

CTAB PROTOCOL OPTIMIZATION FOR HIGH-PURITY DNA
EXTRACTION FROM ACIDIC SOIL IN THE HABITAT
OF WILD BILBERRY (*VACCINIUM MYRTILLUS* L.)

M. M. TADEVOSYAN ^{1,2*}, H. H. PANOSYAN ^{2**}, A. Zh. AVETISYAN ^{1***}

¹ Armenian National Agrarian University (ANAU), Armenia

² Chair of Biochemistry, Microbiology and Biotechnology, YSU, Armenia

Two modified versions of the cetyltrimethylammonium bromide (CTAB)-based method were compared with a commercial kit to develop a cost-effective and efficient protocol for high-purity DNA extraction from acidic soil in the habitat of wild bilberry *Vaccinium myrtillus* L. The CTAB-NB (no bead treatment) approach resulted in poor outcomes in both yield and quality (1.56 and 0.37 at absorbance ratios of 260/280 and 260/230). The addition of bead treatment in 0.1 mm PowerBead Tubes (Qiagen), coupled with extended mixing (CTAB-B), increased DNA yield by more than eight times and substantially improved DNA purity, yielding 545.76 ng DNA per g of soil with 260/280 and 260/230 absorbance ratios of 1.87 and 1.62, respectively. The commercial kit provided high-yielded (856.08 ng DNA per g of soil) and pure DNA with a 260/280 ratio of 1.95 and a 260/230 ratio of 2.10. The CTAB-B protocol is cost-efficient and provides high-purity DNA suitable for metagenomic PCR amplification.

<https://doi.org/10.46991/PYSUB.2025.59.1–2.026>

Keywords: CTAB, DNA isolation, acidic soil, metagenome, PCR amplification.

Introduction. Soil is a major pool for microbial genetic diversity. Soil microbes play a key role in maintaining soil health and vital functions, influence soil fertility, phytopathogens control, plants stress tolerance and enhance nutrient use efficiency, particularly in low-fertility ecosystems, where symbionts help plants acquire limited resources [1, 2]. Analysis of soil microbiomes provides insights into the structure, functional networks, and roles of microbial communities in the sustainable development of ecosystems [1–3]. Recent studies of microbial communities have increasingly relied on metagenomic approaches [4]. As these methods rely on accurate genetic data, high-quality DNA extraction from soil samples is crucial for successful analysis. The extraction efficiency impacts not only DNA yield, purity, and integrity but also subsequent PCR reactions, potentially leading to biased results. Protocols must address challenges such as incomplete cell disruption

* E-mail: mane.tadevosyan@ysu.am

** E-mail: hpanosyan@ysu.am

*** E-mail: avetisyananna@yahoo.com

and the presence of soil organic substances (e.g., fulvic and humic acids) that inhibit DNA polymerase activity and interfere with hybridization [5–9]. Evaluating these factors is essential to ensure the reliability and reproducibility of microbiome studies.

Soil is a challenging system for DNA extraction. Its matrix, shaped by silt, clay, sand, and organic matter content that organizes into micro- and macro-aggregates, hosts microorganisms unevenly distributed within microaggregates and macropores outside of them [10, 11]. Thus, protocol adjustments for studying soil microbial communities are necessary for each specific soil type.

Soil DNA extraction methods include mannitol, PEG/NaCl, and CTAB-based approaches, with various commercial kits available that differ in efficiency [5, 12, 13]. The extraction protocols typically include a cell lysis step, followed by DNA separation from impurities. Mechanical, physical and chemical treatments have been employed to improve cell lysis. For instance, shaking the sample in lysis buffers containing high concentrations of detergents, inclusion of enzymes or chaotropic agents, bead beating, sonication and freeze-thaw procedures all help to rupture cells and facilitate DNA release [6, 14, 15–17]. The yield and quality of extracted DNA are commonly measured using spectrophotometry. The accepted standards for DNA purity are a 260/280 absorption ratio between 1.8 and 2.0, and a 260/230 ratio between 2.0 and 2.2 for “pure” DNA. High-quality DNA should also demonstrate integrity, which is typically evaluated through visualization on an agarose gel [18, 19].

