
PROCEEDINGS  OF  THE  YEREVAN  STATE  UNIVERSITY 

УЧЕНЫЕ  ЗАПИСКИ  ЕРЕВАНСКОГО  ГОСУДАРСТВЕННОГО  УНИВЕРСИТЕТА 

Geology  and  Geog raphy                        59(2), 2025                    Геология  и  география  
 

 

 

 
 

G e o g r a p h y  
 
 

 

УДК 504.064.2.001.18; 504.054; 004.942 

 
PREDICTING  CONCENTRATION  CHANGE  OF  SOME  TMS   

IN  SOIL–WATER  ECOSYSTEM  USING  MACHINE  LEARNING 

 
A. R. SUKIASYAN ,  P. A. YESAYAN **, Z. G. KHANAMIRYAN ***,  A. A. KIRAKOSYAN **** 

 
National Polytechnic University of Armenia (NPUA), Armenia 

 
This article provides a discussion of the applicability of machine learning methods, 

with a particular focus on linear regression, to predict the total concentration of 

TMs in the soil–water ecosystem. Despite the requirement of only minute quantities, 

TMs have the potential to exert a detrimental effect on the environment. For 

prediction, seasonal and geographical parameters along with metal concentrations 

in the soil and their irrigation water were used. A key focus of the study was the 

normalization of data, a process that has been shown to improve the identification 

of linear relationships between variables. The developed linear regression model 

demonstrated a high degree of precision as evidenced by the coefficient of 

determination 0.9945, the average absolute error of 0.1, and the average percentage 

error of 5.5%. These findings substantiate the feasibility of employing the proposed 

methodology to monitor water quality, evaluate pollution risks, and identify 

potential threats at an early stage in ecosystems that anthropogenic factors have 

been impacted. 
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Introduction. Transition metals (TMs), also known as d-elements, are 

distinguished by partially filled d-orbitals, a property that enables them to exhibit 

varying degrees of oxidation. Despite the lack of synonymy between the terms 

“heavy metals” and “transition metals”, it is evident that numerous d-elements 

exhibit properties characteristic of heavy metals [1]. TMs represent a critical 

category of elements that have been the subject of scientific concern due to their 

environmental impact, particularly within soil–water systems used for irrigation [2]. 

Although these elements are essential in minimal quantities for living organisms, 

their anthropogenic accumulation in soil and water leads to ecological imbalance, 

which poses a serious threat to ecosystem sustainability [3]. The presence of TMs in 

irrigation water has been shown to alter soil chemistry and fertility, as well as affect 

plant physiology [4]. There is also a potential for human health to be affected by 

bioaccumulation along the food chain [5]. The mobility and bioavailability of TMs 
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in the soil–water ecosystem are influenced by various factors, including pH, organic 

matter content, soil structure, oxidation-reduction potential and microbiological 

activity [6]. 

Soil irrigation is particularly vulnerable to changes in the concentration of 

transition metals [7]. A comprehensive understanding and reliable prediction of the 

dynamics of these concentrations is imperative for the implementation of effective 

prevention and recovery strategies for contaminated soil [8]. However, conventional 

monitoring methodologies entail costly and time-consuming sampling and laborato-

ry analysis [9]. To address these limitations, recent research has increasingly focused 

on the use of machine learning (ML) algorithms. These algorithms can analyze large 

multidimensional datasets and identify hidden patterns, offering a promising 

alternative to model the behaviour of TMs in complex ecological systems [10].  

In particular, regression models, artificial neural networks (ANN), and collective 

learning methods have demonstrated great potential in predicting metal 

concentrations based on the physico-chemical parameters of soil and water [11–13]. 

The aim of the presented work is to investigate the dynamics of concentration 

changes as well as the prediction of the total concentration of some TMs in the  

soil–water ecosystem using advanced machine learning methods. 

Materials and Methods. The concentrations of scandium (Sc), titanium (Ti), 

vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), 

copper (Cu) and zinc (Zn) were measured in soil and irrigation water samples 

collected during each season over a year. Samples were collected from several regions 

of Armenia, including Hrazdan (cement plant territory), Gavar (Noratus community), 

and Martuni (Yeranos community) from a depth of 20 cm using non-metallic 

instruments in dry weather conditions. Instrumental measurements were conducted 

within the laboratory setting in accordance with [14]. The standard ISO 5667-1:2006 

methodology was used for the collection of irrigation water samples. This method 

describes the analysis of water samples during four different seasons. The elemental 

analysis of all irrigation water samples was conducted using a portable Termo 

Scientific™ Niton™ X-ray analyzer, which utilized direct X-ray radiation [15].  

