

***Hypericum alpestre* Extract and L-NAME Suppress PI3K/Akt Pathway and Enhance Apoptosis in Lung and Breast Cancer Cells**

Svetlana Hovhannisyan*, Gayane Petrosyan, Hayarpi Javrushyan,
Mikayel Ginovyan, Nikolay Avtandilyan

Faculty of Biology, Yerevan State University, Yerevan, Armenia

ABSTRACT

Lung adenocarcinoma and triple-negative breast cancer (TNBC) are aggressive malignancies often resistant to standard therapies. The PI3K/Akt signaling pathway is a critical regulator of tumor cell survival, angiogenesis, inflammation, and apoptosis resistance in both cancer types. Identifying effective inhibitors of this pathway is crucial for the development of novel treatment strategies. *Hypericum alpestre* (HA), a polyphenol-rich medicinal plant, has shown promising anticancer activity. This study investigates the effects of HA extract, alone and in combination with L-NAME, a nitric oxide synthase (NOS) inhibitor, on PI3K/Akt signaling and related molecular targets in A549 lung adenocarcinoma and MDA-MB-231 TNBC cells. Cytotoxicity was assessed using MTT assays. Western blot and ELISA were used to evaluate PI3K, Akt, TNF α , VEGF α , COX-2, and MMP-2 expression. Apoptosis was confirmed by Caspase-3 activation and Hoechst 33258 nuclear staining. HA significantly suppressed PI3K/Akt signaling in both cell lines, with marked reductions in TNF α and VEGF α levels, indicating decreased inflammation and angiogenesis. The combination of HA with L-NAME led to enhanced inhibition of COX-2 and MMP-2, key factors in tumor progression and metastasis, and significantly increased Caspase-3-mediated apoptosis. Notably, HA+L-NAME demonstrated stronger anticancer efficacy compared to 5-fluorouracil (5-FU), a commonly used chemotherapeutic drug. These findings suggest that *Hypericum alpestre* extract, particularly in combination with L-NAME, effectively inhibits oncogenic signaling pathways and promotes apoptosis in both lung and breast cancer cells. The results highlight its potential as a complementary therapeutic approach, meriting further investigation in preclinical cancer models.

Keywords: *Hypericum alpestre*, L-NAME, PI3K/Akt, apoptosis, lung adenocarcinoma, triple-negative breast cancer, TNF α , VEGF α , COX-2, MMP-2, inflammation, metastasis

References:

1. Avtandilyan, N.; Javrushyan, H.; Ginovyan, M.; et al. Anti-cancer effect of in vivo inhibition of nitric oxide synthase in a rat model of breast cancer. *Mol. Cell. Biochem.* **2023**, *478*, 261–275. DOI:10.1007/s11010-022-04489-y
4. Ginovyan, M.; Javrushyan, H.; Hovhannisyan, S.; et al. 5-Fluorouracil and *Rumex obtusifolius* extract combination trigger A549 cancer cell apoptosis: uncovering PI3K/Akt inhibition by in vitro and in silico approaches. *Sci. Rep.* **2024**, *14*, 14676. DOI:10.1038/s41598-024-65816-5
5. Javrushyan, H.; Ginovyan, M.; Harutyunyan, T.; et al. Elucidating the impact of *Hypericum alpestre* extract and L-NAME on the PI3K/Akt signaling pathway in A549 lung adenocarcinoma and MDA-MB-231 triple-negative breast cancer cells. *PLoS One* **2025**, *20*, e0303736. DOI:10.1371/journal.pone.0303736

***Corresponding Author:**

Svetlana Hovhannisyan, Department of Biochemistry, Microbiology and Biotechnology, Faculty of Biology, Yerevan State University, 1 Alex Manoogian str., Yerevan, 0025, Armenia.

Email: svetlana.hovhannisyan@ysu.am