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В работе рассмотрено содержание восьми потенциально токсичных 

элементов (Mn, Ni, Co, Cr, Cr, Pb, Zn, Cd, As) в почвах, сформированных на 

территории промышленной площадки Удачнинского горно-обогатительного 

комбината (УГОК), расположенного в Западной Якутии (Россия). Для 

определения экологических рисков загрязнения почв рассчитан индекс 

потенциального экологического риска RI. Концентрации потенциально 

токсичных элементов уменьшались в следующем порядке: Mn > Ni > Zn > 

> Co > Pb > Cr > As > Cd. 19,51% исследуемой территории характеризовались 

высоким потенциальным экологическим риском по Mn и Ni. Остальные 

элементы отличались низким потенциальным экологическим риском (4,87%). 

Наибольшее влияние на загрязнение почв оказывают районы, расположенные 

около карьеров трубок “Удачная” и “Зарница”, хвостохранилищ и площадки 

разгрузки высокоминерализованных вод на поверхность ландшафта. 
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Введение. В последние годы горнодобывающая промышленность стала 

причиной серьезных экологических проблем [1]. Горнодобывающие работы, 

которые охватывают добычу полезных ископаемых и руд как под землей, так 

и на поверхности, сопровождаются ухудшением состояния окружающей 

среды, загрязнением и связанными с этим заболеваниями из-за выброса 

определенных микроэлементов в окружающую среду [2]. Среди различных 

химических загрязнителей микроэлементы, особенно те, которые являются 

потенциально токсичными (ПТЭ), представляют значительный экологический 

риск из-за стойкости их соединений, неразлагаемости, высокой биоаккумуля-

ции и токсичности [3]. На концентрацию ПТЭ в почвах влияют два основных 

источника: естественный фон, являющийся компиляцией природно-геологи-

ческих условий, и антропогенное воздействие [4, 5]. Первый источник в 

 
    E-mail: nuta0687@mail.ru                     
**    E-mail: ylego@mail.ru                     

https://doi.org/10.46991/PYSUC.2025.59.2.225
mailto:nuta0687@mail.ru
mailto:ylego@mail.ru


226 Ученые записки ЕГУ. Геология и география, 2025, 59 (2), с. 225–239.  

  

основном исходит из природных материалов гипергенеза горных пород. 

Второй – это результат интенсивной деятельности человека. Наиболее 

существенное воздействие на окружающую среду оказывают открытые 

горные работы, например, открытая разработка коренных месторождений 

алмазов, которые сопровождаются рядом масштабных геомеханических 

нарушений. К ним относятся создание выработок, карьеров, образование 

отвалов, которые вызваны аэродинамическими нарушениями, а также 

изменение режима водоемов, гидрогеологические нарушения [6, 7]. Литосфера 

наиболее подвержена негативному воздействию, при этом образование 

карьеров и отвалов и т.д. приводит к трансформации рельефа с образованием 

новых форм. Опосредованное влияние на все компоненты экосистемы с 

проявлением техногенных геохимических аномалий в почвах, растительном 

покрове, водной среде [8–10]. Общеизвестно, что почва является значительным 

геохимическим поглотителем различных загрязняющих веществ, выступая в 

качестве канала для их переноса в атмосферу, гидросферу и биомассу [11–13]. 

Поэтому исследования почвенного покрова с оценкой геоэкологических 

рисков, связанных с концентрацией и мобилизацией ПТЭ, будут актуальны 

многие годы. 

Для проведения данного исследования поставлены следующие цели:  

1) изучить содержание и распределение ПТЭ в почвах исследуемой террито-

рии; 2) оценить потенциальный экологический риск ПТЭ; 3) определить связь 

между ПТЭ и возможными источниками с использованием корреляционного 

анализа, иерархического кластерного анализа и положительной матричной 

факторизации (ПМФ). Ожидается, что результаты данного исследования 

послужат основой для разработки политики, направленной на снижение 

загрязнения ПТЭ в горнодобывающих регионов и смягчения связанных с этим 

рисков для здоровья местных сообществ. 

Материалы и методы исследования. 

