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В высокогорных районах прорывы ледниковых озер часто становятся 

причиной наводнений и экстремальных событий. Исследование таких 

явлений особенно важно в условиях продолжающегося интенсивного таяния 

ледников и изменения климата. Данное исследование посвящено мониторингу 

Башкаринских ледниковых озер после их прорыва 1 сентября 2017 г. Озера 

расположены в Приэльбрусье – наиболее густонаселенной части Централь-

ного Кавказа. После прорыва озерная система стала проточной, однако с тех 

пор она претерпела значительные изменения, оставаясь нестабильной и 

потенциально опасной. В ходе исследования были использованы данные 

дистанционного зондирования и полевые наблюдения для оценки состояния 

Башкаринских озер. Также на основе гидродинамической модели STREAM_2D 

были смоделированы потенциальные сценарии повторного прорыва оз. Башкара. 
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Введение. Продолжающееся глобальное потепление способствует воз-

растанию частоты и интенсивности большинства опасных природных процес-

сов. В горных районах наблюдается рост темпов деградации оледенения, что 

приводит к активизации процесса формирования прогляциальных озер и 

увеличению частоты их прорывов в различных горных регионах мира [1–3]. 

Изучение и прогнозирование прорывных паводков является важной задачей в 

гидрологии и имеет социально-экономические последствия, особенно в 

горных районах, где количество станций мониторинга ограничено [4–6]. 

Вопросу изучения процесса формирования прорывных паводков, а 

также выявления основных “триггеров” их возникновения уделялось большое 

внимание в различных исследованиях [7–11]. Одним из основных факторов, 

обуславливающих прорывы ледниковых озер, является повышение температур 
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воздуха и экстремальные осадки, что требует тщательного рассмотрения в 

свете происходящих климатических изменений [12, 13]. Хотя изменение 

климата является основным фактором отступания ледников, оно также способ-

ствует ослаблению поверхности ледников, что может привести к 

катастрофическим последствиям в виде схода каменных лавин или других 

видов оползней [14, 15]. Прорывы ледниковых озер часто происходят из-за 

обрушения льда и горных пород, что приводит к образованию волн вытеснения 

[16]. 

Исследуемый ледниково-озерный комплекс Башкара (рис. 1) распо-

ложен в верхнем течение р. Баксан в долине р. Адыл-Су, в верховьях ее левого 

(основного) истока, и размещается в кармане правой боковой морены одно-

именного крупного ледника Башкара. Озеро возникло в начале 1930-х гг., 

длительное время его с трех сторон окружал ледник. Помимо оз. Башкара,  

у нижнего края ледника находится оз. Лапа, возникшее в 1990-х гг. [17].  

В августе 1958 и 1959 гг., а также в октябре 1960 г. трижды происходили 

прорывы озера через гроты в ледовой стенке, ставшие причиной мощных 

селевых потоков по долине Адыл-Су [18]. На протяжении последующих 40 лет 

озеро оставалось устойчивым, но не неизменным. Размеры его постепенно 

увеличивались по мере отступания ледника. Одновременно происходило замет-

ное изменение прилегающей к озеру правой части языка ледника Башкара. 

 

 
 

Рис. 1. Расположение гидрологических постов в системе Башкаринских озер. 

 

В ночь с 31 августа на 1 сентября 2017 г. произошло переполнение и 

прорыв высокогорного оз. Башкара. Непосредственным “триггером” прорыва 

озера стал аномальный ливень на фоне сильного переувлажнения горных 

пород. В ночь с 31 августа на 1 сентября 2017 г. после четырехсуточного 

периода дождливой погоды, завершившегося аномальным по интенсивности 
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ливнем (всего около 100 мм / 8 ч), прорвался и впоследствии размылся гребень 

перемычки. Уровень воды в основном озере упал на 15–17 м относительно 

предпрорывного, объем воды в нем уменьшился больше чем на 3/4 – с более  

1 млн м³ до примерно 250 тыс. м³. В результате значительные разрушения были 

зафиксированы как в долине р. Адыл-Су на протяжении 11,5 км, так и в долине 

р. Баксан на расстоянии более 50 км ниже по течению от устья р. Адыл-Су [19]. 

