

## Redox Regulation of Hydrogenase Activity and Polyhydroxyalkanoate Production in *Cupriavidus necator* H16 Cultivated on Dairy Industry Side-streams

Ofelya Karapetyan<sup>1,2\*</sup>, Ela Minasyan<sup>3</sup>, Anna Poladyan<sup>1,2</sup>

<sup>1</sup> Faculty of Biology, Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia

<sup>2</sup> Research Institute of Biology, Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia

<sup>3</sup> Institute of Pharmacy, Yerevan State University, 1 Alex Manoogian str., 0025, Yerevan, Armenia

### ABSTRACT

*Cupriavidus necator* is a chemolithoautotrophic bacteria with high biotechnological relevance, particularly for bio-based production processes. Organic streams (whey) from the dairy industry, rich in proteins, sugars, and minerals, can serve as valuable sources of carbon and nitrogen for microbial growth [1]. This study evaluates the effect of redox reagent dithiothreitol (DTT) on bacterial growth, hydrogenase (Hyd) activity, and polyhydroxyalkanoate (PHA) accumulation in *C. necator* H16 cultured on acid whey (AW) and sweet whey (SW). Bacterial growth was monitored by measuring optical density at 600 nm (OD<sub>600</sub>), and Hyd activity was quantified using hydrogen-dependent methylene blue reduction, while PHA accumulation was analyzed using high-performance liquid chromatography (HPLC) [2]. The results demonstrated enhanced bacterial growth in DTT-supplemented samples. The highest OD<sub>600</sub> was observed on day 5 for the AW+DTT culture (OD<sub>600</sub> = 5.1) and on 6<sup>th</sup> day for the SW+DTT culture (OD<sub>600</sub> = 4.6), ~2 fold higher than their respective controls without DTT. Hyd activity was detected in all samples; however, its onset was earlier and more pronounced in DTT-treated cultures. The maximum Hyd activity reached 0.17 U/min/g CDW in the SW+DTT sample. PHA accumulation was observed during growth on both AW and SW. Interestingly, PHA levels decreased when Hyd activity was high, suggesting a possible inverse relationship between energy metabolism via hydrogen oxidation and carbon storage. In summary, supplementation with DTT enhances *C. necator* H16 growth on dairy side-streams, promotes earlier Hyd activation, and influences PHA accumulation dynamics. This approach highlights the potential of valorizing dairy industry by-products for sustainable microbial bioprocesses.

**Keywords:** dairy industry side-streams, polyhydroxyalkanoate, hydrogenase enzymes, redox regulation

### References:

1. Poladyan, A.; Trchounian, K.; Paloyan, A.; et al. The Valorization of Whey-based Side-streams for Microbial Biomass, Molecular Hydrogen, and Hydrogenase Enzyme Production, *Appl. Microbiol. Biotechnol.* **2023**, *107*, 4683–4696. DOI:10.1007/s00253-023-12609-x
2. Duvigneau, J.; Kohrt, L.; Krull, R. A fast and reliable HPLC method for the quantification of monomer composition in poly(3-hydroxybutyrate-co-3-hydroxyvalerate). *Appl. Microbiol. Biotechnol.* **2021**, *105*, 4453–4463. DOI:10.1007/s00253-021-11265-3

### \*Corresponding Author:

Ofelya Karapetyan, Department of Biochemistry, Microbiology and Biotechnology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.

Email: [ofelya.karapetyan@ysu.am](mailto:ofelya.karapetyan@ysu.am)