Характеристика природно-климатических условий. Район исследо-

ваний расположен на северо-западе Якутии (северо-восток России) в 

центральной части Далдыно-Алакитского горнорудного района, в пределах 

Далдынского кимберлитового поля (N 66°25'47'', E 112°24'07''). 

Далдынское кимберлитовое поле охватывает одно из крупнейших 

промышленных предприятий Якутии – Удачнинский горно-обогатительный 

комбинат (УГОК) АК “АЛРОСА”, который работает с 1971 г. В настоящее 

время УГОК занимается разработкой двух коренных месторождений алмазов 

– кимберлитовых трубок “Удачная” и “Зарница” [14, 15]. 

Далдыно-Алакитский район находится в зоне сплошного распростра-

нения и близкого залегания многолетнемерзлых пород. Климат территории 

характеризуется резкой континентальностью, среднегодовая температура 

12,7℃. Амплитуда максимума и минимума среднемесячных данных колеб-

лется от –41,6 до 14,8℃. Разница температур между холодным и теплым 

сезонами значительна – от 34 до –64℃. Среднегодовое количество осадков 

200–250 мм, причем 75–80% из них выпадает в теплый период года (с апреля 

по октябрь). Снежный покров сохраняется от 220 до 250 дней в году,  

средняя высота относительно невысокая [16]. Рельеф исследуемой территории 
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холмисто-долинный с высотой 400–500 м и относительными высотами над 

ближайшими водотоками 100–250 м [17]. Основной зональный тип почв – 

Cryosols, интразональный – Fluvisols. Подчиненные типы – Rendzic Leptosols  

и Umbric Gleysols [15, 17]. Территория расположена в подзоне разреженных 

северотаежных лиственничных лесов, которые занимают 80% площади и 

представлены в основном Larix Gmelinii. 

Отбор образцов почвы проводился на территории УГОК в пределах 

промышленной зоны. Образцы почвы отбирались с глубины 0–20 см, 

высушивались при комнатной температуре, просеивались через сито <1,0 мм 

и хранились в полиэтиленовых пакетах для проведения анализов в 

лаборатории. 

Образцы анализировались на pH потенциометрическим методом [18], 

органическое вещество почвы – фотоэлектрическим колориметрическим 

методом [19], общий азот – спектрофотометрическим методом [20], грануло-

метрический состав – методом седиментационного анализа с использованием 

метода пипетки [21]. Концентрацию подвижных форм ПТЭ свинца (Pb), 

никеля (Ni), марганца (Mn), кадмия (Cd), кобальта (Co), хрома (Cr), цинка (Zn) 

и мышьяка (As) определяли с помощью атомно-абсорбционного спектрофото-

метра (ААС) модели МГА-1000 производства ГХ Люмэкс [22]. Для подготовки 

образцов к анализу с помощью ААС 1 г почвы смешивали с 10 мл 1 N HNO3. 

Для обеспечения и контроля качества использовали контрольные и 

стандартные образцы (SDPC-1,-2,-3 и SSC-1,-2,-3, Всероссийский государст-

венный центр стандартных материалов). Стандартное отклонение составило  

< 5% для всех элементов. Вся стеклянная посуда и пластиковые контейнеры 

перед использованием были замочены в 10% (об./об.) HNO3 не менее чем на 

24 ч и тщательно очищены деионизированной водой. Все химические реагенты 

были гарантийными реагентами. 

Перед статистическим анализом распределение набора данных оцени-

валось с использованием методов Колмогорова-Смирнова (p < 0,2) и Шапиро-

Уилка (p < 0,05); если значение распределения не было нормальным, данные 

преобразовывались в соответствии с принципами анализа композиционных 

данных (CoDa) [23–25] с использованием преобразования центрированного 

логарифмического отношения (clr).  

