in a not active management setting, in a sense made 
explicit further.  

We argue that HN performs better than MP, with a small possible cost of higher var-
iance and, in half of the situations, slightly more extreme loss. We show that by compar-
ing 10 days’ performance Sharpe ratio and Kelly ratio. Also we made it explicit that our 
results are not due to random effects. 

 
2. Empirical analysis 
For an illustrative example we have taken 3 years’ (the period from 01/2021-01/2024) 

data of 13 assets (10 of which are included in S&P500 index)3.  
We added three other assets to have negative correlations for at least some period of 

time (see Table 1). For example, the 12-month log-returns correlation matrix has the 
following form for the first year.  

Table 1 
Correlation matrix for assets. 

 ADBE CAT DIS FDX GS IBM JNJ KO NKE XOMSPOT BRN FET 
ADBE 1.00 -0.04 0.14 0.25 -0.01 -0.09 0.09 0.21 0.33 -0.02 0.41 0.03 0.03 
CAT -0.04 1.00 0.43 0.31 0.67 0.32 0.18 0.19 0.14 0.58 0.08 0.17 0.29 
DIS 0.14 0.43 1.00 0.21 0.43 0.17 0.11 0.30 0.24 0.36 0.17 0.23 0.20 
FDX 0.25 0.31 0.21 1.00 0.31 0.17 0.14 0.22 0.11 0.29 0.22 0.13 0.12 
GS -0.01 0.67 0.43 0.31 1.00 0.27 0.14 0.17 0.24 0.57 0.16 0.15 0.31 

IBM -0.09 0.32 0.17 0.17 0.27 1.00 0.26 0.29 0.07 0.35 -0.03 0.09 0.10 
JNJ 0.09 0.18 0.11 0.14 0.14 0.26 1.00 0.43 0.10 0.14 -0.04 0.18 0.01 
KO 0.21 0.19 0.30 0.22 0.17 0.29 0.43 1.00 0.16 0.20 0.04 0.19 0.05 

NKE 0.33 0.14 0.24 0.11 0.24 0.07 0.10 0.16 1.00 0.14 0.23 0.09 0.19 
XOM -0.02 0.58 0.36 0.29 0.57 0.35 0.14 0.20 0.14 1.00 0.01 0.23 0.41 
SPOT 0.41 0.08 0.17 0.22 0.16 -0.03 -0.04 0.04 0.23 0.01 1.00 0.07 0.09 
BRN 0.03 0.17 0.23 0.13 0.15 0.09 0.18 0.19 0.09 0.23 0.07 1.00 0.10 
FET 0.03 0.29 0.20 0.12 0.31 0.10 0.01 0.05 0.19 0.41 0.09 0.10 1.00 

Source: Authors’ calculations. 

We took the following procedure when constructing MP and HN. We used 1 
year of data before the taken date as a historical input. We then calculated log returns of 
each of the assets and evaluated the mean returns based on the 1-year historical data. 
 Next we used the range of feasible expected returns of the portfolio (i.e., the range be-
tween the highest expected return out of 13 and the smallest). Then we divided the inter-
val into 10 equal parts, and on the split point of each interval, we solved the MP problem 
(1) to find both the MP portfolio weights and the minimal variances for each level of 
expected return. The latter we used in HN portfolio construction according to (2).  

To obtain the solution of (2) we employed formulas (4) and (5), for which we used 
the binning procedure to obtain a histogram of the portfolio return distribution of the 
vector of weights. We used the optimal number of bins according to Sturges's formula. 

After solving and obtaining the optimal portfolios, we keep the weights for another 
10 trading days. And after the period we evaluate the performance.  

                                                 
3 ADBE; CAT; DIS; FDX; GS; IBM; JNJ; KO; NKE; XOM; SPOT; BRN; FET. 
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After the period we shifted our historical data by these 10 days, or put more simply, 
we moved to the next date where we are allowed to change the weights. There we did 
the same procedure again and so forth. Thus we got 43 cumulative descriptive statistics 
for a period observed. 

Based on the observations we obtained the following results.    
(1) At an average of 11.6% (5 out of 43) of cases, MP showed better realized per-

formance in all measures. While in all other cases HNP showed better performance on 
at least 1 of the two measures considered. 

(2) As for tail risk, in most of the cases HNP did worse compared to MP. However, 
the difference still may be considered insignificant, as in many of these cases the extreme 
losses do not deviate even by 3% compared to each other.  