После прорыва 1 сентября 2017 г. система озер стала проточной, что 

должно обеспечивать ее безопасность. Однако эта система начала эволюцио-

нировать и изменяться. За последние семь лет наблюдалось интенсивное 

таяние ледника Башкара: появились два небольших озера рядом с оз. Башкара, 

само оз. Башкара увеличивается в размерах, а оз. Лапа уменьшается. Несмотря 

на образование хорошо развитого канала стока в 2017 г., повторный прорыв 

озера остается возможным. Например, летом 2018 г. и весной 2019 г. наблю-

дались крупные обвалы скальных пород с вершины горы Башкара в сторону 

одноименного ледника, при этом снежно-ледово-каменная лавина почти 

достигла озера. В будущем вероятность повторных обрушений не исключена, 

учитывая нестабильность скальных пород на горных склонах вокруг озер [20],  

что может спровоцировать очередной прорыв озера.  

В данном исследовании проводился анализ многолетнего мониторинга 

Башкаринских озер после их прорыва 1 сентября 2017 г., и была проведена 

оценка рисков возможного повторного прорыва. 

Материалы и методы исследования. 

Данные дистанционного зондирования. Для оценки изменений площади 

озер мы использовали спутниковые снимки Sentinel-2, Pleiades и SPOT 6. 

Оптимальным временем для картирования ледниковых озер традиционно 

считаются летние месяцы с июля по сентябрь, так как в этот период снежный 

и ледовый покров минимален, а площадь ледниковых озер достигает макси-

мума. Поэтому мы отбирали наиболее качественные снимки, сделанные в это 

время. Собранные изображения были проверены на наличие облачности, при 

этом в анализ включались только снимки с облачностью менее 10%, чтобы 

обеспечить достоверность данных. 
 

Данные дистанционного зондирования, использовавшиеся для оценки изменения площади 

Башкаринских озер 
 

Дата 
Спутниковый  

снимок 

Разрешение,  

м 

Цели  

исследования 

01.08.2017 Pleiades 0.5 

Изменения  

площади  

озер 

03.09.2017 SPOT 6 1.5 

29.07.2018 Sentinel-2 10 

27.07.2019 Sentinel-2 10 

16.07.2020 Sentinel-2 10 

18.07.2021 Sentinel-2 10 

28.07.2022 Sentinel-2 10 

26.07.2023 Sentinel-2 10 

30.07.2024 Sentinel-2 10 

13.08.2017 Sentinel-2 10 Оценка  

отступания  

ледника 

30.09.2017 Sentinel-2 10 

28.09.2024 Sentinel-2 10 
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Для каждого года с 2017 по 2020 гг. были выбраны соответствующие 

снимки (см. таблицу). Береговая линия озер была оцифрована вручную на всех 

изображениях с использованием программы ArcMap 10.4.1. Мы также изучили 

изменения площади ледника Башкара в период с 2017 по 2024 гг., используя 

спутниковые снимки Sentinel-2. Для анализа выбирались изображения, полу-

ченные в конце сезона абляции, когда сезонное отступление ледника достигает 

максимальных значений [21]. 

Гидрологические измерения в системе Башкаринских озер. 

Уровень воды и температура. С 1 сентября 2017 г. продолжаются 

ежегодные систематические наблюдения за уровнем воды в оз. Башкара с 

использованием автоматических регистраторов уровня воды, установка кото-

рых была начата в 2007 г., для мониторинга риска возможного повторного 

прорыва. В 2018, 2019, 2023 и 2024 гг. были установлены логгеры уровня воды 

и температуры Keller, которые фиксируют данные каждые 15 мин, а также 

проводится мониторинг уровня озера относительно геодезического опорного 

пункта. Эти измерения имеют критически важное значение для контроля 

ситуации и обеспечения безопасности окружающей территории. 

