

The Role of Hydrogenases and FoF₁-ATPase in Electricity Generation in an H₂-Based Bioelectrochemical System

Lusine Baghdasaryan^{1,2}, Anna Poladyan^{1,2*}

¹ Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, Yerevan, Armenia

² Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia

ABSTRACT

Hydrogenases (Hyds) are microbial enzymes that reversibly catalyze the oxidation of molecular hydrogen (H₂), playing a critical role in biohydrogen metabolism [1,2,3]. These include oxygen-resistant biological [NiFe]-hydrogenases, which have attracted great interest for their application in hydrogen fuel cell (H₂-FC) technologies. The results provide insight into the potential of bioelectrochemical-based systems for sustainable energy production. The bioelectrocatalytic efficiency of *E. coli* bacteria immobilized on the electrode surface in a volume of 3 μ l (1.5 mg cell dry weight) was studied under the conditions of 0.2% glucose fermentation in peptone medium at pH-7.5 [4]. In this study, the electrochemical measurements were performed using a two-electrode system equipped with a computer potentiostat, specifically a hydrogen fuel cell voltammetry (HFCV). The wild-type *E. coli* BW25113, the septuple (BW25113 $hyAB$ $hyBC$ $hyCA$ $fdoG$ $ldhA$ $frdC$ $aceE$) the FoF₁-ATPase-defective, and the Hyd defective $hyAB$, $hyBC$, $hyCE$, $hyfG$ mutant strains were used in the experiments. Maximal catalytic activity was observed in the $hyAB$ and $hyfG$ mutants, being stimulated \sim 2-fold and \sim 1.6-fold compared to the wild type, reaching values of \sim 1.26 \pm 0.02 V and \sim 0.98 \pm 0.02 V, respectively. The effect of the 10 mM N,N'-dicyclohexylcarbodiimide (DCCD), the FoF₁-ATPase inhibitor, on the catalytic activity of Hyd enzymes was observed. It was shown that for all strains, the reading of the voltammeter decreased \sim 1.5 times, reaching the readings recorded by the FoF₁-ATPase-defective strain. Interestingly, in the case of the the septuple mutant strain, DCCD recorded a stimulating rather than a suppressive effect. The results obtained indicate the great potential of bacteria as anodic biocatalysts and demonstrate the need for further studies.

Keywords: anode biocatalyst, *E. coli* BW 25113, hydrogenase mutants, hydrogenase ferments, voltammeter

References:

- Trchounian, K.; Pinske, C.; Sawers G.; Trchounian, A. Characterization of *Escherichia coli* [NiFe]-hydrogenase distribution during fermentative growth at different pHs. *Cell Biochem. Biophys.* **2012**, *62*, 433–40.
- Sargent, F. The model [NiFe]-hydrogenases of *Escherichia coli*. *Adv. J. Microb. Physiol.* **2016**, *68*, 433–507. DOI:10.1016/bs.ampbs.2016.02.008
- Lenz, O.; Lauterbach, L.; Frielingsdorf, S.; Friedrich, B. Oxygen-tolerant hydrogenases and their biotechnological potential. In: *Biohydrogen*. **2016**, 61–96. DOI:10.1515/9783110336733.61
- Seferyan, T.; Baghdasaryan, L.; Iskandaryan M.; Trchounian, K.; Poladyan, A. Development of an H₂ fuel cell electrochemical system powered by *Escherichia coli* cells, *Electrochim. Commun.* **2024**, *165*, 107746. DOI:10.1016/j.elecom.2024.107746

*Corresponding Author:

Anna Poladyan Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan.

Email: apoladyan@ysu.am