While several commercial kits are available for soil DNA extraction, their cost and availability can pose challenges for small research groups with limited funding. Additionally, some methods require specialized equipment, such as homogenizers, which may not be accessible to all researchers. Other costly facilities, like –80°C freezers or liquid nitrogen, which are used in some extraction protocols, can also be limited. Therefore, developing a cost-effective method/protocol for obtaining high-quality soil DNA with adequate yield and purity, using in-house approaches, is essential.

Bilberries (*Vaccinium myrtillus* L.) are valuable berries rich in anthocyanin and known for their numerous health-promoting properties [20]. *V. myrtillus* L. grows in Armenia at altitudes of 2300–2900 m above sea level, marking the southernmost edge of its global distribution. However, the bilberry ecosystem, including the associated microbial communities, remains largely unexplored. Studies on *Vaccinium* species have shown that soil microbiota composition varies with environmental conditions, affecting plant-microbe interactions and overall plant vitality and quality [21, 22]. Investigating the soil microbiomes associated with bilberry in Armenia is essential in the context of climate change, species expansion and resilience to environmental stresses. This research may strengthen conservation efforts, refine cultivation practices, and enhance the nutritional and medicinal properties of bilberries. In this paper, as part of our pioneering studies on the soil microbiomes associated with bilberries in Armenia, we compare DNA extraction protocols from *V. myrtillus* L. habitat soil, including a commercial kit and modified CTAB-based methods, to establish a cost-effective and reliable protocol for soil metagenomics studies.

Material and Methods.

Soil Sampling. The soil was collected from a habitat of *V. myrtillus* L. plants near the village of Hankavan, Kotayk Region, Armenia, at the altitude of 2450 m a.s.l., aliquoted and stored at -20°C until further use. Soil chemical analysis was done at the Analytical Laboratory Qlab, Thessaloniki, Greece. The soil was classified as sandy loam; the acquired properties are listed in Tab. 1.

Soil DNA Extraction Methods. A soil sample was sieved through a 2 mm sieve twice before proceeding with the extraction to ensure uniform soil particle size for treatments. Two technical replicates were used for each extraction method.

DNA Extraction Using CTAB Method Without Beads (CTAB-NB). CTAB-based DNA extraction from soil samples was performed as described by Panosyan et al. [23] with some modifications. Briefly, 250 mg of soil sample was mixed with 1.5 mL of lysis buffer (400 mM NaCl, 750 mM sucrose, 20 mM EDTA, 50 mM Tris-HCl (pH 9)) in a 2 mL tube and incubated at room temperature for 3 h with occasional stirring. The mixture was frozen at -20°C for 24 h and then incubated at 55°C for 30 min. Six hundred μ L of the resulting suspension was mixed with 100 μ L of lysozyme solution (100 mg/mL) and incubated at 37°C for 30 min with continuous shaking. After the addition of 1 μ L RNase (10 mg/mL), 20 μ L proteinase K (20 mg/mL), and 100 μ L 10% sodium dodecyl sulfate (SDS), the suspension was incubated at 55°C for 1 h, followed by mixing with 100 μ L of 5 M NaCl solution. After 20 min of incubation at 65°C with 80 μ L of preheated 0.7 M CTAB/0.274 M NaCl mixture, 785 μ L chloroform-isoamyl alcohol (24:1) was added, and the mixture was centrifuged at 15 000 rpm for 5 min. The obtained supernatant was precipitated with an equal volume of chilled isopropanol (at -20°C) and incubated at 4°C for 1 h. The pellet was recovered by centrifugation at 15 000 rpm at 4°C, washed with 1 mL 70% ethanol, and dissolved in 20 μ L TE buffer (Tris-HCl 10 mM (pH 7.8); EDTA 1 mM (pH 8)) after the final centrifugation at 15 000 rpm for 15 min.

DNA Extraction Using CTAB Method with Beads (CTAB-B). The extraction protocol was followed as described above with the addition of bead treatment. Instead of using 2 mL tubes, 250 mg of soil was placed into PowerBead Tubes (Qiagen, Germany) containing 0.1 mm glass beads and vortexed with 1.5 mL of lysis buffer for 30 min before a 3-hour incubation at room temperature. The protocol was then continued as outlined.