In modeling the relationship between transition metal concentrations in soil and 

water samples, linear and multivariate regression were used according to [16]. 

Results and Discussion. Tabs. 1 and 2 present the concentrations of TMs  

in soil and water samples from the designated locations in the four seasons.  

The features are therefore the input variables that were used to predict the target 

variable (“Water” in this case), which is defined as the total concentration of certain 

metals in the water samples. Similarly, the “Soil” feature indicates the summed 

concentration of the same or related metals in soil samples. The input features can 

be categorized into two main groups: seasonal features (Autumn, Winter, Spring, 

and Summer) that capture temporal variations in the presence of metal and 

geographical features (Gavar, Martuni, and Hrazdan) that account for spatial 

differences across various regions. The “Water” characteristic, which being the 

output variable, is the primary focus of the analysis in terms of how it is influenced 

by these input variables. 

In our case, each element concentration in the soil had a different range and 

magnitude. As a case in point, the range of iron concentrations can vary from 20 to 
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40 g/kg, while cobalt concentrations can only range from 0 to 300 mg/kg. Absent 

scaling, features with more expansive numeric ranges have the potential to exert an 

undue influence over regression coefficients, a circumstance that may give rise to 

the promulgation of a biased or misleading model. To address this challenge,  

Min-Max normalization was implemented to scale all input features to a uniform 

[0,1] range [17]: 

𝑥𝑖
norm =

𝑥𝑖 − 𝑥𝑖,min

𝑥𝑖,max − 𝑥𝑖,min
 . 

The normalized data are presented in Tabs. 3 and 4. 
 

T a b l e  1  
 

Concentrations of some transition metals in samples of mountain chernozem, mg/kg 
 

Transition 

metall 

The territory of the  

Hrazdan Cement Plant 

Gavar, Noratus  

community 

Martuni, Yeranos  

community 

I II III IV I II III IV I II III IV 

Sc 98.17 trace 137.90 171.8 162.0 trace 173.5 166.5 177.65 131.1 213.25 171.6 

Ti 3550.80 3928.7 4115.33 4050.15 4272.80 4065.35 3967.55 4650.7 3999.8 3239.80 3631.10 4076.45 

V 124.87 125.93 153.10 131.2 130.55 128.25 121.85 122.8 116.55 104.55 114.65 115.25 

Cr 97.73 102.33 138.50 118.9 113.30 146.25 127.20 109.9 135.30 111.95 129.00 131.95 

Mn 849.07 858.6 799.10 401.8 819.65 810.90 792.50 780.8 737.40 776.05 725.30 741.5 

Fe 29633.10 29432.4 29639.13 20903.4 38515.0 36379.35 36027.95 37116.6 31548.45 29325.95 31199.50 30847.7 

Co 84.0 trace trace 162.2 137.0 280.05 93.70 216.55 78.80 139.80 138.10 182.7 

Ni 62.0 65.77 65.80 64.2 80.70 84.25 86.65 81.65 57.0 84.25 65.20 76.85 

Cu 85.10 58.47 67.30 71.58 84.40 69.95 65.45 69.8 71.80 58.65 53.60 54.45 

Zn 99.27 109.97 118.13 116.9 87.50 126.50 89.50 90.1 85.45 98.60 85.40 83.2 

 

T a b l e  2  
 

Concentrations of some transition metals in water samples near mountain chernozem, mg/L 
 

Transition 

metall 

The territory of the  

Hrazdan Cement Plant 

Gavar, Noratus  

community 

Martuni, Yeranos  

community 

I II III IV I II III IV I II III IV 

Sc 0.09 0.11 0.18 0.078 0.09 0.04 0.09 0.043 0.04 – 0.06 0.048 

Ti 0.09 0.51 1.46 0.106 0.03 0.04 Trace 0.055 trace – trace 0.021 

V 0.003 0.02 0.04 0.007 0.03 0.02 0.03 0.020 0.001 – 0.004 trace 

Cr trace trace 0.05 0.003 trace 0.01 0.02 0.007 trace – 0.03 trace 

Mn 0.09 0.07 0.18 – 0.02 0.01 trace trace trace – trace trace 

Fe 1.06 3.63 13.91 1.318 0.65 0.91 0.39 1.280 0.14 – 0.24 0.284 

Co trace trace trace trace trace trace trace trace trace – trace trace 

Ni trace trace trace trace trace trace trace trace trace – trace trace 

Cu 0.07 0.04 0.07 0.019 0.02 0.07 0.02 trace 0.012 – 0.02 0.013 

Zn 0.07 0.05 0.09 0.023 0.02 0.12 0.02 0.012 0.007 – 0.01 0.011  

 

