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BINDING PECULIARITIES OF POLY(rA)-POLY(rU) WITH
MINOR GROOVE LIGAND HOECHST 33258
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Study on the interaction of DNA-specific ligands — classical intercalator
acridine orange (AO) and groove binding compound Hoechst 33258 (H33258) with
poly(rA)-poly(rU), being a model for double-stranded (ds-) RNA, has been carried
out. The absorption and fluorescence spectra of the complexes of these ligands with
ds-polynucleotide were obtained. It was revealed that the optic and fluorescent
characteristics of the complexes of both ligands with ds-RNA are similar with those
at the complex-formation with DNA.
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Introduction. Structure of double-stranded (ds-) RNA has important
regulating effects in a cell, since it can serve as a target for modulation of cellular
processes [1]. From this point of view, molecular recognition of ds-RNA by various
small molecules can be a key phase of regulation of some processes: transport,
editing and maturation of cellular RNA, antiviral response of interferon, RNA-
interference etc. Taking this fact into account, for rational design of new RNA-
binding molecules, detailed basic knowledge is needed about main aspects of
interaction — mode, mechanism, affinity, specificity and selectivity of already
existing molecules [2]. One of possible paths in this direction is a study of interaction
of DNA-specific ligands with ds-form of RNA. Among various small molecules
non-covalently binding compounds, possessing different interaction mechanisms
with nucleic acids, are of great interest, particularly, intercalators, as well as groove
binding materials [3].

Intercalators can bind not only with DNA, but also with RNA or proteins.
Nucleic acids (NA) are polyanions and their negatively charged nucleotides permit
binding cationic dyes, such as acridine orange (AO-3,6-dimethylaminoacridine). AO
interacts with ds-DNA by intercalation, while with single-stranded (ss-) RNA it
mainly binds electrostatically, which leads to different fluorescence with maximal
irradiation at 2=530 nm and 640 nm for DNA and RNA respectively. Basophilic AO
also binds to other anions, for example, to proteins, which sometimes makes hard
DNA dying in vivo [4-8]. Interaction of AO is a complicated process, which includes
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different states of ligand in equilibrium — free and bound monomers of AO with
DNA, free and bound aggregates of AO, bound to monomeric molecules or with
aggregates of DNA. Aggregation decreases lifetime and quantum yield of excited
states of AO. On the other hand, disaggregation of AO at excess of DNA increases
the lifetime of the ligand quantum yield in excited states. AO binding with DNA
decreases a probability of its contact to other molecules as well. It, particularly, can
reduce a transition probability of energy from excited AO molecules to molecular
oxygen. All these effects can change the efficiency of AO as photosensibilizer in
photodynamic therapy or fluorescent diagnosis [9].

One of known groove binding compounds is Hoechst 33258 (H33258) —
derivative of N-methypiperazine with two benzimidazole groups and one phenyl
group. This is a long flexible molecule with positively charged end and many donors
and acceptors of proton, which contributes to formation of hydrogen bonds between
ligand and macromolecules. Interest to H33258 is high due to its clinical value, for
example, it has an antimicrobial and antitumor as well as radioprotector action [10, 11].
As a basis for some drug preparations, H33258 can easily be absorbed by cells and
show a selectivity to ds-DNA, ds-RNA, A-DNA and NA in other conformations [3].

The presented work is aimed at studying of binding peculiarities of AO and
H33258 hinding to synthetic polynucleotide poly(rA)-poly(rU), which is a model for
ds-RNA to reveal the interaction modes.

Materials and Methods. In this work poly(rA)-poly(rU), AO, H33258
(“Sigma”, USA), physiological solution (sterile apyrogenic) for injection (0.154 M
NaCl) (Ligvor Pharmaceuticals, Armenia), deionized water, resistivity R equal to
18.2 MQ-cm (H20 Economy, LLC, Armenia — US JC) were used. All preparations
were used without additional purification. Concentrations of poly(rA)-poly(rU) and
ligands were determined spectrophotometrically, using the following coefficients of
absorption — £60=7140 M~t-cm=* for poly(rA)-poly(rU), £9,=35000 M-t-cm~* for AO,
£343=42000 M-*-cm™* for H33258.