DNA Extraction Using DNeasy PowerLyzer PowerSoil Kit (Qiagen, Germany). The extraction of DNA was performed according to the manufacturer's instructions. Briefly, 250 mg of a soil sample was placed into the PowerBead Tubes and gently vortexed to mix. Sixty μ L of Solution C1 was added to the sample, and the slurry was homogenized in a Beadbug 3 microtube homogenizer ("Benchmark Scientific", USA) for 45 s at 4000 rpm. After 30 s of centrifugation at 10 000 \times g, the supernatant was transferred to a clean 2 mL tube, mixed with 250 μ L of Solution C2, and incubated at 4°C for 5 min. After a 1 min centrifugation at 10 000 \times g, 600 μ L of the supernatant was transferred to a clean 2 mL tube and mixed with 200 μ L of Solution C3, then incubated for another 5 min at 4°C. The 750 μ L of the supernatant, collected after the centrifugation under the same conditions, was mixed with 1200 μ L of Solution C4 and loaded onto an MB Spin Column in 675 μ L

volumes, repeatedly, by centrifuging the tubes at $10\,000\times g$ for 1 min, and discarding the flow-through. The membrane was washed with $500\,\mu L$ of Solution C5 using centrifugation for 30 s at $10\,000\times g$ and dried by subsequent centrifugation for 1 min at $10\,000\times g$. The DNA was eluted with $50\,\mu L$ of Solution C6 by 30 s centrifugation at $10\,000\times g$. The extracted DNA was stored at -20°C until further use.

Evaluation of DNA Yield and Purity. The DNA concentration of the soil sample was measured by using a DeNovix DS-11 spectrophotometer (DeNovix Inc., USA). The purity of the extracted DNA was determined by assessing the ratio of absorbance maxima at $260\,\text{nm}$ and $280\,\text{nm}$ (260/280) and the ratio of absorbance maxima at $260\,\text{nm}$ and $230\,\text{nm}$ (260/230).

PCR Amplification of Isolated Soil DNA. Soil DNA was amplified by PCR using an Arktik Thermal Cycler (Thermo Fisher Scientific, USA). Each $20\,\mu L$ PCR mixture contained $20\,\text{ng}$ of DNA template, $4\,\mu L$ SolisFAST Master Mix ($5\times$) (Solis BioDyne, Estonia), $0.5\,\mu L$ of each forward and reverse primers ($10\,\mu M$), and nuclease-free water up to $20\,\mu L$. The 16S rRNA region was amplified by using 16S rRNA primers: 27F ($5'\text{-AGAGTTTGATCCTGGCTCAG-3'}$) and 1492R ($5'\text{-TACGGYTACCTTGTACGACTT-3'}$). The amplification cycle consisted of an initial denaturation step of 30 s at 94°C , followed by 35 cycles of 1 min at 94°C (denaturation), 1 min at 55°C (annealing), and 2 min at 72°C (extension), with a final extension step for 5 min at 72°C .

Analysis of the Extracted DNA and PCR Products. To check the integrity of the extracted DNA and visualize the amplified PCR products, electrophoresis was performed on a 1% agarose gel in $1\times$ TAE buffer, stained with ethidium bromide ($0.5\,\mu\text{g}/\text{mL}$). The gels were analyzed using a Gel Doc EZ Imager Gel Documentation System (Bio-Rad, USA).

Results and Discussion. The physicochemical properties and macro- and micronutrient content of the soil sample collected from a habitat of *V. myrtillus* plants are presented in Tab. 1.

Table 1

Properties of the soil

Soil Physicochemical Properties		Soil Macronutrient and Micronutrient Content, ppm			
pH	5.4				
Conductivity, mS/cm	0.22	P	8.87	B	1.17
Salinity, psu	0.12	N-NO_3	33.06	Zn	1.46
Organic matter, %	5.76	Ca	3218	Fe	116
Clay, %	3.4	Mg	427	Mn	4.35
Silt, %	27.1	K	177	Na	142
Sand, %	69.6	Cu	1.61	CEC*	20.27

Note: * Cation Exchange Capacity, $\text{meq}/100\,\text{g}$.