(3) In most of the cases, HNP did significantly better compared to more extreme 
worst-case losses. More precisely, on average, HNP showed 21.4% better performance 
[1] (i.e., 1,214 times more average return), while showing, on average, only 4.3% more 
extreme case losses (so -1.043 times more losses). Cumulatively, if we kept only HNP 
portfolios most deviant from MP, we would, on average, get up to 5.68% more income, 
with the risk of losing up to 1.25% more money in each 10 days. 

The standard deviation differences are up 0.18% different, so that HNP has on aver-
age a 1.018 higher standard deviation than MP. While cumulatively in 3 years it may 
bring a 7.6% difference in standard deviation.  

(4) In periods with explicitly dominant assets HNP showed generally worse perfor-
mance, than MP. 

Some results are given in the following Table 2. 
Table 2 

Comparison of some realized numerical characteristics of MP and HNP, when adjust-
ments are only allowed biweekly (each 10 market days). 

 MP HNP Comment 
Daily mean realized 
return 

-0.0011 -0.0002 
So in each of the cases adjustments to 
portfolios are made every week 

Biweekly mean 
realized return 

0.0015 0.0067 
This result differ from the previous 
ones, most probably due to seasonality 

Daily mean realized 
standard deviation 

0.0122 (1.22%) 0.0128 (1.28%) 
Note that in average, standard deviation 
is only slightly higher. 

Mean biweekly 
Sharpe ratio 

0.063 0.115 
These results are approximated to 3 
digits, after the floating point. 

Mean biweekly Kelly 
ratio 

18.5 23.04 
 

Mean Extreme 
values 

-0.0012 (1.2% loss) 
-0.0014 (1.4% 

loss) 
In extreme cases losses could be as high 
as 14% 

 
Discussion and conclusion. 
Each of the four main results found has different but not contradictory compelling reasons.  
(1) On average HNP showed better realized performance. While for Sharpe ratio it is 

not obvious why, the Kelly criteria case has more theoretical reasoning. 
The Kelly criterion assesses a better fit for dynamic (i.e., long-run) investment choices. 

As we had chosen somewhat not long, but also not daily management of the portfolio, the 
Kelly criterion should be the more crucial one. And Kelly criterion favored HNP.  

Initially HNP was proposed as a more robust alternative to MP. In that sense it should 
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have been a better choice for long-run investment.  
One more precise reason is that the Kelly criterion is based on maximizing the geometric 

average of returns, while MP only considers average and variance. It is known that the geo-
metric average can be modeled as the logarithm of the portfolio for non-negative returns, 
which, when decomposed into Taylor series, includes all initial moments (cumulants), not 
only the first two. This means that the portfolio that fixes all moments (like taking the port-
folio to be close to a normal distribution) will perform better than the portfolio only consid-
ering the first few moments. 

Things differ for the Sharpe ratio case. The MP is the exact portfolio that maximizes the 
Sharpe ratio; still, HNP performs approximately twice as good as MP. The reason may lie in 
the changing environment, i.e., the changing multivariate distribution of returns. While with 
HNP one tries to “fix” the distribution as close to normal as it is possible, MP works with 
this more “complex” dynamic and still ignores most of the information. 

(2) The reason why HNP showed more extreme losses than MP may be due to the fact 
that the tails are not entirely close to that of normal distribution. This is the fact that HNP 
tries to bypass. But it may be the case that thus it confines to the cases that may have “worse” 
tails (i.e., adjusting to heavier tails) than in MP. In other words, it may be that MP solutions 
may have less kurtosis than 3 (the kurtosis of normal distribution). So, it is reasonable to use 
HNP when the normality assumption is countered by the heavy tails hypothesis. Still, this 
difference is not drastically extreme. 

(3) This part is self-obvious and is partly discussed above. We can’t explain the magnitude 
of the difference. One should still be cautious, as extreme losses with percentage differences, 
though small, are in fact bigger in magnitude (bigger in pure amount). Standard deviation dif-
ferences still do not mean that HNP cumulatively did lose more than MP. Rather, it means that 
general fluctuations around the better mean are slightly higher than in MP around its’ mean. 

(4) It is obvious that the one thing HNP does is try to overcome corner solutions. When 
one has obvious dominant assets, it is not reasonable to try to forcefully deviate from corner 
solutions. Thus the HNP procedure becomes redundant. In that case, even uniform weights 
do better than HNP. 

In conclusion, we propose to use HNP only when there are no obviously dominant assets. 
However, in all other cases, HNP will most probably show better performance. Still, several 
other comparisons should be made. 
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