Батиметрическая съемка. В сентябре 2020 г. проведена батиметричес-

кая съемка с помощью двухчастотного эхолота Lowrance 525 CF. Для расчета 

объема и средней глубины озера использовались программы Surfer 15.3 и 

ArcMap 10.4.1. 

Расход воды. В период с 2018 по 2020 гг. мы измеряли расход воды в 

различных створах системы озер для изучения гидрологического режима сфор-

мированных каналов стока. Были установлены несколько гидропостов на сле-

дующих водотоках: Башкара, Проран, Проран (после ледника) и Лапа (рис. 1). 

За три года собрано 20 серий измерений расходов воды (в каждой серии 

было выполнено четыре измерения). В рамках каждой серии измерения 

проводились на всех гидропостах в один день в течение 2–3 ч, одновременно 

фиксировался уровень воды в обоих озерах. 

Измерения расходов воды выполнялись методом ионного паводка. Этот 

метод широко применяется для определения расхода воды в небольших 

турбулентных потоках, характерных для горных районов. Для контроля и 

верификации данных измерения расходов выполнялись дважды на каждом 

посту, после чего рассчитывалась относительная погрешность. Если она не 

превышала 15%, измерение считалось достоверным. 

Гидродинамическое моделирование потенциального повторного 

прорыва. Для моделирования в данной работе использовался российский 

программный комплекс STREAM_2D [22], основанный на численном решении 

двумерных уравнений Сен-Венана в приближении мелкой воды. Ранее сценар-

ное моделирование прохождения прорывного паводка по долине р. Адыл-Су 

было проведено еще до прорыва озера [17]. Моделирование проводилось на 

основе программных комплексов “River” (предшественник современной 

версии STEAM_2D) [23] и FLO-2D [24]. После прорыва озера было также 

проведено сравнительное моделирование с расчетами на основе программного 

комплекса RAMMS [25]. 
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При наличии достаточного количества исходной информации,  

включая морфометрию озера, морфометрию прорана, программный комплекс 

STREAM_2D позволяет рассчитать гидрограф излива непосредственно по 

гидродинамической модели. Калибровка гидродинамической модели для 

долины р. Адыл-Су выполнялась варьированием коэффициента шерохова-

тости при сопоставлении времени добегания волны прорывного паводка на 

основе опросов местных жителей и моделирования. Для визуальной верифи-

кации гидродинамической модели использовались данные о зоне затопления в 

пределах языка ледника Башкара и долины р. Адыл-Су, полученных по 

данным дистанционного зондирования и результатам моделирования [26]. 

На основе гидродинамической модели были рассмотрены возможные 

сценарии повторного прорыва озера. В качестве возможных механизмов 

повторного прорыва в работе было рассмотрено два варианта. Первый пред-

полагал падение в озера крупных обвалов и лавин, образующих волны 

вытеснения. Подобные прорывные паводки наблюдаются в различных 

районах мира [27, 28] и не исключены в исследуемом районе.  

Второй сценарий предполагал повторный прорыв озера в результате 

резкого увеличения уровня воды, сопровождающегося расширением сущест-

вующего прорана. По нашим оценкам, в случае повторного прорыва озера 

проран может углубиться на 8 м вследствие эрозии, что было использовано в 

качестве начальных условий для моделирования второго сценария. 

Результаты исследований и их обсуждение.  

Оценка отступания ледника. Из-за значительной толщины моренного 

покрова на леднике Башкара точно определить сокращение его площади 

затруднительно. Однако отступание языка ледника отчетливо видно на спут-

никовых снимках. Согласно данным интерпретации изображений Sentinel-2, 

площадь ледника стремительно сокращается. С 2017 по 2024 гг. общий отступ 

языка ледника составил около 210 м. 