The results of community DNA extraction from a soil sample (Tab. 2, Fig. 1), comparing two modified CTAB-based protocols, CTAB-NB and CTAB-B, and a commercial kit (KIT). According to the obtained results, the commercial DNeasy PowerLyzer PowerSoil Kit provided a high yield of high-quality DNA with a 260/230 ratio of 2.1 and a 260/280 ratio of 1.95.

Table 2

Comparison of amount and purity of DNA from different extraction protocols: CTAB-method with no beads (CTAB-NB), CTAB-method with beads (CTAB-B), a commercial kit (KIT)

Extraction method	DNA concentration, ng/µL	Average DNA concentration, ng/µL	Average DNA yield, ng/g soil	260/280	Average 260/280	260/230	Average 260/230
CTAB-NB	15.92	16.15	64.6	1.59	1.56	0.36	0.37
	16.38			1.54		0.37	
CTAB-B	139.24	136.44	545.76	1.85	1.87	1.55	1.62
	133.63			1.89		1.69	
KIT	214.36	214.02	856.08	1.95	1.95	2.09	2.10
	213.69			1.96		2.10	

In contrast, DNA extracted using the CTAB-NB method resulted in poor outcomes in both yield and purity (Tab. 2 and Fig. 1). The 260/280 ratio of 1.56 and the 260/230 ratio of 0.37 indicate a high level of impurities, while the absence of a band on the agarose gel suggests a low performance of the method in obtaining intact, high-molecular-weight DNA from the soil. The 260/280 ratio below 1.6 indicates the presence of proteins, phenol, or other contaminants that absorb strongly at or near 280 nm. The 260/230 ratio considerably lower than the expected purity standards of 2.0–2.2 may indicate lipids and carbohydrates, as well as guanidine HCl, EDTA, salts, or phenol that absorb at 230 nm, which may be introduced by extraction procedures [18]. High concentrations of humic substances can compromise the quality of extracted DNA, requiring additional purification steps [9, 24]. Due to their similar charge and size properties, humic acids may interfere with DNA measurements, as they absorb at both 280 nm and 260 nm, potentially affecting the spectrophotometric quantification and quality assessments [9]. To ensure accurate DNA quantification, fluorometric measurements are recommended alongside spectrophotometric readings [25]. Humic acids have been reported to generate considerable drawbacks with downstream applications of DNA, involving interference in DNA polymerase activity in PCR reactions [24, 26]. Thus, the freeze-thaw cell lysis approach, with freezing at –20°C instead of the recommended –80°C and shaking the soil slurry with lysis buffer alone, was ineffective in disrupting cells, leading to poor DNA quality. Yet, freezing at –20°C is effective for DNA extraction from sludge samples [27]. The combination of freeze-thaw with chemical and enzymatic extraction was shown to be superior to ones without the freeze-thaw step [15].

The addition of bead treatment to the protocol (CTAB-B) significantly improved the extraction results, increasing the yield of the extracted DNA by more than eight times and achieving high purity standards, with a 260/280 ratio of 1.87 (Tab. 2). The DNA was intact and free from RNA contamination (Fig. 1). The 260/230 ratio of 1.62 indicates some contamination; however, the level of impurities, according to the data, is unlikely to interfere with downstream applications. The obtained purity results surpass those of many commercial kits and in-house protocols [28]. The incorporation of the bead-treatment step has been reported to enhance sample homogenization and lysis, the breakdown of the lipid bilayer of cell membranes and promote efficient penetration of lysis reagents into cellular compartments, facilitating the release of DNA [5, 6, 29]. In the CTAB-B and

KIT methods, the diameter of the used glass beads (PowerBead Tubes) was 0.1 *mm*. However, the diameter and material of the grinding beads may vary in different kits and protocols and need to be optimized for a specific soil material [29]. The PowerBead Tubes, available commercially from Qiagen, are around half the price of the kit. Thus, the CTAB-B method can serve as a low-cost alternative to accessing metagenomic content from the soil sample.