Из-за сложности источников ПТЭ, вызывающих загрязнение почвы [26], 

часто необходимо получать исходную информацию косвенно с помощью 

статистического анализа. Корреляционный анализ элементных переменных 

может определять степень близости между элементами, таким образом 

эффективно идентифицируя их источник или путь миграции. Высокие 

коэффициенты корреляции указывают на наличие схожих геохимических 

процессов, факторов и реакций, влияющих на распределение ПТЭ [2], в то 

время как отрицательные или незначительные корреляции могут представлять 

разные источники ПТЭ [27, 28]. Иерархический кластерный анализ является 

альтернативным подходом для проверки результатов корреляционного 

анализа. Кластерный анализ обычно используется для представления группы 

переменных, которые сопоставимы друг с другом в определенном месте 

отбора проб, в отличие от параметров, которые демонстрируют особую 
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изменчивость [29, 30]. Несравнимые участки отображаются в отдельной клас-

терной группе для выделения конкретных участков, соответствующих уровню 

загрязнения [31, 32]. Идентичный участок отображается в одной кластерной 

группе, а другой участок отображается в другой кластерной группе.  

Все статистические анализы были выполнены с использованием 

программного обеспечения Statistica v. 13.0, IBM SPSS Statistics v. 23.0, Surfer 

и OriginPro 2024. 

Для оценки токсикологического воздействия ПТЭ на экосистему был 

применен индекс потенциального экологического риска RI [33]. Этот метод 

позволяет напрямую отразить опасность, представляемую одним или несколь-

кими ПТЭ. Этот подход широко использовался для исследования загрязнения 

окружающей почвы ПТЭ в различных горнодобывающих регионах и для 

демонстрации потенциальных экологических рисков, представляемых общим 

загрязнением. Уравнения для этого метода следующие: 

𝐸𝑟
𝑖  =  𝑇𝑟

𝑖 ·  𝑃𝑖  ,                                                       (1) 

𝑅𝐼 =  ∑ 𝐸𝑟
𝑖𝑛

𝑖=1 =  ∑ 𝑇𝑟
𝑖𝑛

𝑖=1 ·  𝑃𝑖 =  ∑ 𝑇𝑟
𝑖𝑛

𝑖=1 ·  
𝐶𝑛

𝐵𝑛
 ,                          (2) 

где 𝐸𝑟
𝑖  – потенциальный экологический фактор риска i-го ПТЭ; 𝑃𝑖  – 

измеренное содержание элемента i, мг/кг; 𝑇𝑟
𝑖 – фактор токсичности i-го ПТЭ,  

а коэффициент токсичности каждого ПТЭ равен: Cd = 30, Ni = Pb = Co = 5,  

Zn = Mn = 1, Cr = 2 и As = 10 [33–35]. Cn – измеренная концентрация 

микроэлементов в почве, мг/кг; Bn – геохимическое фоновое значение 

соответствующего микроэлемента, мг/кг, или его эталонное значение n. 

RI можно разделить на пять уровней: низкий экологический риск (RI < 150), 

умеренный экологический риск (150 ≤ RI < 300), значительный экологический 

риск (300 ≤ RI < 600) и очень высокий экологический риск (RI > 600) [36]. 

Модель ПМФ – это метод поиска источников, основанный на техноло-

гии факторного анализа. Модель ПМФ вычисляет неопределенность каждого 

химического компонента в образцах по вкладу, а затем использует метод 

наименьших квадратов для распределения источника и количественной 

оценки вкладов загрязняющих веществ. Вклады источников в каждый 

компонент ограничены положительными значениями, а оценки ошибок 

применяются для индивидуальных весов точек данных, полагаясь на более 

физически значимые предположения. Согласно Руководству пользователя 

EPA PMF 5.0, вклад каждого источника рассчитывается по уравнению: 

𝑥𝑖𝑗 = ∑ 𝑔𝑖𝑘
𝑝
𝑘=1 𝑓𝑘𝑗 +  𝑒𝑖𝑗  ,                                                (3) 

где 𝑥𝑖𝑗 – содержание элемента j в образце i; 𝑔𝑖𝑘 – вклад источника k в образец i; 

𝑓𝑘𝑗  – массовая доля элемента j в источнике k; а 𝑒𝑖𝑗  – остаточная матрица, 

которая исключается из модели. 

