

“Green synthesis” of Silver Nanoparticles with Antimicrobial Activity Using Biomass of Microalgae

Lilit Gabrielyan^{1,2*}, Ani Harutyunyan^{1,2}, Jemma Manoyan^{1,2}, Anush Aghajanyan^{1,2}, Liana Gabrielyan³

¹Faculty of Biology, Yerevan State University, Yerevan, Armenia

²Research Institute of Biology, Yerevan State University, Yerevan, Armenia

³Faculty of Chemistry, Yerevan State University, Yerevan, Armenia

ABSTRACT

The biotechnological potential of microalgae lies in their rich content of proteins, vitamins, carotenoids, minerals, and other valuable compounds. In addition, microalgae have emerged as promising candidates for the “green synthesis” of nanoparticles (NPs). The aim of this study is to synthesize AgNPs using the “green biomass” of microalgae *Parachlorella kessleri* MDC6524 and *Spirulina (Arthospira) platensis* Pc-005, and to evaluate their antimicrobial activity against conditionally pathogenic bacteria (*Staphylococcus aureus*, *Enterococcus hirae*, *Salmonella typhimurium*, *Pseudomonas aeruginosa*), and fungi (*Aspergillus flavus*, *Penicillium aurantioviolaceum*, *Trichoderma viride*). The “green synthesis” of AgNPs was carried out under illumination using the microalgae biomass. The UV-Vis spectroscopy of AgNPs derived from *Parachlorella* and *Spirulina* showed prominent absorption peaks at 440 and 425 nm, respectively. TEM results revealed that these AgNPs exhibit a spherical morphology with nanoscale dimension: 46 nm for *Parachlorella*-mediated AgNPs and 30 nm for *Spirulina*-mediated AgNPs. XRD pattern suggests that the biogenic NPs are well crystallized and have a high purity. Microalgae-derived AgNPs exhibited a significant antibacterial effect at low concentration (5-10 µg/mL) against the tested bacteria. Furthermore, AgNPs demonstrated a more pronounced effect on Gram-negative bacteria. However, AgNPs showed antifungal effects only at higher concentrations (100-300 µg/mL) compared to their antibacterial activity. This disparity is likely due to differences in the structure and composition of bacterial and fungal cell walls. Thus, microalgae-derived AgNPs can have a potential as antimicrobial agents and hold significant promise for future applications.

Keywords: microalgae, silver nanoparticles, green synthesis, antimicrobial potential

Acknowledgement: The research was supported by the Higher Education and Science Committee of MESCS RA (Research project No. 25RG-1F098).

References:

1. Bhattacharya, M; Goswami, S. Microalgae – A green multi-product biorefinery for future industrial prospects. *Biocatal. Agric. Biotechnol.* **2020**, 25, 101580. DOI:10.1016/j.bcab.2020.101580.
2. Khanna, P.; Kaur, A.; Goyal, D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. *J Microbiol. Methods* **2019**, 163, 105656. DOI:10.1016/j.mimet.2019.105656.
3. Harutyunyan, A.; Gabrielyan, L.; Aghajanyan, A.; Gevorgyan, S.; Schubert, R.; Betzel, C.; Kujawski, W.; Gabrielyan, L. Comparative study of physicochemical properties and antibacterial potential of cyanobacteria *Spirulina platensis*-derived and chemically synthesized silver nanoparticles. *ACS Omega* **2024**, 9, 29410–29421. DOI:10.1021/acsomega.4c01604.

*Corresponding Author:

Lilit Gabrielyan, Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.

Email: lgabrielyan@ysu.am