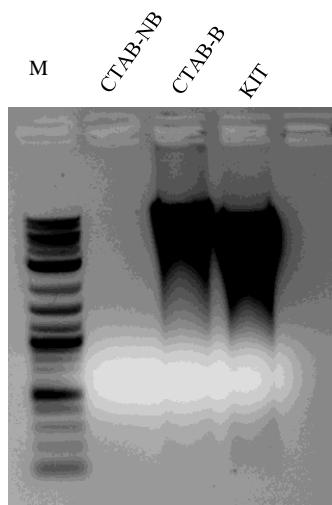


Fig. 1. Yield and purity of the extracted DNA. Visualization of 2 μ L DNA extracted with three different protocols on 1% agarose gel:
CTAB-method without beads (CTAB-NB);
CTAB-method with bead treatment (CTAB-B);
extraction with a commercial kit (KIT);
M – GeneRuler 1 kb Plus DNA ladder.

The extracted DNA was proceeded further for PCR amplification. The 16S rRNA, commonly used for bacterial identification, was chosen as a marker for PCR. The results suggested that both the CTAB-B method and the commercial kit yield high-quality DNA suitable for the amplification (Fig. 2).

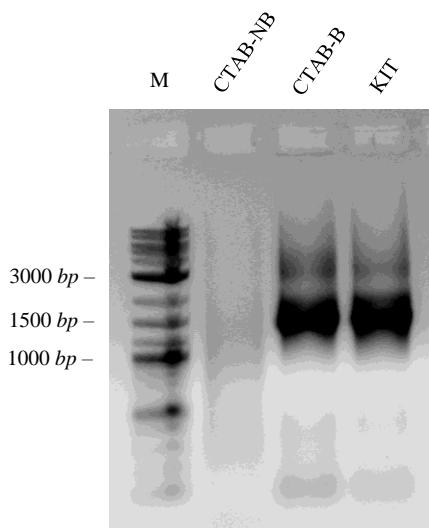


Fig. 2. Visualization of the PCR amplification products of DNA, isolated by three methods. The 16S rRNA full-length region was amplified using 20 ng of soil DNA templates, isolated by CTAB-NB, CTAB-B, and KIT methods; M marks a 1 kb DNA ladder. The electrophoresis was performed on 1% agarose gel.

Both bands corresponded to the expected 16S rRNA amplified region of approximately 1500 bp and were similar in quantity. The absence of a band in the DNA template extracted using the CTAB-NB method confirmed that the obtained DNA was unsuitable for further PCR amplification. This is because DNA polymerase, required for amplification, needs contamination-free sites for proper functioning. The unsuccessful PCR may have been caused by DNA-adhering substances such as humic and fulvic acids, which can negatively affect DNA hybridization efficiency.

The amplification results indicated that both the CTAB-B and commercial kit methods were effective for producing DNA free from PCR inhibitors and reproducible for obtaining amplified genetic regions of sufficient quality and integrity, which may provide comprehensive information on microbial biota [5, 24]. Further metagenome sequencing of the amplicons will clarify whether the extraction method influenced the microbiome structural composition data.

Conclusion. The comparison of three soil DNA extraction methods revealed that the CTAB-NB method yielded poor-quality DNA with poor purity and insufficient quantity for downstream applications. In contrast, the CTAB-B method, which incorporated bead treatment, significantly improved DNA yield and purity. While the commercial kit provided the best results, the CTAB-B method generated sufficient DNA for metagenomic amplification offering a cost-effective alternative for laboratories with limited resources. This protocol can support soil microbiome studies, agricultural research, and environmental monitoring, where high-quality DNA extraction is crucial. However, further optimization may be required for soils with high organic matter content and/or extreme compositions. Future investigation will focus on refining this method and evaluating its performance across a broader range of soil samples.

This work was supported by the Science Committee of the MESCS RA, in the frames of the research project No. 22IRF-10.

