

Impact of Different Methods Priming on Germination of Different Genotypes of Wheat (*Triticum Aestivum* L.) Under Salinity Stress

Nare Darbinyan*, Armine Chakhmakhchyan, Ani Hayrapetyan,
Abhishek Singh, Sakshi Singh, Karen Ghazaryan

Applied Ecology and Environmental Research Laboratory (AEER- Lab), Research Institute of
Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia

ABSTRACT

Soil salinization is currently a global ecological problem and is considered one of the main causes of reduced crop productivity. To enhance plant tolerance, one of the novel approaches is seed nanoprimer, particularly through the application of metallic zinc nanoparticles. Soil biochar priming is also regarded as an effective means of improving soil structure and chemical properties, as well as mitigating salinity stress. The application of these materials promotes seed germination, growth, and development parameters even under stressful conditions. Accordingly, the present study aims to investigate the changes in seed germination of two genotypes (V1: Gohar; V2: Van) of *Triticum aestivum* L. under salinity stress conditions using zinc oxide nanoparticles (ZnO NPs) and biochar. Within the scope of the study, germination parameters were calculated, including germination rate (GR), germination percentage (GP), germination vigor index (GVI), mean daily germination (MDG), mean germination time (MGT), and germination energy (GE). In addition, germination stress tolerance indices (PI and GSTI) under stress conditions were assessed. Overall, the results indicate that the application of biochar and ZnO nanoparticles significantly improved the germination capacity of wheat seeds under salinity stress. Therefore, the use of nanoparticles and biochar in agriculture is advisable as a strategy to enhance crop productivity, improve the physico-chemical and biological properties of the soil, and efficiently manage agricultural waste.

Keywords: salinity stress, wheat, nanoprimer, ZnO NPs, biochar priming, agricultural waste

References:

1. Singh, A.; Sharma, R.; Singh, S.; Singh, R.K.; Alexiou, A.; Sousa, J.R.; et al. Addressing abiotic stresses and advancing SDGs by Biochar for sustainable agriculture and environmental restoration. *Egypt. J. Soil Sci.* **2025**, *65*, 463–489. DOI:10.21608/ejss.2025.340493.1927
2. Singh, A.; Sengar, R.S.; Rajput, V.D.; Agrawal, S.; Ghazaryan, K.; Minkina, T.; Al Tawaha, A.R.M.; Al Zoubi, O.M.; Habeeb, T. Impact of Zinc Oxide Nanoparticles on Seed Germination Characteristics in Rice (*Oryza Sativa* L.) Under Salinity Stress. *J. Ecol. Eng.* **2023**, *24*, 142–156. DOI:10.12911/22998993/169142

***Corresponding Author:**

Ms. Nare Darbinyan, Applied Ecology and Environmental Research Laboratory (AEER- Lab), Research Institute of Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.
Email: nare.darbinyan@edu.ystu.am