T a b l e  3  
 

Normalized values of some transition metals in samples of mountain chernozems 
 

Transition 

metall 

The territory of the  

Hrazdan Cement Plant 

Gavar, Noratus  

community 

Martuni, Yeranos  

community 

I II III IV I II III IV I II III IV 

Sc 0.46 0.00 0.65 0.81 0.76 0.00 0.81 0.78 0.83 0.61 1.00 0.80 

Ti 0.22 0.49 0.62 0.57 0.73 0.59 0.52 1.00 0.54 0.00 0.28 0.59 

V 0.42 0.44 1.00 0.55 0.54 0.49 0.36 0.38 0.25 0.00 0.21 0.22 

Cr 0.00 0.09 0.84 0.44 0.32 1.00 0.61 0.25 0.77 0.29 0.64 0.71 

Mn 0.98 1.00 0.87 0.00 0.91 0.90 0.86 0.83 0.73 0.82 0.71 0.74 

Fe 0.50 0.48 0.50 0.00 1.00 0.88 0.86 0.92 0.60 0.48 0.58 0.56 

Co 0.30 0.00 0.00 0.58 0.49 1.00 0.33 0.77 0.28 0.50 0.49 0.65 

Ni 0.17 0.30 0.30 0.24 0.80 0.92 1.00 0.83 0.00 0.92 0.28 0.67 

Cu 1.00 0.15 0.43 0.57 0.98 0.52 0.38 0.51 0.58 0.16 0.00 0.12 

Zn 0.37 0.62 0.81 0.78 0.10 1.00 0.15 0.16 0.05 0.36 0.05 0.00 
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T a b l e  4  
 

Normalized values of some transition metals in water samples near mountain chernozems 
 

Transition 

metall 

The territory of the  

Hrazdan Cement Plant 

Gavar, Noratus  

community 

Martuni, Yeranos  

community 

I II III IV I II III IV I II III IV 

Sc 0.50 0.61 1.00 0.44 0.50 0.22 0.50 0.22 0.22 0.00 0.33 0.28 

Ti 0.06 0.35 1.00 0.07 0.02 0.03 0.00 0.04 0.00 0.00 0.00 0.01 

V 0.00 0.50 1.00 0.25 0.75 0.50 0.75 0.50 0.00 0.00 0.00 0.00 

Cr 0.00 0.00 1.00 0.00 0.00 0.20 0.40 0.20 0.00 0.00 0.60 0.00 

Mn 0.50 0.39 1.00 0.00 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.00 

Fe 0.08 0.26 1.00 0.09 0.05 0.07 0.03 0.09 0.01 0.00 0.02 0.02 

Co 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Cu 1.00 0.57 1.00 0.29 0.29 1.00 0.29 0.00 0.14 0.00 0.29 0.14 

Zn 0.58 0.42 0.75 0.17 0.17 1.00 0.17 0.08 0.08 0.00 0.08 0.08 

 

To evaluate the impact of normalization, a comparison was made between the 

Pearson correlation coefficients between the concentrations of soil metals and the 

total concentrations of metal present in water before and after the normalization 

process [18]. The results of this study are demonstrated in Figs. 1 and 2 below. 

 
Soil 1.00 

Water –0.16 1.00  

Fall 0.18 –0.21 1.00  

er –0.03 –0.07 –0.33 1.00  

Spring 0.06 0.44 –0.33 –0.33 1.00  

Summer –0.22 –0.17 –0.33 –0.33 –0.33 1.00 

Hrazdan –0.65 0.58 0.00 0.00 0.00 0.00 1.00 

Gavar 0.83 –0.22 0.00 0.00 0.00 0.00 –0.50 1.00  

Martuni –0.18 –0.36 0.00 0.00 0.00 0.00 -–.50 –0.50 1.00 

 Soil Water Fall Winter Spring Summer Hrazdan Gavar Martuni 

 
Fig. 1. Correlation matrix before normalization. 