Received 25.03.2025

Reviewed 17.04.2025

Accepted 25.04.2025

REFERENCES

1. Wang X., Chi Y., Song S. Important Soil Microbiota's Effects on Plants and Soils: A Comprehensive 30-Year Systematic Literature Review. *Frontiers in Microbiology* **15** (2024), 1347745. <https://doi.org/10.3389/fmicb.2024.1347745>
2. van der Heijden M.G.A., Bardgett R.D., van Straalen N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. *Ecology Letters* **11** (2008), 296–310. <https://doi.org/10.1111/j.1461-0248.2007.01139.x>
3. Islam W., Noman A., Naveed H., Huang Z., Chen H.Y.H. Role of Environmental Factors in Shaping the Soil Microbiome. *Environmental Science and Pollution Research* **27** (2020), 41225–41247. <https://doi.org/10.1007/s11356-020-10471-2>

4. Pérez-Cobas A.E., Gomez-Valero L., Buchrieser C. Metagenomic Approaches in Microbial Ecology: an Update on Whole-Genome and Marker Gene Sequencing Analyses. *Microb. Genom.* **6** (2020), mgen000409.
<https://doi.org/10.1099/mgen.0.000409>
5. Yeates C., Gillings M.R., et al. Methods for Microbial DNA Extraction from Soil for PCR Amplification. *Bio. Proced. Online* **1** (1998), 40–47.
<https://doi.org/10.1251/bpo6>
6. Frostegård A., Courtois S., et al. Quantification of Bias Related to the Extraction of DNA Directly from Soils. *Applied and Environmental Microbiology* **65** (1999), 5409–5420.
<https://doi.org/10.1128/AEM.65.12.5409-5420.1999>
7. Roh C., Villatte F., et al. Comparative Study of Methods for Extraction and Purification of Environmental DNA from Soil and Sludge Samples. *Appl. Biochem. Biotechnol.* **134** (2006), 97–112.
<https://doi.org/10.1385/ABAB:134:2:97>
8. Matheson C.D., Gurney C., et al. Assessing PCR Inhibition from Humic Substances. *The Open Enzyme Inhibition Journal* **3** (2014), 38–45.
<https://doi.org/10.2174/1874940201003010038>
9. Wnuk E., Waśko A., et al. The Effects of Humic Substances on DNA Isolation from Soils. *Peer J.* **8** (2020), e9378.
<https://doi.org/10.7717/peerj.9378>
10. Wilpiszeski R.L., Aufrecht J.A., et al. Soil Aggregate Microbial Communities: Towards Understanding Microbiome Interactions at Biologically Relevant Scales. *Appl. Environ. Microbiol.* **85** (2019), e00324-19.
<https://doi.org/10.1128/AEM.00324-19>
11. Lombard N., Prestat E., et al. Soil-specific Limitations for Access and Analysis of Soil Microbial Communities by Metagenomics. *FEMS Microbiology Ecology* **78** (2011), 31–49.
<https://doi.org/10.1111/j.1574-6941.2011.01140.x>
12. Fatima F., Pathak N., Rastogi Verma S. An Improved Method for Soil DNA Extraction to Study the Microbial Assortment within Rhizospheric Region. *Molecular Biology International* (2014), 518960.
<https://doi.org/10.1155/2014/518960>
13. Child H.T., Wierzbicki L., et al. Comparative Evaluation of Soil DNA Extraction Kits for Long Read Metagenomic Sequencing. *Access Microbiology* **6** (2024), 000868.v3.
<https://doi.org/10.1099/acmi.000868.v3>
14. de Lipthay J.R., Enzinger C., et al. Impact of DNA Extraction Method on Bacterial Community Composition Measured by Denaturing Gradient Gel Electrophoresis. *Soil Biol. & Biochem.* **36** (2004), 1607–1614.
<https://doi.org/10.1016/j.soilbio.2004.03.011>
15. Islam M.R., Sultana T., et al. Comparisons of Direct Extraction Methods of Microbial DNA from Different Paddy Soils. *Saudi Journal of Biological Sciences* **19** (2012), 337–342.
<https://doi.org/10.1016/j.sjbs.2012.04.001>
16. Sagar K., Singh S.P., et al. Assessment of Five Soil DNA Extraction Methods and a Rapid Laboratory-Developed Method for Quality Soil DNA Extraction for 16S rDNA-based Amplification and Library Construction. *Journal of Microbiological Methods* **97** (2014), 68–73.
<https://doi.org/10.1016/j.mimet.2013.11.008>
17. Chen F., Ye J., et al. A simplified Quick Microbial Genomic DNA Extraction via Freeze-thawing Cycles. *Molecular Biology Reports* **47** (2020), 703–709.
<https://doi.org/10.1007/s11033-019-05176-w>
18. Sambrook J., Russell D.W. Detection of DNA in Agarose Gels. *Cold Spring Harbor Protocols* (2006), pdb.prot4022.
<https://doi.org/10.1101/pdb.prot4022>
19. Lucena-Aguilar G., Sánchez-López A.M., et al. DNA Source Selection for Downstream Applications Based on DNA Quality Indicators Analysis. *Biopreservation and Biobank* **14** (2016), 264–270.
<https://doi.org/10.1089/bio.2015.0064>
20. Chu W.K., Cheung S.C. M., et al. Bilberry (*Vaccinium myrtillus* L.). In Book: *Herbal Medicine: Biomolecular and Clinical Aspects* (eds. Benzie I.F.F., Wachtel-Galor S., 2nd ed.). Chapter 4. Boca Raton (FL), CRC Press/Taylor & Francis (2011). PMID: 22593936.