Изменения площади, уровня и объема озер. Несмотря на то, что озеро 

является проточным, его уровень, площадь и объем нестабильны как в течение 

сезона, так и на протяжении нескольких лет. Площадь и объем оз. Башкара 

колеблются в пределах 26 000–35 000 м² и 239 000–339 000 м³ соответственно. 

В период с 2018 по 2020 гг. площадь озера оставалась практически неизменной, 

однако после 2021 г. началось ее расширение (рис. 2, а). В 2018–2024 гг. 

площадь озера увеличилась на 32%, а объем – на 41%. С момента прорыва  

1 сентября 2017 г. уровень воды поднялся на 3,2 м, при этом основной рост 

пришелся на период с 2021 по 2024 гг. 

С 2018 г. рельеф дна озера претерпел незначительные изменения, что 

подтверждается изменениями кривой объема (рис. 2, в). Вероятно, это связано 

с продолжающимся накоплением осадочных отложений на дне озера. Также 

стоит отметить, что площадь эфемерных озер, образованных за счет неравно-

мерного отложения поверхностной морены на леднике, увеличивается. 

В то же время оз. Лапа претерпело значительное сокращение (рис. 2, б и 

г). В период с 2018 по 2024 гг. уровень воды в озере снизился, что связано с 

отступанием языка ледника и заиливанием. Наносы, поступающие с покры-

того мореной языка ледника Башкара, формируют дельту в южной части озера. 
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За период 2018–2024 гг. площадь озера уменьшилась на 51%, объем 

сократился на 66%, а уровень воды понизился на 4,2 м. 

 

 
 

Рис. 2. Изменения площади, уровня и объема озера Башкара (a) и озера Лапа (б) в 2018–2024 гг.; 

кривые объема озера Башкара (в) и озера Лапа (г). 

 
Колебания уровня воды. Уровень воды в оз. Башкара является одним из 

ключевых показателей риска его повторного прорыва. После 1 сентября 2017 г. 

озеро стало дренироваться через хорошо развитый канал стока, поэтому коле-

бания уровня воды в теплый сезон остаются незначительными. Летом уровень 

воды в озере изменяется в пределах 20–50 см и остается квазистабильным до 

конца лета. Однако иногда он может резко повышаться в краткосрочной 

перспективе из-за интенсивного таяния льда и снега или сильных осадков.  

К концу сезона абляции (в сентябре–октябре) уровень воды достигает мини-

мума (рис. 3, а). 

Колебания температуры воды. Косвенным показателем состояния 

озера является температура воды и ее долгосрочная динамика. В прошлом оз. 

Башкара было бессточным, поэтому вблизи берега и на поверхности на 

глубине до 1,5–2 м вода прогревалась. В настоящее время озеро является 

проточным, а основным источником притока являются холодные талые ледни-

ковые воды, что привело к снижению средней температуры воды в озере по 

сравнению с допрорывным состоянием. Средняя температура воды с июня по 

сентябрь составляла 7,8℃ в период 2013–2016 гг. до прорыва озера. В 2017 г. 

в результате интенсивного таяния снега и льда температура воды снизилась до 

3,9℃, а после прорыва – до 1,6℃ (рис. 3, в). 

Колебания температуры воды находятся в обратной зависимости от 

уровня воды – при снижении уровня воды температура повышается и наоборот 

(рис. 3, б). Это объясняется тем, что в периоды низкой воды интенсивность 
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поступления холодных талых вод из материнского ледника уменьшается и 

водная масса озера прогревается быстрее. 

 

 
Рис. 3. Колебания уровня (а) и температуры (б) озера Башкара в теплый период в 2018–2024 годах; средняя 

температура воздуха (Tвозд.) и воды в озере (Tоз.) с июня по сентябрь в 2013–2024 годах (в). 