 
Soil 1.00 

Water 0.29 1.00 

Fall 0.00 –0.13 1.00  

Winter -0.12 –0.02 –0.33 1.00  

Spring 0.07 0.48 –0.33 –0.33 1.00  

Summer 0.06 –0.32 –0.33 –0.33 –0.33 1.00 

Hrazdan –0.38 0.58 0.00 0.00 0.00 0.00 1.00 

Gavar 0.83 –0.02 0.00 0.00 0.00 0.00 –0.50 1.00  

Martuni –0.45 –0.56 0.00 0.00 0.00 0.00 –0.50 –0.50 1.00 

 Soil Water Fall Winter Spring Summer Hrazdan Gavar Martuni 

 
Fig. 2. Correlation matrix after normalization. 

 

The matrices illustrate the linear relationship between each input feature and 

“Water”. In this context, normalization refers to the process of scaling the input data, 

so that disparate variables can be analyzed comparatively on an equal footing, 

particularly when their raw values are expressed in different units or ranges. 

A significant insight derived from these matrices is that specific relationships 

experience substantial enhancement after normalization. For example, Spring 

consistently shows a positive correlation with water TMs concentrations, suggesting 

that seasonal processes – such as snowmelt or increased surface runoff – are major 

contributors to metal transport into water bodies during this period. In contrast, 

Summer has been observed to exhibit a negative correlation, attributable to reduced 
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runoff and elevated evaporation rates. Among the geographical features, one location 

reveals a notably strong positive correlation with “Water” in both matrices, 

indicating persistent regional factors influencing metal presence, such as geological 

composition or local industrial activity. 

Further quantifies how these relationships change due to normalization  

(Fig. 3) as the difference matrix, highlighting the increase or decrease in correlation 

values between features and the target variable after normalization. A particularly 

significant change is observed in the correlation between “Soil” and “Water”, which 

increases by +0.45, increasing from –0.16 to 0.29. This shift underscores the impact 

of normalization in revealing a more accurate linear relationship between soil and 

water metal concentrations – two variables expected to be intrinsically connected in 

natural systems. Other features, such as “Martuni” and “Gavar”, also show changes 

in their relationships with “Water”, but the magnitude is less pronounced. 

Interestingly, while the strength of some correlations increases, others show a slight 

decrease, reflecting the nuanced effects of normalization on different feature types 

(such as Summer). 

 
Soil 0.00 

Water 0.45 0.00  

Fall –0.19 0.08 0.00  

Winter –0.09 0.05 0.00 0.00  

Spring 0.01 0.03 0.00 0.00 0.00  

Summer 0.27 –0.16 0.00 0.00 0.00 0.00 

Hrazdan 0.27 0.00 0.00 0.00 0.00 0.00 0.00 

Gavar 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00  

Martuni –0.27 –0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

 Soil Water Fall Winter Spring Summer Hrazdan Gavar Martuni 

 

Fig. 3. Normalized and original data correlation difference matrix. 
 

Overall, the improved correlations after normalization suggest that this 

preprocessing step improves the clarity of the linear relationships in the data set.  

It makes the features more comparable, reduces the bias caused by scale differences, 

and ultimately contributes to more effective regression modelling. This is 

particularly important in environmental studies, where multivariate influences, such 

as seasonal cycles and regional soil properties, interact to affect outcomes such as 

water quality. By improving the internal consistency of the data, normalization 

increases the reliability of predictive models and supports more accurate 

interpretations of environmental interactions. 

As shown in the correlation analysis, many of the input features, in particular 

“Soil” and several seasonal indicators, have approximately linear relationships  

with the target variable. Linear regression is a well-established method for 

quantifying such relationships, offering interpretability, computational efficiency, 

and robustness in situations, where linearity is present [19]. In addition, the 

normalization process further improves the suitability of the data for linear modelling 

by aligning feature scales and enhancing linear patterns. These factors make linear 

regression a logical and effective choice for modelling metal concentrations in water 

based on environmental and spatial indicators. The relationship between metal 

concentrations in soil and total metal concentrations in water can be modelled using 

a linear regression approach: 
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𝐶𝑤𝑎𝑡𝑒𝑟 = 𝛽0 + ∑ 𝛽𝑖 𝑥𝑖
norm

𝑛

𝑖=1

, 

where 𝑛 is the number of metal types (in our case 𝑛 = 10); 𝛽0 is the intercept of the 

model; 𝛽𝑖  is the weight (coefficient) of each input feature 𝑥𝑖
norm ;  𝑥𝑖

norm is the 

normalized concentration of the 𝑖-th metal in the soil. Normalization is a crucial 

preprocessing step in regression modeling, particularly when input features 

(predictors) vary in scale or unit. 