Для получения соответствующих профилей факторов и их вкладов 

целевая функция Q минимизируется. Q рассчитывается по уравнению 

𝑄 = ∑ ∑ (
𝑥𝑖𝑗− ∑ 𝑔𝑖𝑘 𝑓𝑘𝑗

𝑝
𝑘

𝑢𝑖𝑗
)

2

,𝑚
𝑗=1

𝑛
𝑖=1                                     (4) 
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где 𝑢𝑖𝑗  – неопределенность элемента j в образце i, рассчитываемая по 

уравнениям (5) и (6): 

𝑈𝑛𝑐 =  
5

6
 · MDL,                                                    (5) 

𝑈𝑛𝑐 = √(𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 · 𝑐)2 + MDL2    (для 𝑐 > MDL).          (6) 

где  c – значения  концентрации  в  образцах  почвы;  MDL – предел обнару-

жения, определяемый методом, специфичным для конкретного вида, а 

𝑒𝑟𝑟𝑜𝑟 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛  представляет собой процент неопределенности измерения. 

Результаты исследований и их обсуждение. Результаты статисти-

ческого анализа физико-химических свойств почв приведены в табл. 1. Для 

исследуемых почв УГОК характерны преимущественно щелочные почвенные 

условия. Щелочная среда способствует формированию в почвах геохими-

ческих барьеров, что может способствовать осаждению и накоплению ПТЭ 

[37]. Следовательно, высока вероятность накопления ПТЭ, что может 

представлять существенную угрозу. Содержание органического вещества 

почв относительно высокое и демонстрирует среднюю пространственную 

изменчивость. Высокие значения, скорее всего, связаны с низкой степенью 

разложения растительных остатков, на что указывают данные по соотно-

шению Сорг./Nобщ.. Не исключено также влияние промышленного освоения 

территории, что привело к подавлению естественных процессов почво-

образования. Поэтому эти данные могут отражать не столько фактическую 

гумусированность почв, сколько общее содержание в них углерода, в котором 

существенна техногенная составляющая (топливные углеводороды, смазочные 

масла и т. д.) [38]. Характеристики и размер частиц почвы определяют степень 

сорбционной емкости, что способствует удержанию ПТЭ почвой. Чем больше 

в почве мелких частиц, тем выше сорбционная емкость почвы. Исследуемые 

почвы имеют преимущественно тяжелые фракции, что увеличивает 

вероятность удержания наибольшего количества ПТЭ. В ранних работах 

отмечалось, что почвы северных таежных зон имеют более тяжелый 

гранулометрический состав и высокую сорбционную емкость, в которых 

накапливается довольно большое количество ПТЭ [39]. 

 
Т а б л и ц а  1  

 

Физико-химическая характеристика почв исследуемой территории 
 

Параметры 

Физико-химические свойства Гранулометрический состав, мм 

рН humus, % SOC, % TN, % SOC/TN 
1,0– 

0,25  

0,25– 

0,05  

0,05– 

0,01  

0,01– 

0,005 

0.005– 

0.001  
<0.001  <0.01 >0.01  

Mean 7,62 9,88 5,73 0,81 7,06 1,04 7,65 23,45 10,34 15,83 25,21 51,38 32,14 

Geometric mean 7,56 7,01 4,07 0,62 6,56 0,44 6,66 22,57 10,31 15,28 24,12 51,24 31,43 

Median 7,80 6,20 3,60 0,76 4,72 0,34 6,26 26,62 10,19 15,72 27,92 50,02 33,08 

Minimum 4,32 1,10 0,64 0,03 13,80 0,05 3,00 15,61 9,55 11,67 12,70 46,55 22,14 

Maximum 9,30 47,00 27,26 1,98 25,52 2,81 12,19 30,86 11,55 23,66 29,74 57,71 42,59 

Variance 0,72 72,52 24,40 0,23 106,55 1,47 18,06 47,76 0,68 24,01 49,90 18,09 55,80 

Standard 
deviation 

0,85 8,52 4,94 0,48 10,32 1,21 4,25 6,91 0,83 4,90 7,06 4,25 7,47 

   
Note:  SOC – soil organic carbon, TN – total N. 
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Средние концентрации Mn, Ni, Zn, Co, Pb, Cr, As и Cd составили 311,6; 

15,4; 12,1; 4,53; 2,21; 1,94; 0,22 и 0,14 мг/кг соответственно (табл. 2).  

