

Molecular Hydrogen Production By *Clostridium pasteurianum* During Utilization of Coffee Waste

Nare Patvakanyan^{1,2*}, Liana Vanyan^{2,3}, Anna Galstyan^{2,3}, Anait Vassilian^{3,4}, Karen Trchounian^{1,2,3}

¹ Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia,

² Microbial Biotechnologies and Biofuel Innovation Center, Yerevan State University, Yerevan, Armenia

³ Research Institute of Biology, Yerevan State University, Yerevan, Armenia

⁴ Department of Ecology and Nature Protection, Faculty of Biology, Yerevan State University, Yerevan, Armenia,

ABSTRACT

The production of hydrogen (H_2) through biological methods, particularly dark fermentation, not only enables renewable energy generation but also facilitates efficient recycling of organic waste. The production of H_2 by the *Clostridium pasteurianum* DSM525 strain was investigated using varying concentrations of untreated coffee waste ($20\text{--}60\text{ g L}^{-1}$) as a carbon source. Experiments were conducted both in the presence and absence of glucose to evaluate the efficiency of coffee waste (Spent coffee grounds) alone as a carbon source. *Clostridium pasteurianum* is a strictly anaerobic, gram-positive, spore-forming, mesophilic bacterium that metabolizes various carbohydrates, particularly glucose, during dark fermentation to produce H_2 . The results showed that in the absence of glucose, the maximum H_2 yield was $\sim 6\text{ mM}$ at 96 hour of growth when 40 g L^{-1} coffee waste was applied, maintaining a relatively stable level until the end of fermentation. A similar trend was observed with 60 g L^{-1} coffee waste. In conditions with 60 g L^{-1} coffee waste, slower but stable growth was noted, with the maximum H_2 production ($\sim 3\text{ mM}$) observed at 72 hour of growth. Meanwhile glucose addition lead to significantly higher yields: the highest H_2 yield was recorded at 96 hour with 60 g L^{-1} coffee waste constituting 55 mM . For 20 g L^{-1} and 40 g L^{-1} coffee waste, the maximum H_2 production $\sim 36\text{ mM}$ was observed at 72 hour. Thus, the presence of glucose significantly enhances the growth of *Clostridium* bacteria across all groups compared to conditions without glucose. These findings indicate that coffee waste without time-consuming treatment can serve as an effective carbon source for bio- H_2 using *Clostridium pasteurianum* bacterial strain and further process optimization may further lead to cost-effective productions.

Keywords: Bio- H_2 , *Clostridium pasteurianum*, Spent coffee grounds

References:

1. Wang J.; Yin Y. *Clostridium* species for fermentative hydrogen production: An overview. *Int J Hydrogen Energ.* **2021**, *46*, 34599–625. DOI:10.1016/j.ijhydene.2021.08.052

*Corresponding Author:

Nare Patvakanyan, Biochemistry, Faculty of Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.

Email: patvakanyan.nare15@gmail.com