

Molecular Dynamics Simulation of Proton-Conducting Half-Channels in Bacterial FoF₁-ATP Synthase

Leonid A. Ivontsin^{1*}, Elena V. Mashkovtseva^{1,2}, Yaroslav R. Nartsissov^{1,3}

¹ Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia

² Pirogov Russian National Research Medical University, Moscow, Russia

³ Biomedical Research Group, BiDiPharma GmbH, Siek, Germany

ABSTRACT

Adenosine triphosphate (ATP) serves as a universal energy source for numerous biochemical processes. In the cell, ATP synthesis is primarily driven by the protein complex FoF₁-ATP synthase, which utilizes the electrochemical gradient of hydrogen ions. Despite recent advances in structural biology that have improved our understanding of the spatial organization of proton half-channels, many aspects of this system remain unclear. A key unresolved issue is the mechanism by which proton translocation is coupled to ATP synthesis. This study focuses on the structural characterization of the half-channels and the analysis of potential proton translocation pathways. Molecular dynamics simulations were performed on the membrane-bound Fo factor of ATP synthase from *E. coli* (PDB ID: 6VWK), embedded into three types of lipid bilayers representing different physiological states of the cell. The simulations yielded structural and functional insights into the inlet and outlet proton half-channels. Specific spatial arrangements of polar amino acid residues and water molecules were identified as critical determinants of proton conductivity. Furthermore, the localization of three conserved structural water clusters (W1-W3) was detected. Stable spatial positions (SP) of key amino acid side chains in the a-subunit were determined. The presence of cardiolipin in the membrane was shown to enhance the hydration of the half-channels. To elucidate the role of functionally important protein elements in proton translocation, a mutational analysis was conducted. Simulations of mutant proteins revealed that substitution of certain polar residues significantly alters hydration dynamics, leading to disruption or complete loss of water clusters W1-W3 and, consequently, interruption of the proton conduction pathway.

Keywords: membrane proteins, FoF₁-ATP synthase, mutations, proton transport, molecular dynamics

References:

1. Ivontsin, L.A.; Mashkovtseva, E.V.; Nartsissov, Y.R. Insights on the proton translocation pathways in F_oF₁-ATP synthase using molecular dynamics simulations. *Arch. Biochem. Biophys.* **2022**, *717*, 109135. DOI:10.1016/j.abb.2022.109135
2. Ivontsin, L.A.; Mashkovtseva, E.V.; Nartsissov, Y.R. Membrane lipid composition influences the hydration of proton half-channels in F_oF₁-ATP synthase. *Life.* **2023**, *13*, 1816. DOI:10.3390/life13091816
3. Ivontsin, L.A.; Mashkovtseva, E.V.; Nartsissov, Y.R. Molecular dynamics simulations of the mutated proton-transferring a-subunit of *E. coli* F_oF₁-ATP synthase. *Int. J. Mol. Sci.* **2024**, *25*, 5143. DOI:10.3390/ijms25105143

*Corresponding Author:

Leonid A. Ivontsin, Department of Mathematical Modeling and Statistical Data Analysis, Institute of Cytochemistry and Molecular Pharmacology, 24/14 6th Radialnaya str., Moscow, 115404, Russia.

Email: ivontsin@icmph.org