Эти результаты также превышают фоновые значения для Mn, Ni, Zn, Co, Pb и 

As в 1,65; 4,93; 1,28; 1,72; 1,23 и 1,69 раза соответственно. Коэффициенты 

вариации ПТЭ в исследуемых почвах имеют следующую убывающую 

последовательность: Mn > Ni > Zn > Co > Cr > Pb > As > Cd. 

Коэффициент почвенной вариации (CV) применялся для оценки одно-

родности и изменчивости содержания ПТЭ в почве [40]. Общепризнано, что 

природные элементы, как правило, демонстрируют низкие CV, тогда как 

элементы, связанные с антропогенными источниками, характеризуются высо-

кими CV и отражают неоднородное распределение концентраций. Об этом 

свидетельствуют и другие исследования [41, 42]. CV для Mn, Ni, Zn, Co и Cr 

продемонстрировали высокую изменчивость, тогда как распределение Pb, As 

и Cd в исследуемой территории более однородно. Можно предположить, что 

элементы Mn, Ni, Zn, Co и Cr в исследуемой области подвержены внешним 

воздействиям, которые в значительной степени обусловлены деятельностью 

человека, такой как транспорт и промышленные работы. Превышение фоно-

вых значений ПТЭ в исследуемых почвах свидетельствует об этом влиянии.  

Значения Er каждого ПТЭ варьируют в диапазоне: 1,65–33,0 для Pb;  

5,0–819,0 для Ni; 34,8–1856,0 для Mn; 0,78– 33,6 для Cd; 2,7–173,3 для Co;  

0,22–42,9 для Cr; 0,05–36,5 для Zn и 0,25–8,4 для As. Порядок средних 

значений Er для исследуемых элементов следующий: Mn > Ni > Co > Zn > Pb > 

Cd > Cr > As. Результаты комплексной оценки RI колеблются от 92,0 до 2840,9 

со средним значением 485,8. Доля с уровнем высокого экологического риска 

составила 19,51%, тогда как доли значительного, умеренного и низкого RI 

составили 21,95%, 53,66% и 4,88% соответственно, при этом Mn и Ni были 

основными факторами риска (рис. 1). К районам с высоким RI относятся 

отвалы пустой породы, хвостохранилища и зона сброса высокоминерализован-

ных вод (рис. 2).  
 

 
 

Рис. 1. а) доли степени потенциального RI; б) вклад каждого элемента в потенциальный RI. 

 

Корреляционный анализ является важной основой для определения источ-

ника ПТЭ. Результаты корреляционного анализа ПТЭ в исследуемой области 

представлены на рис. 3. Корреляционное исследование соответствующих 
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элементов показало значительную высокую положительную корреляцию 

между Cr, Ni и Co при p ≤ 0,01. Другая значимая, но более слабая корреляция 

наблюдалась между Cd и Zn при p ≤ 0,05. Они также показали отрицательную 

корреляцию с предыдущей группой – Ni, Co и Cr. Кроме того, значимая 

отрицательная корреляция наблюдалась между Pb и Ni (p ≤ 0,05), Pb и Co 

(p ≤ 0,01) и Mn и Cr (p ≤ 0,05). 
 

Т а б л и ц а  2  
  

Описательная статистика подвижных форм ПТЭ на исследуемой территории, мг/кг 
 

Элемент Фон Mean 
Geometric  

mean 
Median Min Max Variance 

Standard 

deviation 

Standard 

error 
Skewness Kurtosis 

Pb 1,79 2,21 1,80 1,96 0,33 6,60 1,584 1,41 0,22 1,13 1,08 

Ni 3,12 15,39 3,43 2,40 1,00 163,80 295,4 40,97 6,40 3,17 8,82 

Мn 189,0 311,63 199,98 184,90 34,76 1856,0 4242,9 415,5 64,88 3,00 8,49 

Сd 0,11 0,14 0,11 0,10 0,03 1,12 0,035 0,18 0,03 4,56 24,00 

Со 2,64 4,53 2,73 2,69 0,53 34,65 53,49 6,92 1,08 3,47 12,20 

Сr 0,93 1,94 0,97 0,85 0,11 21,45 18,79 4,08 0,64 4,08 16,70 

Zn 9,47 12,10 9,36 11,46 0,05 36,46 51,78 6,99 1,09 1,17 2,53 

As 0,13 0,22 0,12 0,20 0,03 0,84 42,22 0,21 0,03 1,03 0,62 

 