21. Ramirez-Villacis D.X., Pinos-Leon A., et al. Untangling the Effects of Plant Genotype and Soil Conditions on the Assembly of Bacterial and Fungal Communities in the Rhizosphere of the Wild Andean Blueberry (*Vaccinium floribundum* Kunth). *Microorganisms* **11** (2023), 399. <https://doi.org/10.3390/microorganisms11020399>
22. Yu Y.Y., Xu J.D., et al. Combination of Beneficial Bacteria Improves Blueberry Production and Soil Quality. *Food Science & Nutrition* **8** (2020), 5776–5784. <https://doi.org/10.1002/fsn3.1772>
23. Panosyan H., Margaryan A. et al. *Educational-methodical Manual*. Yerevan, YSU Publishing House (2020), 120 (in Armenian). <https://doi.org/10.46991/YSUPH/9785808424623>
24. Sidstedt M., Jansson L., et al. Humic Substances Cause Fluorescence Inhibition in Real-time Polymerase Chain Reaction. *Analytical Biochemistry* (2015), 30–37. <https://doi.org/10.1016/j.ab.2015.07.002>
25. Bruijns B., Hoekema T., et al. Performance of Spectrophotometric and Fluorometric DNA Quantification Methods. *Analytica* **3** (2022), 371–384. <https://doi.org/10.3390/analytica3030025>
26. Courtois S., Frostegård A., et al. Quantification of Bacterial Subgroups in Soil: Comparison of DNA Extracted Directly from Soil or from Cells Previously Released by Density Gradient Centrifugation. *Environmental Microbiology* **3** (2001), 431–439. <https://doi.org/10.1046/j.1462-2920.2001.00208.x>
27. Romanazzi V., Traversi D., et al. Effects of Freezing Storage on the DNA Extraction and Microbial Evaluation from Anaerobic Digested Sludges. *BMC Research Notes* **8** (2015), Article number 420. <https://doi.org/10.1186/s13104-015-1407-2>
28. Wydro U. Soil Microbiome Study Based on DNA Extraction: A Review. *Water* **14** (2022), 3999. <https://doi.org/10.3390/w14243999>
29. Niu J., Chen H., et al. Grinding Beads Influence Microbial DNA Extraction from Organic-Rich Sub-Seafloor Sediment. *Microorganisms* **10** (2022), 2505. <https://doi.org/10.3390/microorganisms10122505>

Մ. Մ. ԹԱԴԻՎՈՍՅԱՆ, Հ. Հ. ՓԱՆՈՍՅԱՆ, Ա. Ժ. ԱՎԵՏԻՍՅԱՆ

ՎԱՅՐԻ ՀԱՊԱԼԱՍԻ (VACCINIUM MYRTILLUS L.) ԾՐՋԱԿԱ ԹԹՎԱՅԻՆ
ՀՈՂԵՐԻՑ ՑԵՏԻԼԵՌԵԹԻԼԱՄՈՆԻՒՄ ԲՐՈՍԻԴԻ ՀԻՄՔՈՎ ԲԱՐՁՐ
ՄԱՔՐՈՒԹՅԱՄ ԴՆԹ-Ի ԱՆՁԱՏՄԱՆ ԸՆԹԱՑՄԱՆ ԸՆԹԱՑՄԱՐԳԻ
ԼԱՎԱՐԿՈՒՄ

