

Study on Bioleaching Using Seawater: Influencing Factors of Pyrite Leaching by Acidophiles

Can Wang¹, Xueqing Lv^{1,2}, Jizhou Duan¹, Wolfgang Sand¹, Ailing Xu², Ruiyong Zhang^{1*}

¹ State Key Laboratory of Advanced Marine Materials, Key Laboratory of Marine Environmental Corrosion and Bio-fouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China

² School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao, China

ABSTRACT

Bioleaching technology (biohydrometallurgy), with its sustainability, low energy consumption, and environmental friendliness, provides an innovative pathway for tailings recycling and low-grade ore processing, making it a research focus in interdisciplinary fields of mining engineering and environmental science. The critical challenge in seawater biohydrometallurgy lies in obtaining highly chloride-tolerant microbial strains and consortia to dissolve valuable metals from solid sulfides, tailings, or electronic waste into the liquid phase for subsequent extraction. This study focuses on seawater-based bioleaching technology. A salt-tolerant acclimated culture system of *Acidithiobacillus thiooxidans* was established to systematically investigate the coupled effects of pH gradients (3~7) and chloride ion concentrations (0, 2.5, 5, 10, 24 g/L NaCl) on pyrite bioleaching. Additionally, the roles of different sulfur substrates (tetrathionate, thiosulfate, and elemental sulfur) in the system were compared. The results indicated that 10 g/L of NaCl promoted the pyrite bioleaching and tetrathionate was the best substrate. This study demonstrates a possibility for bioleaching practice using seawater.

Keywords: seawater bioleaching, *Acidithiobacillus thiooxidans*, pyrite, pH, Cl⁻ concentration, sulfur metabolic substrates

References:

1. Campbell, K.M.; Alpers, C.N.; Nordstrom, D.K. Formation and prevention of pipe scale from acid mine drainage at iron Mountain and Leviathan Mines, California, USA. *Appl. Geochem.* **2020**, *115*, 104521. DOI:10.1016/j.apgeochem.2020.104521
2. Kefeni, K.; Msagati, T.A.; Mamba, B. Acid mine drainage: Prevention, treatment options, and resource recovery: A review. *J. Clean. Prod.* **2017**, *151*, 475-93. DOI:10.1016/j.jclepro.2017.03.082

*Corresponding Author:

Ruiyong Zhang, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
Email: ruiyong.zhang@qdio.ac.cn