Spectrophotometric measurements were carried out on double-beam
spectrophotometers UV-VIS Unicam-SP-8-100 (England) and Perkin Elmer
UV/VIS Lambda 365. Absorption measurements were realized in quartz cuvettes
with optic pathway length 1 cm and the same optic parameters. Fluorescent studies
were carried out on fluorospectrometer Varian Cary Eclipse Fluorescence
Spectrophotometer (Australia).

All measurements were carried out at the solution ionic strength 0.04 M, at
which poly(rA)-poly(rU) is in only ds-state [12—14].

Results and Discussion. Interaction of cationic compounds with polyanions
(particularly, with NA) can be studied using electronic spectroscopy method in
visible region, since usually the binding leads to hypochromic and bathochromic
effects in absorption bands of respective ligands. Thus, AO has maximal absorption
at the wavelength 490 nm, the absorption maximum of H33258 out of NA absorption
band corresponds to the wavelength 343 nm (absorption spectra of AO and H33258
are presented in Fig. 1). From the presented Figure, it is obvious that along with
concentration increasing of poly(rA)-poly(rU), the absorption spectra of AO exhibit
a hypochromism and bathochromic shift to longer wavelength region. Proceeding
from the fact that dilution of the solutions of ligands was neglecting, obviously the
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appeared hypochromism is a result of complex-formation between ligand and NA.
It is important to mention that in AO absorption spectra in visible region besides a
maximum, a shoulder emerges near the wavelength 475 nm. It was shown that this
shoulder increases at high concentrations of AO in solutions, which is a result of
dimerization of ligand molecules. Though, at the interaction of this ligand with DNA
the absorption of the complexes at both 490 and 475 nm decreases at low
concentrations of NA [4].
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Fig. 1. Absorption spectra of the complexes of AO (a) and H33258 (b) with poly(rA)-poly(rU).

As it is obvious from Fig. 1,a, such an effect was revealed at the titration of
AO with poly(rA)-poly(rU) (curve 2), which indicates the formation of the
complexes between ligand and NA. Moreover, the spectra, presented in Fig. 1, a,
show a similar behavior as those of the complexes AO-ds-DNA. From this point of
view, it should be mentioned that the absorption spectra of the complexes AO—
poly(rA)-poly(rU), at relatively high concentrations of homopolynucleotide,
increase. We assume that as for ds-DNA, molecules of poly(rA)-poly(rU) destroy dimers
of AQ, resulting in transition of this ligand molecules to monomeric state and binding
to NA. It results in bathochromic shift to longer wavelength region (curves 3-5), as
well as to the increase of maximum in relation to the shoulder. Though, the
absorption spectra of the complexes of AO monomeric forms AO—poly(rA)-poly(rU)
also show hypochromism along with increasing of NA concentration. Meanwhile, in
contrast to the complexes AO-DNA, at further increasing of NA concentration, the
enhancement of maxima and hypochromic shift [4] toward short-wave region are not
revealed in the spectra of the complexes AO—poly(rA)-poly(rU). On the other hand,
in the spectra of the complexes of intercalator with poly(rA)-poly(rU), an isosbestic
point is not formed as in the spectra of the complexes of other intercalators with NA
[15-17].

Hypochromism with a small bathochromic shift takes place at the interaction
of H33258 with poly(rA)-poly(rU). Analogously to AO, in the case of H33258 a
similarity between optic characteristics of the complexes of this ligand with ds-DNA
and poly(rA)-poly(rU) is also revealed (Fig. 1, b). This fact can be explained by the
binding of DNA-specific (B-conformation) benzimidazole dye H33258 to ds-RNA
(A-form of NA).
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Fig. 2. Fluorescence spectra of the complexes of AO (a) and H33258 (b) with poly(rA)-poly(rU).

