

8-OHdG Elevation in Hypoxic COVID-19: A Potential Link to Inflammation and Disease Severity

Tigran Harutyunyan^{1,2*}, Gohar Tadevosyan⁴, Anzhela Sargsyan^{1,2}, Lily Kalashyan¹, Naira Stepanyan³, Rouben Aroutounian^{1,2}, Galina Hovhannisyan^{1,2}

¹ Laboratory of General and Molecular Genetics, Yerevan State University, Yerevan, Armenia

² Department of Genetics and Cytology, Yerevan State University, Yerevan, Armenia

³ National Center for Infectious Diseases, Yerevan, Armenia

⁴ Laboratory of Cell Technologies, Institute of Molecular Biology, NAS RA, Yerevan, Armenia

ABSTRACT

Background: Oxidative stress is increasingly recognized as a contributor to severe COVID-19, particularly in patients with hypoxemia and systemic inflammation. 8-hydroxy-2'-deoxyguanosine (8-OHdG) is a sensitive biomarker of oxidative DNA damage. However, its relevance to COVID-19 severity, particularly in relation to oxygen saturation and inflammatory markers, remains underexplored.

Aim: This study aimed to evaluate 8-OHdG levels in blood plasma of COVID-19 patients using ELISA. Correlations between 8-OHdG and inflammatory markers C-reactive protein (CRP) and D-dimer were also analyzed. **Methods:** Plasma 8-OHdG (ng/mL) was measured by ELISA in hospitalized COVID-19 patients stratified into two groups based on peripheral oxygen saturation (SpO₂): hypoxic (SpO₂ <94%, n=33) and normoxic (SpO₂ >94%, n=32). CRP (mg/L) and D-dimer (μg/mL) levels were recorded on admission. **Results:** 8-OHdG levels were significantly higher in hypoxic patients (1.48 ± 0.10 ng/mL) than in normoxic group (1.20 ± 0.05 ng/mL). CRP (105.16 ± 12.57 mg/L) and D-dimer (9.95 ± 1.11 μg/mL) were also elevated in hypoxic patients compared to normoxic group (65.63 ± 11.40 mg/L and 5.46 ± 1.27 μg/mL, respectively). Spearman's correlation analysis showed strong positive correlations between 8-OHdG and both CRP and D-dimer in normoxic (r = 0.872 and 0.764) and hypoxic (r = 0.850 and 0.901) groups. **Conclusions:** Increased 8-OHdG levels and its strong correlations with CRP and D-dimer suggest that 8-OHdG may serve as a potential biomarker for identifying patients at greater risk of oxidative injury and poor outcomes. Further research is needed to clarify its prognostic role and integration into clinical risk assessment.

Keywords: COVID-19, 8-OHdG, CRP, D-dimer, DNA damage

References:

1. Vollbracht, C.; Kraft, K. Oxidative Stress and Hyper-Inflammation as Major Drivers of Severe COVID-19 and Long COVID: Implications for the Benefit of High-Dose Intravenous Vitamin C. *Front. Pharmacol.* **2022**, *13*, 899198. DOI:10.3389/fphar.2022.899198

*Corresponding Author:

Tigran Harutyunyan, Genomic Instability and Molecular Mutagenesis, Research Institute of Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.

Email: tigranharutyunyan@ysu.am