Ցետիլեռմեթիլամոնիում բրոմիդի (CTAB) հիմքով մեթոդի երկու ձևափոխված տարրերակներ համեմտավել են առևտրային հավաքածուի հետ վայրի հապալասի (Vaccinium myrtillus L.) շրջակա թթվային հողերից բարձր մաքրության ԴՆԹ-ի անջատման մատչելի և արդյունավետ լնթացակարգ մշակելու նախատակով: Պարզվել է, որ CTAB-NB (առանց գնդիկային մշակման) լնթացակարգի կիրառմամբ ԴՆԹ-ի թե ելքը, և թե որակը (1,56 և 0,37 արժեքներ՝ համապատասխանաբար 260/280 և 260/230 պիքներ կլանման հարաբերակցություններում) զգայի ցածր է եղել: Ցույց է տրվել, որ 0.1 մմ տրմագծով գնդիկներ պարունակող PowerBead (Qiagen) պրվակներում նմուշի մշակումը՝ զուգորդված երկարատև խառնումով (CTAB-B լնթացակարգ), ԴՆԹ-ի ելքը մեծացնում է ութ անգամ հասցնելով 545.76 նգ-ի՝ 1 գ հողի հաշվարկով, իսկ մաքրությունը զգային բարեկավում է՝ զրանցելով 1,87 և 1,62 արժեքներ՝ համապատասխանաբար 260/280 և 260/230 պիքների կլանման հարաբերակցություններում: Առևտրային հավաքածուն ապահովում է ԴՆԹ-ի ավելի բարձր ելք (856,08 նգ ԴՆԹ 1 գ հողի հաշվարկով) և մաքրություն՝

1,95 և 2,10 արժեքներով՝ համապատասխանաբար 260/280 և 260/230 ալիքի կլանման հարաբերակցություններում: Ցույց է տրվել, որ առևտրային հավաքածուի համեմատ СТАВ-В ընթացակարգով ԴՆԹ-ի անջատումը հողից ավելի ծախսարդյունավետ է, և ապահովում է մետագենոմային հետազոտություններում պոլիմերազային շղթայական ռեկցիայով՝ ամպլիֆիկացման համար անհրաժեշտ բարձր մաքրությամբ ԴՆԹ-ի ստացում:

М. М. ТАДЕВОСЯН, Г. Г. ПАНОСЯН, А. Ж. АВЕТИСЯН

ОПТИМИЗАЦИЯ ПРОТОКОЛА ИЗВЛЕЧЕНИЯ
ВЫСОКОКАЧЕСТВЕННОЙ ДНК С ИСПОЛЬЗОВАНИЕМ БРОМИДА
ЦЕТИЛТРИМЕТИЛАММОНИЯ ИЗ КИСЛЫХ ПОЧВ МЕСТ
ПРОИЗРАСТАНИЯ ДИКОЙ ЧЕРНИКИ (*VACCINIUM MYRTILLUS* L.)

Два модифицированных метода с использованием бромида цетилтритиметиламмония (СТАВ) были сравнены с коммерческим набором с целью разработки экономичного и эффективного протокола извлечения высококачественной ДНК из кислых почв в местах произрастания дикой черники (*Vaccinium myrtillus* L.). Метод СТАВ-NB (без гомогенизации бисером) привел к низкому выходу и низкому качеству ДНК (отношения оптических плотностей 260/280 и 260/230 равны 1,56 и 0,37 соответственно). Обработка образца почвы 0,1 мм стеклянным бисером с использованием пробирок PowerBead от Qiagen (метод СТАВ-В) увеличила выход ДНК более чем в восемь раз, достигнув 545,76 нг ДНК на г почвы, и существенно улучшила качество ДНК – 1,87 и 1,62 для 260/280 и 260/230 соответственно. Коммерческий набор обеспечил высокую продуктивность (856,08 нг ДНК на г почвы) и высокую степень чистоты ДНК – отношения 260/280 и 260/230 равны 1,95 и 2,10 соответственно. Метод СТАВ-В является более экономичным и позволяет получать высококачественную ДНК, пригодную для проведения полимеразной цепной реакции для метагеномной амплификации.