

3D Modeling of Glutamate Convectional Diffusion in A Functional Synaptic Cleft

Olga A. Zagubnaya^{1,2*}, Yaroslav R. Nartsissov^{1,2}

¹ Department of mathematical modeling and statistical analysis of results, Institute of Cytochemistry and Molecular Pharmacology, Moscow, Russia

² Biomedical Research Group, BiDiPharma GmbH, Siek, Germany

ABSTRACT

Synaptic plasticity (SP) lays at the basis of cognition, memory and learning. Glutamatergic neurotransmission with its adaptable biological properties plays an essential role in SP formation. The synaptic cleft area expands at highly active synapses allowing more neurotransmitter release sites at the presynaptic active zone and wider postsynaptic membrane area for receptor proteins. Adjacent astrocyte extends its leaflet to envelope the cleft, provides a sufficient amount of glutamate transporters and ensures excitotoxic (high extracellular glutamate level) conditions avoiding which is in attendance on many neurodegenerative diseases and brain injury. An algorithm for creating a synaptic cleft digital phantom was proposed using COMSOL Multiphysics in accordance with earlier isolated synapse models. 3D phantoms kit of functional glutamatergic synapses depicts considered biological structures at different stages (formation, mature state, elimination). The kit poses validated sizes and distances between pre- and postsynaptic endings, precise localization of vesicular partial release, extending astrocytic leaflets cradling and is suitable for glutamate convectional reaction-diffusion modeling. Functional parameters of glutamate release from varied number of vesicles with distinct localization were defined. Convectional diffusion of neurotransmitter with its reuptake by glutamate transporters was evaluated in the interstitial fluid area. The variations in glutamate levels observed at functional synapses allow for a more detailed understanding of intricate biological mechanisms and can help forecast potential triggers for excitotoxicity.

Keywords: synaptic cleft, glutamate diffusion, 3D modelling

References:

1. Zagubnaya, O.A.; Nartsissov, Y.R. A digital 3D reconstruction of a synaptic cleft which can be used for further modeling of neuromediators convectional diffusion in a nervous tissue. *AIP Conf. Proc.* **2023**, *2872*, 120003. DOI:10.1063/5.0162989
2. Nartsissov, Y.R.; Ivontsin, L.A. Mathematical modelling of physiological effects caused by a glycine receptors post-synaptic density spatial polymorphism. *Mathematics* **2023**, *11*, 2499. DOI:10.3390/math11112499
3. Zagubnaya, O.A.; Nartsissov, Y.R. An algorithm for creating a synaptic cleft digital phantom suitable for further numerical modeling. *Algorithms* **2024**, *17*, 451. DOI:10.3390/a17100451

*Corresponding Author:

Olga A. Zagubnaya, Department of mathematical modeling and statistical analysis of results, Scientific secretary of Institute of Cytochemistry and Molecular Pharmacology, 24/14 6-ya Radialnaya str., Moscow, 115404, Russia.

Email: zagubnaya@icmph.org