

How *fdhF* Deletion Affects Ion Transport and ATPase Activity in *E. coli*?

Liana Vanyan^{1,2*}, Karen Trchounian^{1,2}

¹ Scientific-Research Institute of Biology, Yerevan State University, Yerevan, Armenia

² Microbial Biotechnologies and Biofuel Innovation Center, Yerevan, Armenia

ABSTRACT

Formate dehydrogenase-H plays a key role in anaerobic metabolism, particularly in formate metabolism during fermentation. To assess its glucose-dependent role, proton (J_{H^+}) and potassium (J_{K^+}) fluxes, along with F_0F_1 -ATPase activity, were examined in wild-type and *fdhF* mutant grown under low (2 g L⁻¹) and high (8 g L⁻¹) glucose. When cells were grown in the presence of low glucose and during assays similar amount was added mutant showed 40% higher J_{H^+} but 30% lower F_0F_1 -conditioned flux, consistent with a 20% reduction in ATPase activity upon potassium supplementation, but there were no differences when extra formate, or potassium and formate together were supplemented. At the same time total J_{K^+} was lower compared to wild type, meanwhile DCCD does not affect the flux. Under high glucose, mutants displayed a 50% increase in total and DCCD-sensitive J_{H^+} fluxes, a 35% decrease in J_{K^+} , and a 50% drop in F_0F_1 -conditioned flux. When cells were grown in a presence of high glucose and during assays similar amount was supplemented total J_{H^+} was similar in mutant and wild type, meanwhile DCCD-sensitive flux decreased by 25-35%, conversely total J_{K^+} increased by 35% and with DCCD potassium outflux was observed. Potassium had no effect on ATPase activity, but formate increased it by 25%. These findings suggest that under low glucose, accumulated formate stimulates proton efflux while inhibiting ATPase, whereas under high glucose, formate regulates ATPase via potassium, highlighting a glucose-dependent shift in formate's control of membrane bioenergetics.

Keywords: formate dehydrogenase H, F_0F_1 -ATPase, J_{H^+} , J_{K^+} , glucose concentration

References:

1. Sawers, R.G. Formate and its role in hydrogen production in *Escherichia coli*. *Biochem. Soc. Trans.* **2005**, *33*, 42–46.
DOI:10.1042/BST0330042

*Corresponding Author:

Liana Vanyan, Institute of Biology, Yerevan State University, 1 Alex Manoogian str., 0025 Yerevan, Armenia.

Email: liana.vanyan@ysu.am