The final regression model is formulated follows: 

𝐶𝑤𝑎𝑡𝑒𝑟 = 𝛽0 + ∑ 𝛽𝑖

𝑥𝑖 − 𝑥𝑖,min

𝑥𝑖,max − 𝑥𝑖,min 
 

𝑛

𝑖=1

,  

where 𝑥𝑖 is the original concentration of the 𝑖-th metal in the soil; 𝑥𝑖,max and 𝑥𝑖,min 

are the maximum and minimum observed values for that metal in the soil data set. 

The learned coefficients and intercepts of the model, which define the impact 

of soil metal concentration, are summarized in Tab. 5.  
 

                                                               T a b l e  5  
 

Model coefficients 
 

N Coefficients, β Value 

1. Intercept –4.3892 

2. Sc–Soil 1.7642 

3. Ti–Soil –1.1038 

4. V–Soil 7.2705 

5. Cr–Soil 0.1539 

6. Mn–Soil 4.1672 

7. Fe–Soil –0.6444 

8. Co–Soil 0.0174 

9. Ni–Soil –0.2106 

10. Cu–Soil –1.1616 

11. Zn–Soil 1.9906 

 

The effectiveness of the linear regression model is further evaluated using four 

common error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE), 

Root Mean Squared Error (RMSE), and the coefficient of determination (R²).  

As shown in Tab. 6, the model achieves an MAE of 0.1, meaning that, on average, 

the predicted total metal concentration in water deviates from the actual values by 

only 0.1 units. The MSE and RMSE values are 0.02 and 0.14, respectively – both 

relatively low, indicating that large prediction errors are rare and that the model 

maintains a good overall fit. 
 

                                                                       T a b l e  6  
 

Error metrics 
 

MAE MSE RMSE R² 

0.1 0.02 0.14 0.9945 
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In particular, the R² score is 0.9945, which implies that the model explains 

more than 99% of the variance in the target variable. This exceptionally high R² value 

confirms that the model captures the underlying relationships between soil metal 

concentrations and water metal concentration with great accuracy. 

Together, these metrics demonstrate that the linear regression model is not 

only interpretable and efficient but also highly reliable in predicting metal 
concentration levels in water based on the given set of input features. This level of 

performance makes the model suitable for practical applications, such as 
environmental monitoring and early-warning systems for water contamination. 

To further assess the accuracy of the model, trained regression models are 
used to predict water metal concentrations using the same data set. The actual values, 

predicted values, and absolute errors are displayed in Tab. 7 for each metal. 
 

T a b l e  7  
  

Predicted values of total metal concentrations in water 
 

Actual 

 concentration 

Predicted 

 concentration 

Absolute 

 error 

Error percent 

 from actual value 

2.721181 2.530304 0.190877 7.0% 

3.098374 3.132100 0.033726 1.1% 

7.750000 7.809350 0.059350 0.8% 

1.317064 1.301301 0.015762 1.2% 

1.880769 2.155323 0.274554 14.6% 

3.070596 3.045271 0.025325 0.8% 

2.130418 1.819638 0.310781 14.6% 

1.138672 1.078421 0.060251 5.3% 

0.458477 0.511329 0.052851 11.5% 

0.000000 0.183271 0.183271 – 

1.319635 1.306441 0.013194 1.0% 

0.537796 0.550233 0.012437 2.3% 
 

To further evaluate the predictive performance of the model at individual data 
points, Tab. 7 compares the actual metal concentrations in water with the predicted 

values produced by the linear regression model. In addition to these, the table lists 

the absolute error and the percentage error relative to the actual value for each 
instance. The absolute error represents the direct difference between the actual and 

predicted values. Lower values indicate that the model predictions are closer to the 
true concentrations. Most absolute errors in the table are small, often below 0.1, 

which reflects strong prediction accuracy. The percentage of error from the actual 
value provides a normalized view of these errors, making it easier to compare across 

samples of different magnitudes. In this data set, the majority of percentage errors 
are impressively low. Several instances show errors below 2%, with many below 1%, 

indicating that the model can accurately replicate observed water metal concent-
rations even at different concentration scales. There are a few samples with relatively 

higher errors (e.g., 14.6%), but these are likely influenced by outliers or edge cases 
where input features may not fully capture variability in water metal concentration. 