 
Гидрологический режим системы Башкаринских озер. В период 

2018–2020 гг. были построены зависимости расхода воды от уровня Q(H)  

для водотоков, вытекающих из двух озер – Башкара и Лапа (рис. 4, а и б).  

Эти зависимости оказались нестабильными от года к году, что указывает на 

динамику системы озер. Измеренные средние расходы воды варьировались  

от 0,1 до 2,4 м³/с. Особенно выраженные изменения наблюдаются в оз. Лапа, 

так как за 7 лет оно значительно изменилось в размерах и форме из-за интен-

сивного отступания ледника. 

После 2021 г. визуально наблюдалось значительное увеличение расхода 

ручья Проран, уровень воды поднялся и затопил окружающую земную 

поверхность, что сделало проведение измерений невозможным. По результа-

там измерений установлено, что ручей Проран дополнительно питается талой 

водой из ледникового туннеля, так как расходы воды ниже по течению всегда 

превышали значения, измеренные выше по течению. 

Оз. Лапа также получает значительное количество талых вод непосред-

ственно от языка ледника Башкара. Однако из-за невозможности прямого 

измерения общего притока талых вод его вклад был оценен методом вычитания 

вклада ручья Проран из общего стока из оз. Лапа. Результаты показали, что 

талые воды ледника Башкара являются основным источником стока ручья 
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Лапа, в среднем составляя 65% от общего расхода. Вклад ручья Проран, то есть 

воды из верхнего озера, невелик и составляет в среднем 24%, а вклад талых 

вод из ледниковой пещеры – 11% (рис. 4, в). Однако вероятно, что этот баланс 

изменился в последние годы в результате противоположных тенденций в 

изменении уровня, площади и объема двух озер. 
 

 
 

Рис. 4. Зависимости расхода воды от уровня Q=f(H) для водотоков Проран (а) и Лапа (б); вклад  

различных источников в общий сток из озера Лапа (в). 
 

Сценарное моделирование потенциального повторного прорыва  

оз. Башкара. Моделирование сценария, предполагающего падение в озера 

крупных обвалов, не привело к значительному отклику модели при различных 

вариантах падения в озеро и объемов обвала. Стоит отметить, что при таких 

размерах озера есть вероятность, что даже если в результате обвала образуется 

незначительная волна, то это приведет к нарушению устойчивости перемычки, 

то есть сведется ко второму сценарию. 

По результатам моделирования второго сценария, предполагающего 

увеличение существующего прорана, были построены гидрографы прохождения 

прорывного паводка в различных створах. Систему озер паводок преодолел 

только на 6 мин, наблюдается распластывание волны, и меньшие, чем у уже 

случившегося паводка, скорости движения. При этом кривая спада продолжа-

лась около 1 ч. Максимальный расход излива из оз. Башкара составил 298 м3/c, 

на выходе из оз. Лапа максимальный расход составил 138 м3/c, в устье р. Адыл-

Су за счет распластывания волны максимальный расход составил 101 м3/c  

(при уже случившемся прорыве по результатам моделирования в этом же створе 

расход воды составлял 320 м3/c [26]). Максимальные скорости движения 

потока наблюдаются на языке ледника Башкара (>15 м/c), в проране (10 м/c), 

близ альплагеря “Шхельда” (7–8 м/c). В верховьях р. Адыл-Су повсеместно, 
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кроме зоны расширения у альплагеря “Джантуган”, скорость потока составля-

ет около 6 м/c. Максимальные глубины потока наблюдаются близ альплагерей 

“Шхельда” и “Джантуган” – 4–5 м. 
 

 
 

 

 

 
Рис. 5. Смоделированные 

гидрографы потенциально-

го прорывного паводка в 

различных сечениях по 

данным STREAM_2D. 

 

Обсуждение результатов. Весь ледниково-озерный комплекс является 

достаточно сложной гидравлической системой и требует дальнейшего монито-

ринга его водного баланса и динамики. 