Известно, что Cr, Ni и Co сидерофилы и являются элементами группы 

железа [43]. Кроме этого, Cr, Ni, Co типоморфны кимберлитам, что отражает 

геохимическую специфику кимберлитового магматизма на территории Дал-

дынского кимберлитового поля. Таким образом, высокие концентрации этих 

элементов объясняются вторичным поступлением на поверхность почвы в 

виде взвешенной мелкодисперсной пыли почвенного материала в результате 

аэрогенного рассеивания при буровзрывных работах, ветровой эрозии отвалов 

и т.п., а также при воздействии антропогенной и промышленной деятельности 

на территории УГОК. 

 

 
 

Рис. 2. Оценка загрязнения почвы ПТЭ с помощью индекса RI. 
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Ассоциация Cd-Zn позволяет предположить, что эти элементы могут 

иметь схожее происхождение. Обзор литературы показывает, что практически 

все предприятия выбрасывают в окружающую среду пыль, содержание Cd в 

которой значительно превышает его уровень в верхнем слое почвы [12, 44]. 

Следовательно, часто наблюдаемое накопление Cd в верхнем слое почвы часто 

связывают с загрязнением [11]. Высокое содержание Cd в почве исследуемой 

территории также может являться результатов большого содержания негидро-

лизуемого растительного материала. На это указывает положительная кор-

реляция между содержанием почвенной органики и концентрацией Cd, 

наблюдаемая в ранних исследованиях [15]. 
 

 
Рис. 3. Корреляционный анализ ПТЭ. 

 

Zn может иметь литогенный источник, поскольку он образует ряд 

растворимых солей (например хлориды, сульфаты и нитраты) или нераство-

римых солей (например силикаты, карбонаты, фосфаты, оксиды и сульфиды) 

в зависимости от преобладающих педогенных процессов [45]. Однако высокие 

концентрации Zn часто приписываются антропогенной деятельности, а 

именно воздействию автотранспорта [41, 46, 47]. Аналогичные результаты 

были получены в исследованиях [48–50]. 

Иерархический кластерный анализ напрямую отражает корреляцию 

между ПТЭ и идентифицирует источники их появления в почвах. В результате 

настоящего исследования с использованием метода Уорда построены тепловая 

карта и дендрограмма (рис. 4). Анализ дендрограммы выявил три кластера 

ПТЭ: 1 кластер – Zn и Cd; 2 кластер – Co, Cr, Ni; 3 кластер – Pb, Mn и As.  

Дендрограмма точек отбора проб образует три группы. Группа 1 

включает точки Р-35, Р-19/1, Р-19/2, Р-19, Р-15 с наибольшими концентра-

циями ПТЭ, которые непосредственно находятся в зоне воздействия объектов 

промышленной площадки. Этот результат иллюстрирует влияние антропоген-

ной деятельности на изменение концентраций исследуемых микроэлементов. 
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В группах 2 и 3 доля почв в пределах нормы одинакова – 43,9 и 43,9% 

соответственно. Однако можно выделить несколько участков с обогащением 

Mn, Zn, Pb, Ni, Co и Cr в группе 2 и Mn, Zn, Pb, As, Ni, Co и Cr в группе 3. 
 

 
 

Рис. 4. Тепловая карта уровней ПТЭ в почве и точек отбора проб в районе исследования. 
 

 
 

Рис. 5. Факторный профиль ПТЭ из анализа модели ПМФ, показывающий процентные вклады 

элементов. 
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Таким образом, при корреляционном и иерархическом кластерном 

анализе, выявлены две идентичные группы ПТЭ: Ni-Co-Cr и Cd-Zn. Положи-

тельная корреляция между металлами указывает на тенденцию совместного 

накопления, что является результатом одновременного возникновение и 

взаимозависимости; они происходят из схожих источников и мигрируют 

вместе [43, 51].  

