

Soil CH₄ Fluxes in Typical Tundra of the Taimyr Peninsula, Siberia

Alexey V. Panov^{*}, Anatoly S. Prokushkin, Ilya R. Putilin, Mikhail A. Korets, Elena A. Kukavskaya

V.N. Sukachev Institute of Forest of the Siberian Branch of Russian Academy of Sciences –
separated department of the KSC SB RAS, Krasnoyarsk, Russia

ABSTRACT

Among the most climate-vulnerable biomes, Arctic tundra contains large amounts of soil organic carbon stored in perennially frozen ground (permafrost), which can be released into the atmosphere as carbon dioxide (CO₂) and methane (CH₄) in a warmer climate. Given the 25–30 times higher global warming potential of CH₄ compared to CO₂, CH₄ release from permafrost degradation could account for ~ 50% of the future total radiative forcing. Currently, tundra ecosystems constitute a weak CH₄ source, however strong spatio-temporal variations of CH₄ fluxes observed across the tundra biome contribute the uncertainty range in predicting climate feedbacks in the Arctic. We investigated spatial patterns and magnitudes of soil CH₄ fluxes within different landscape units and vegetation types in typical tundra of the Taimyr Peninsula, Siberia. CH₄ fluxes were measured during the growing seasons of 2023 – 2024 using the chamber method. In general, mean soil CH₄ flux reached 0.86 $\mu\text{mol m}^{-2} \text{h}^{-1}$, ranging across tundra landscapes from -0.01 $\mu\text{mol m}^{-2} \text{h}^{-1}$ (consumption) in patches of barren ground to 9.75 $\mu\text{mol m}^{-2} \text{h}^{-1}$ (source) in sedge vegetation. The highest mean rates (2.39 $\mu\text{mol m}^{-2} \text{h}^{-1}$) were attributed to the overwetted marsh tundra, while significantly lower records were observed across frost-heaved (0.09 $\mu\text{mol m}^{-2} \text{h}^{-1}$) and moss tundra (0.19 $\mu\text{mol m}^{-2} \text{h}^{-1}$). In areas disturbed by all-terrain tracks, the mean CH₄ flux was 3-fold higher than in the undisturbed tundra and achieved 2.24 $\mu\text{mol m}^{-2} \text{h}^{-1}$, ranging from 0.97 to 2.99 $\mu\text{mol m}^{-2} \text{h}^{-1}$ in moss and marsh tundra, respectively.

Keywords: climate, arctic, tundra, vegetation, methane, chamber

Acknowledgement: This research was funded by the Russian Science Foundation, Krasnoyarsk Territory and Krasnoyarsk Regional Fund of Science, project #24-27-20064.

References:

1. Kukavskaya, E.A.; Panov, A.V.; Makhnykina, A.V.; Groisman, P.Y. Fire and logging decrease soil CO₂ efflux in Siberian central Taiga forests. *Forests* **2025**, *16*, 1057. DOI:10.3390/f16071057

*Corresponding Author:

Alexey V. Panov Laboratory of experimental and applied ecology, V.N. Sukachev Institute of Forest of the Siberian Branch of Russian Academy of Sciences – separated department of the KSC SB RAS, Akademgorodok 50/28, Krasnoyarsk, 660036, Russia.

Email: alexey.v.panov@gmail.com