Многие факторы указывают на нарастающую опасность повторного 

прорыва оз. Башкара. Во-первых, как и перед прорывом вновь появилась 

устойчивая тенденция к ежегодному повышению уровня оз. Башкара. В 2018–

2019 гг. не наблюдалось межгодового повышения уровня воды в оз. Башкара, 

но в 2023 г. он был на 160 см выше, чем 4 годами ранее. Эта тенденция продол-

жилась, и в 2024 г. – уровень воды был примерно на 60 см выше, чем в 

предыдущем году. Экстраполируя кривую Q=f(H) на область текущего уровня 

воды в оз. Башкара, можно сделать вывод, что в 2024 г. расход воды в Проране 

мог достигать 5–6 м3/c. Во-вторых, согласно оценкам потенциала развития 

ледниковых озер на Центральном Кавказе [29], ожидается продолжение роста 

оз. Башкара, что также подтверждает риск возможного повторного прорыва 

озера. В-третьих, увеличивается площадь эфемерных озер в пределах прилед-

никового комплекса и уменьшение ширины ледово-моренной перемычки 

между ними и оз. Башкара, разрушение перемычки также может вызвать 

прорыв. Помимо этого, возможные обвалы льда, термокарстовые просадки на 

дне озера, наступание и отступание дельты впадающего в озеро ручья, 

склоновые процессы на берегах приводят к нестабильному состоянию озера. 

С другой стороны, ряд факторов говорят об определенной стабильности 

системы стока Башкаринских озер. По результатам изучения водного баланса, 

расход р. Башкара всегда был близок по значению к расходу р. Проран – при 

увеличении абляции ледника Башкара увеличивался расход р. Башкара, 

уровень озера и расход р. Проран, и наоборот. Это говорит о том, что у озера 

нет никаких дополнительных “скрытых” каналов стока и весь объем, 

поступающей с водосбора воды из озера, уходит через перелив в проране. Но 

также из этого следует, что озеро саморегулируется в результате постоянного 

стока. Следует отметить снижение средней температуры воды в озере в летний 

период (возможный признак увеличения проточности), что снижает скорость 

протаивании морен и мертвых льдов, покрытых мореной. 

Заключение. За 7 лет, прошедшие после прорыва 1 сентября 2017 г.,  

на фоне относительно мало меняющихся сезонных колебаний, произошли 



Proceedings of the YSU. Geological and Geographical Sciences, 2025, 59 (2), p. 460–472.  469 

  

значительные направленные изменения уровня, площади и объема Башкарин-

ских озер. В 2018–2024 гг. площадь оз. Башкара увеличилась на 32%, а объем – 

на 41%. В то же время оз. Лапа уменьшилось в размерах, что обусловлено его 

занесением. Площадь озера в 2018–2024 гг. сократилась на 51%, объем – на 66%.  

В данный момент оз. Башкара дренируется по хорошо разработанному 

поверхностному каналу и колебания уровня воды в течение летнего периода 

высокой водности незначительны. Уровень озера изменяется в пределах 20– 

50 см и остается практически стабильным до конца теплого сезона. При этом 

на протяжении последних 5 лет происходит направленный рост уровня воды в 

оз. Башкара. С 2018 по 2024 гг. отметки летних уровней воды в озере выросли 

на 3,2 м. 

За период 2018–2020 гг. были построены кривые Q(H) для рек, 

вытекающих из двух озер. Обе зависимости не стабильны из года в год, что 

указывает и на нестабильность озерной системы. Результаты водобалансовых 

исследований показывают, что в замыкающем створе р. Лапа в среднем доля 

стока из оз. Башкара составляет 35%, доля стока с ледника Башкара (без водо-

сбора оз. Башкара) – 65%. Ниже поверхностного истока из оз. Башкара приток 

воды из него идет двумя путями: по сосредоточенному подледниковому 

каналу стока с выходом из ледникового грота поступает 11% от общего стока, 

рассредоточенный под- и внутриледниковый сток составляет в среднем 24%. 