Результаты ПМФ показывают (рис. 5), что основным элементом 

нагрузки для Фактора 1 являются As (89,9%) и Pb (57,6%), для Фактора 2 – Ni 

(77,9%), для Фактора 3 – Cr (56,9%) и Co (44,3%), для Фактора 4 – Cd (65,5%) 

и Zn (71,1%), для Фактора 5 – Mn (65,6%). 

Основными элементами нагрузки в Факторе 1 являются As и Pb. По 

сравнению с фоновым значением среднегеометрические содержания As и Pb 

были меньше соответствующего им фонового значения. И их средние значения 

Er были менее 30. Это доказывает, что исследуемая территория не имела 

значительного загрязнения As и Pb, и они могли в основном происходить из 

природных источников. В исследования [52, 53] показано, что также основным 

источником As и Pb в почвах являлась материнская порода. 

В Факторе 2 доминировал Ni, который является элементом группы 

железа и легко связывается с оксидами в почве, кроме этого, он тесно связан с 

кимберлитами и долеритами [54]. Однако высокое значение CV и уровни 

загрязнения указывали на то, что Ni находился под влиянием антропогенной 

деятельности. Самые высокие концентрации зафиксированы на бортах карьера 

трубки “Удачная” и в зоне выхода высокоминерализованных вод. 

В Факторе 3 основную нагрузку давали элементы Cr и Co, которые 

обычно являются репрезентативными элементами природных источников, они 

широко присутствовали в педогенном процессе и почвообразующей породе 

[55]. Большинство образцов почвы характеризуются содержанием Co и Cr, 

идентичным фоновым параметрам, зафиксированные уровни идентифициру-

ются преимущественно как незагрязненные, а высокие концентрации Cr и Co 

в почвах приурочены к отвалам пустых пород. Кроме того, как упоминалось 

выше, эти элементы являются типоморфными элементами кимберлитов, т. е. 

имеют естественный генезис. Следовательно, этот фактор классифицируется 

как смешанный – природного геологического и антропогенного происхождения. 

Основными элементами нагрузки в Факторе 4 являются Cd и Zn. 

 Среднее геометрическое содержание и уровни загрязнения низкие. В этом 

случае наблюдаются отдельные локальные точки со значительными 

концентрациями. Высокое содержания Zn в первую очередь фиксируется 

вблизи дорог, а также в густонаселенных и перегруженных городских районах, 

а высокое значение Cd наблюдались в районе полигона дренажных рассолов и 

высокоминерализованных вод “Октябрьский”. Таким образом, Фактор 4 

выявляет транспортную и промышленную нагрузку. 

Основным характерным элементом в Факторе 5 является Mn. По данным 

[56], Mn является вездесущим по распространенности элементом в земной 

коре. Однако высокое значение CV и очень высокие уровни загрязнения 

указывают на то, что Mn в почвах исследуемой территории находится как 

отклик антропогенной деятельности. 
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Заключение. Согласно результатам исследования, содержание ПТЭ в 

почвах промышленной площадки УГОК характеризуется значительной измен-

чивостью, при этом наблюдается высокая пространственная изменчивость. 

Средние концентрации Mn, Ni, Zn, Co, Pb и As превышают фоновые значения. 

Результаты оценки потенциального экологического риска показали, что 

среднее значение на исследуемой территории составило 485,8, что свидетель-

ствует о значительном RI. Высокий RI имели 19,51% участков, основными 

элементами фактора риска являлись Mn и Ni. Горячие точки выявлены в зонах 

воздействия отвалов труб “Удачная” и “Зарница”, хвостохранилищ и в зоне 

сброса высокоминерализованных вод. Результаты корреляционного анализа и 

иерархического кластерного анализа выявили одни и те же группы элементов: 

Co–Cr–Ni и Cd–Zn. С помощью анализа модели ПМФ выделено пять возмож-

ных источников. Среди PTE в почвах исследуемой территории Pb и As 

преимущественно имеют природное происхождение и поступают из материн-

ской породы. Концентрации Co, Cr и Ni являются результатом сочетания 

антропогенного воздействия и литогенной природы. Cd, Zn и Mn в основном 

происходят из различных антропогенных и промышленных источников.  