Fluorescence spectra of the complexes of AO and H33258 with poly(rA)-
poly(rU) are presented in Fig. 2. It is obvious from figure that the fluorescence
intensity, along with AO binding to poly(rA)-poly(rU), significantly increases as
compared to the intensity of non-bound ligand molecules. Analogous effect is
observed at the interaction of this ligand with DNA as well. Meanwhile, AO binds
to ds-form of DNA by intercalation mechanism and at the saturation of these centers
— by electrostatic one [4-6].

As a result of complete intercalation, the fluorescence occurs in green band of
visible light. Based on the obtained results we assume that for poly(rA)-poly(rU) the
intercalation of AO takes place, since the fluorescence maxima are registered in
green band.

It is obvious from Fig. 2, b, that H33258 dye binds to poly(rA)-poly(rU) in a
sufficiently effective way, because a sharp enhancement of the fluorescence intensity
takes place along with increasing of concentration of the synthetic polynucleotide in
the solution.

The observed increase of the luminescence intensity of H33258 indicates the
formation of significantly stable complexes, most apparently, due to the fixation of
ligand molecules on NA (free molecules of H33258 are flexible and possess an
ability of free oscillations, which results in low intensity of their fluorescence) [18].
In this regard, the shift of the maxima to shorter or longer wavelength region
practically does not occur, which indicates that the polarity in the surrounding of the
ligand bound molecules does not change. Obviously, the hydration degree in the
surrounding of free and bound molecules of H33258 is practically the same. It is
known that H33258 is a typical AT-specific ligand and is localized in DNA minor
groove, which usually is in B-form [19, 20]. By this reason the minor groove of RNA
that is in only A-form, becomes wider and not deeper, the major one — narrower and
deeper, while in B-DNA - vice versa. Therefore, structural differences of these
conformations should affect the affinity of ligands to A- or B-forms of NA [21, 22].
Taking this into account, we assume that H33258 is localized mainly in major groove
of poly(rA)-poly(rU), where the polarity practically is the same as in the solution.

Conclusion. Thus, the obtained data indicate that AO and H33258, being
DNA-specific ligands and possessing various mechanisms of interaction with DNA,
practically bind to poly(rA)-poly(rU) (ds-RNA) with the same probability.
Moreover, we can assume that these fluorescent dyes are specific not only for DNA,
but also for RNA. In this regard, it is revealed that these ligands bind to both B- and
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A-forms of NA with the equal probability. We also assume that the obtained data
can be useful for application of the mentioned ligands as potential therapeutic
measures as well as can serve as a basis for design of new drug or bioactive
preparations.
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M. A. TTAPCAJJAHSAH, M. A. ITATUHAH, 3. O. MOBCHUCSHH, A.II. AHTOHAH

OCOBEHHOCTH CBSI3bIBAHIUS POLY(rA)-POLY/(rU)
C MAJIO-XKEJIOBKOBBIM JIMT AHZIOM HOECHST 33258

IIpoBeneno wccnenoBanne no B3aumozeicteuo JIHK-cnermuduuecknx
JUTAHMIOB, KJIACCHYECKOTO HHTEPKAIATOpPa aKpUIMHOBOTO opamkeBoro (AO) wu
KeIToOKOBO cBs3bIBaromerocst coenuuerns Hoechst 33258 (H33258) ¢ poly(rA)-
poly(rU), seistomerocs moaenbto aByxuenodeuHoit (mu-) PHK. Iomyyens! cnektps
TIOTJIONICHHS U (PITYOPECICHITNHA KOMIUTIEKCOB 3THX JIMTAHJIOB C JII-TIOJTUHYKICOTHIOM.
BrisiBiieHO, 4TO onTHYeckre W (PIyOpECLEHTHBIE XapaKTEPUCTHUKUA KOMILIEKCOB
o0oux murannoB ¢ an-PHK cxoxku ¢ TakoBBEIMEH TpU WX KOMILIEKCOOOPa30BaHUU
¢ IHK.
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