Однако вполне вероятно, что в последние годы этот баланс изменился в резуль-

тате противоположных тенденций в изменении уровня, площади и объема двух 

озер. После 2021 г. сток в теплый период из оз. Башкара по поверхностному 

каналу (створ “Проран”) визуально значительно увеличился. Экстраполяция 

кривой Q=f(H) на отметки уровня воды в озере Башкара в конце теплого сезона 

2024 г. показывает, что расход воды через проран мог достигать 5–6 м3/c.  

В качестве возможных механизмов повторного прорыва оз. Башкара в 

работе было рассмотрено два основных варианта: падение в озера крупных 

обвалов, образующих волны вытеснения, и повторный прорыв озера в резуль-

тате резкого увеличения уровня воды, сопровождающегося расширением 

существующего прорана. В результате сценария, подразумевающего обвал, 

значительного отклика модели на изменение конфигурации дна не наблюда-

лось, то есть волны вытеснения не возникало. По результатам моделирования 

второго сценария были построены гидрографы прохождения прорывного павод-

ка в различных створах. Паводок преодолел систему озер только на 6 минуту, 

наблюдалось распластывание волны, и меньшие, чем у уже случившегося 

паводка, скорости движения. При этом кривая спада продолжалась около 1 ч. 

Полученные результаты демонстрируют необходимость дальнейшего 

мониторинга ледниково-озерного комплекса и, возможно, выполнение 

мероприятий по снижению уровня воды в оз. Башкара для исключения его 

повторного прорыва. 

Результаты получены при финансовой поддержке Правительства 
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դառնում։ Նման երևույթների ուսումնասիրությունը հատկապես կարևոր է 
սառցադաշտերի շարունակական ինտենսիվ հալման և կլիմայի փոփոխության 
համատեքստում։ Այս ուսումնասիրությունը նվիրված է Բաշկարինսկի սառցա-
դաշտային լճերի մոնիթորինգին 2017 թվականի սեպտեմբերի 1-ին դրանց 
ճեղքումից հետո։ Լճերը գտնվում են Կենտրոնական Կովկասի ամենախիտ 
բնակեցված հատվածում՝ Էլբրուսի շրջանում։ Ճեղքումից հետո լճային 
համակարգը դարձավ հոսող, բայց այդ ժամանակվանից ի վեր այն ենթարկվել 
է զգալի փոփոխությունների՝ մնալով անկայուն և պոտենցիալ վտանգավոր։ 
Ուսումնասիրության մեջ օգտագործվել են հեռազննման տվյալներ և 
դաշտային դիտարկումներ՝ Բաշկարինսկի լճերի վիճակը գնահատելու համար։ 
Բացի այդ, STREAM_2D հիդրոդինամիկական մոդելի հիման վրա մոդելա-
վորվել են Բաշկարա լճի կրկնակի ճեղքման հնարավոր սցենարներ։ 
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BASHKARA GLACIER-LAKE COMPLEX AFTER  

THE 2017 OUTBURST.  

EVOLUTION OF GLACIER LAKES AND THE RISK  

OF A REPEATED DISASTER 

 

S u m m a r y  

 

In high-mountain areas, glacial lake outbursts often cause floods and extreme 

events. The study of such phenomena is especially important in the context of 

ongoing intensive glacier melting and climate change. This study is devoted to the 

monitoring of the Bashkarinsky glacial lakes after their outburst on September 1, 

2017. The lakes are located in the most densely populated part of the Central 

Caucasus, in the Elbrus Region. After the outburst, the lake system became flowing, 

but since then it has undergone significant changes, remaining unstable and 

potentially dangerous. The study used remote sensing data and field observations to 

assess the state of the Bashkarinsky Lakes. Potential scenarios for a repeated outburst 

of Lake Bashkara were also simulated based on the STREAM_2D hydrodynamic 

model. 

 

 

 

 

 

 

 

 