В этом исследовании подчеркивается важность рассмотрения текущего 

загрязнения почв ПТЭ как важного фактора, который следует учитывать при 

разработке стратегий по смягчению последствий загрязнения в районах 

добычи полезных ископаемых. 

Статья подготовлена в рамках выполнения проекта по Гранту РНФ  

№ 24-27-20128 “Исследование, идентификация и оценка потенциального 

геоэкологического риска загрязнения природной среды при поисках и освоении 

месторождений полезных ископаемых в резко континентальных 

биоклиматичеких условиях”.  
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Ա․ Գ․ ԳՈԼՈԼՈԲՈՎԱ,   Յա․ Բ․ ԼԵԳՈՍՏԱԵՎԱ 

 

ՀՈՂԵՐՈՒՄ ՊՈՏԵՆՑԻԱԼ ԹՈՒՆԱՎՈՐ ՏԱՐՐԵՐԻ ԱՂԲՅՈՒՐՆԵՐԻ 

ԲԱՑԱՀԱՅՏՈՒՄԸ ԱՌԱՋՆԱՅԻՆ ԱԴԱՄԱՆԴԻ ՀԱՆՔԱՎԱՅՐԵՐԻ 

ՄՇԱԿՄԱՆ ԸՆԹԱՑՔՈՒՄ 

 

Ա մ փ ո փ ո ւ մ  

 

Աշխատանքում ուսումնասիրվում է ութ պոտենցիալ թունավոր 

տարրերի (Mn, Ni, Co, Cr, Cr, Pb, Zn, Cd, As) պարունակությունը հողերում, 

որոնք ձևավորվել են Արևմտյան Յակուտիայում (Ռուսաստան) Ուդաչնի 

լեռնահարստացնող գործարանի արդյունաբերական հրապարակի տարա-

ծքում: Հողի աղտոտման բնապահպանական ռիսկերը որոշելու համար 

հաշվարկվել է պոտենցիալ բնապահպանական ռիսկի ինդեքսը (RI)։ 

Պոտենցիալ թունավոր տարրերի կոնցենտրացիան նվազել է հետևյալ 

հաջորդականությամբ՝ Mn > Ni > Zn > Co > Pb > Cr > As > Cd: Ուսումնասիրվող 

տարածքի 19,51%-ը բնութագրվում է Mn-ի և Ni-ի համար բարձր պոտենցիալ 

բնապահպանական ռիսկով: Մնացած տարրերն ունեն ցածր պոտենցիալ 

բնապահպանական ռիսկ (4,87%): Հողի աղտոտվածության վրա ամենամեծ 

ազդեցությունն ունեն այն շրջանները, որոնք մոտ են գտնվում «Ուդաչնայա» և 

«Զարնիցա» քարհանքերի խողովակներին, պոչամբարներին և բարձր 

հանքայնացված ջրերի լանդշաֆտի մակերես բեռնաթափման տարածքին։ 

 

 

 
A. G. GOLOLOBOVA, Ya. B. LEGOSTAEVA 

 

IDENTIFICATION OF SOURCES OF POTENTIALLY TOXIC ELEMENTS  

IN SOILS IN SOILS DURING THE DEVELOPMENT OF PRIMARY 

DIAMOND DEPOSITS 
 

S u m m a r y  

 

Eight potentially toxic elements (Mn, Ni, Co, Cr, Cr, Pb, Zn, Cd, As) in soils 

formed on the territory of the industrial site of the Udachny Mining and Processing 

Division were considered in this study. The Potential Environmental Risk (RI) was 

calculated to determine environmental risks of soil contamination. The concentra-

tions of potentially toxic elements decreased in the following order Mn > Ni > Zn > 

Co > Pb > Cr > As > Cd. 19.51% of the sites in the study area exhibited a high 

potential environmental risk for Mn and Ni, while only 4.87% exhibited a low 

potential environmental risk for other potentially toxic elements. The greatest impact 

on soils contamination are exerted by the areas of the Udachny and Zarnitsa pipes, 

tailings ponds and the areas highly mineralized water outlet. The five main diverse 

sources of PTEs in this study area’s soils were natural, mining activities, 

transportation, industrialisation, as well as highly mineralized waters. 


