

Applications of Nanotechnology in the Environment: Soil, Water, and Air

Bhavana Tomar^{1*}, Sneh Singh Parihar², Tirunima Patle³

¹ School of Agricultural Sciences, GD Goenka University, Gurugram, Haryana-122103, India

² Department of Soil Science and Agricultural Chemistry, School of Agriculture, ITM University, Gwalior, M.P, India

³ Shri Vaishnav Institute of Agriculture, Shri Vaishnav VidyapeethVishwavidyalaya Indore, M.P, India

ABSTRACT

The global deterioration of water, soil, and air due to the release of toxic chemicals from human activities has become a serious environmental concern, posing significant risks to ecosystems and human health while limiting the effectiveness of conventional treatment technologies. In this context, nanotechnology has emerged as a promising solution, offering cost-effective, energy-efficient, and highly efficient approaches for monitoring and treating hazardous pollutants. This review highlights recent advancements in nanotechnology and its advantages over traditional methods, focusing on the application of nanomaterials such as carbon-based nanoparticles, antibacterial nanoparticles, and metal oxide nanoparticles in environmental remediation. These nanomaterials have shown great potential in air purification (removing greenhouse gases, volatile organic compounds, and bioaerosols through adsorption, photocatalysis, and filtration), soil improvement (enhancing phytoremediation through amendment agents and stabilizers), and water treatment (eliminating organic pollutants, heavy metals, and pathogens via adsorption, membrane processes, and disinfection). By addressing these critical environmental challenges, nanotechnology paves the way for more sustainable and effective remediation strategies.

Keywords: nanotechnology, nanomaterial application, water and wastewater, air pollution, soil pollution

References:

1. Madhura, L.; Singh, S.; Kanchi, S.; Sabela, M.; Bisetty, K.; Inamuddin Nanotechnology-Based Water Quality Management for Wastewater Treatment. *Environ. Chem. Lett.* **2018**, *17*, 65–121. DOI:10.1007/S10311-018-0778-8
2. Rajput, V.D.; Singh, A.; Ghazaryan, K.; Minkina, T.M.; Al-Tawaha, A.R.M. (eds.) Sustainable Agriculture: Nanotechnology and Biotechnology for Crop Production and Protection. *Sustainable Agriculture: Nanotechnology and Biotechnology for Crop Production and Protection*. **2024**, 492 p. DOI:10.1515/9783111234694
3. Rawat, S.; Singh, A.; Rajput, V.D.; Ghazaryan, K.; Minkina, T.M.; Mohammad Al-Tawaha, A.R.; Alexiou, A.T.; Rajput, P. Nanotechnology Applications for Enhanced Crop Growth and Yield. In: *Sustainable Agriculture: Nanotechnology and Biotechnology for Crop Production and Protection*. **2024**, 53–68. DOI:10.1515/9783111234694-004

*Corresponding Author:

Bhavana Tomar, School of Agricultural Sciences, GD Goenka University, Gurugram, Haryana-122103, India.

Email: bhavanatomar0606@gmail.com