Despite these, the average error across the dataset is just 5.5%, which is a very strong 
result in environmental modeling, particularly for systems as complex and variable 

as soil-to-water metal transfer. This detailed comparison confirms that the model not 
only performs well on average metrics like MAE and R², but also maintains high 
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accuracy at the individual prediction level – making it suitable for both overall trend 

analysis and practical environmental decision-making. 

The absolute error provides insight into the deviation between the actual and 

predicted values. A lower value indicates a better fit to the model. The average error 

is 5.5%, which is a real good result for the metal–water system. 

The analysis, including data calculations, preprocessing, normalization, and 

training and evaluation of the linear regression model, was conducted in the Python 

environment using scikit-learn for machine learning workflows and stats models for 

statistical analysis and inference. 

Conclusion. The results suggest that linear regression can serve as a reliable 

tool for environmental monitoring, allowing early detection of pollution risks and 

aiding in the formulation of mitigation strategies. Given the robustness and precision 

of the model, it has significant potential for practical applications, including real-

time assessment of water quality and ecosystem management. However, future 

studies should explore the incorporation of more advanced machine learning techni-

ques, such as deep learning and ensemble methods, to further refine predictions and 

account for nonlinear relationships in complex environmental systems.  

In general, this research contributes to the growing body of knowledge on the 

application of data-driven approaches to environmental science, demonstrating that 

machine learning can be an efficient and cost-effective alternative to traditional 

monitoring techniques. 

This work was supported by the Science Committee of the MESCS RA, in the 

frames of the research project No. 21T-2H216. 
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կանխատեսելու համար։ Չնայած նրան, որ անցումային մետաղները անհրա-

ժեշտ են չնչին քանակությամբ, սակայն դրանք կարող են վնասակար ազդեցու-

թյուն ունենալ շրջակա միջավայրի վրա։ Կանխատեսման համար օգտագործվել 

են սեզոնային և աշխարհագրական պարամետրերը, ինչպես նաև հողում և 

ոռոգման ջրում մետաղների կոնցենտրացիաները։ Տվյալների նորմալացումն 

այս հետազոտության առանցքային փուլերից էր, որը ցույց է տվել իր արդյու-

նավետությունը՝ փոփոխականների միջև գծային կախվածության բացահայտ-

ման համար։ Մշակված գծային ռեգրեսիայի մոդելը ցույց է տվել բարձր 

ճշգրտություն․ դետերմինացիայի գործակիցը կազմել է 0,9945, միջին բացար-

ձակ սխալը՝ 0,1, իսկ միջին տոկոսային սխալը՝ 5,5%։ Այս արդյունքները 

հաստատում են առաջարկված մեթոդի կիրառելիությունը ջրի որակի մոնիտո-

րինգի, աղտոտման ռիսկերը գնահատելու և էկոհամակարգերում մարդածին 

ազդեցությամբ պայմանավորված հնարավոր սպառնալիքները վաղ փուլում 

բացահայտելու համար։ 
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ПРОГНОЗИРОВАНИE  КОНЦЕНТРАЦИОННОГО  ИЗМЕНЕНИЯ  

НЕКОТОРЫХ  ПЕРЕХОДНЫХ  МЕТАЛЛОВ  В  ЭКОСИСТЕМЕ  

ПОЧВА–ВОДА С ИСПОЛЬЗОВАНИЕМ  МАШИННОГО  ОБУЧЕНИЯ 

 

Р е з ю м е  

 

В статье обсуждается применимость методов машинного обучения с 

особым упором на линейную регрессию для прогнозирования общей концент-

рации переходных металлов в экосистеме почва–вода. Несмотря на то, что 

переходные металлы требуются в незначительных количествах, они потен-

циально могут оказывать пагубное воздействие на окружающую среду. Для 

прогнозирования были использованы сезонные и географические параметры, 

а также концентрации металлов в почве и оросительной воде. Ключевым 

направлением исследования была нормализация данных – процесс, который, 

как было показано, улучшает выявление линейных зависимостей между 

переменными. Разработанная модель линейной регрессии продемонстрировала 

высокую степень точности, о чем свидетельствуют коэффициент детермина-

ции 0,9945, средняя абсолютная погрешность 0,1 и средняя процентная 

погрешность 5,5%. Эти результаты подтверждают целесообразность использо-

вания предложенной методологии для мониторинга качества воды, оценки 

рисков загрязнения и выявления потенциальных угроз на ранней стадии в 

экосистемах, подвергшихся воздействию антропогенных факторов. 

 

 


