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PREDICTING CONCENTRATION CHANGE OF SOME TMS
IN SOIL-WATER ECOSYSTEM USING MACHINE LEARNING
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This article provides a discussion of the applicability of machine learning methods,
with a particular focus on linear regression, to predict the total concentration of
TMs in the soil-water ecosystem. Despite the requirement of only minute quantities,
TMs have the potential to exert a detrimental effect on the environment. For
prediction, seasonal and geographical parameters along with metal concentrations
in the soil and their irrigation water were used. A key focus of the study was the
normalization of data, a process that has been shown to improve the identification
of linear relationships between variables. The developed linear regression model
demonstrated a high degree of precision as evidenced by the coefficient of
determination 0.9945, the average absolute error of 0.1, and the average percentage
error of 5.5%. These findings substantiate the feasibility of employing the proposed
methodology to monitor water quality, evaluate pollution risks, and identify
potential threats at an early stage in ecosystems that anthropogenic factors have
been impacted.
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Introduction. Transition metals (TMs), also known as d-elements, are
distinguished by partially filled d-orbitals, a property that enables them to exhibit
varying degrees of oxidation. Despite the lack of synonymy between the terms
“heavy metals” and “transition metals”, it is evident that numerous d-elements
exhibit properties characteristic of heavy metals [1]. TMs represent a critical
category of elements that have been the subject of scientific concern due to their
environmental impact, particularly within soil-water systems used for irrigation [2].
Although these elements are essential in minimal quantities for living organisms,
their anthropogenic accumulation in soil and water leads to ecological imbalance,
which poses a serious threat to ecosystem sustainability [3]. The presence of TMs in
irrigation water has been shown to alter soil chemistry and fertility, as well as affect
plant physiology [4]. There is also a potential for human health to be affected by
bioaccumulation along the food chain [5]. The mobility and bioavailability of TMs
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in the soil-water ecosystem are influenced by various factors, including pH, organic
matter content, soil structure, oxidation-reduction potential and microbiological
activity [6].

Soil irrigation is particularly vulnerable to changes in the concentration of
transition metals [7]. A comprehensive understanding and reliable prediction of the
dynamics of these concentrations is imperative for the implementation of effective
prevention and recovery strategies for contaminated soil [8]. However, conventional
monitoring methodologies entail costly and time-consuming sampling and laborato-
ry analysis [9]. To address these limitations, recent research has increasingly focused
on the use of machine learning (ML) algorithms. These algorithms can analyze large
multidimensional datasets and identify hidden patterns, offering a promising
alternative to model the behaviour of TMs in complex ecological systems [10].
In particular, regression models, artificial neural networks (ANN), and collective
learning methods have demonstrated great potential in predicting metal
concentrations based on the physico-chemical parameters of soil and water [11-13].

The aim of the presented work is to investigate the dynamics of concentration
changes as well as the prediction of the total concentration of some TMs in the
soil-water ecosystem using advanced machine learning methods.

Materials and Methods. The concentrations of scandium (Sc), titanium (Ti),
vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni),
copper (Cu) and zinc (Zn) were measured in soil and irrigation water samples
collected during each season over a year. Samples were collected from several regions
of Armenia, including Hrazdan (cement plant territory), Gavar (Noratus community),
and Martuni (Yeranos community) from a depth of 20 cm using non-metallic
instruments in dry weather conditions. Instrumental measurements were conducted
within the laboratory setting in accordance with [14]. The standard 1SO 5667-1:2006
methodology was used for the collection of irrigation water samples. This method
describes the analysis of water samples during four different seasons. The elemental
analysis of all irrigation water samples was conducted using a portable Termo
Scientific™ Niton™ X-ray analyzer, which utilized direct X-ray radiation [15].
In modeling the relationship between transition metal concentrations in soil and
water samples, linear and multivariate regression were used according to [16].

Results and Discussion. Tabs. 1 and 2 present the concentrations of TMs
in soil and water samples from the designated locations in the four seasons.
The features are therefore the input variables that were used to predict the target
variable (“Water” in this case), which is defined as the total concentration of certain
metals in the water samples. Similarly, the “Soil” feature indicates the summed
concentration of the same or related metals in soil samples. The input features can
be categorized into two main groups: seasonal features (Autumn, Winter, Spring,
and Summer) that capture temporal variations in the presence of metal and
geographical features (Gavar, Martuni, and Hrazdan) that account for spatial
differences across various regions. The “Water” characteristic, which being the
output variable, is the primary focus of the analysis in terms of how it is influenced
by these input variables.

In our case, each element concentration in the soil had a different range and
magnitude. As a case in point, the range of iron concentrations can vary from 20 to
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40 g/kg, while cobalt concentrations can only range from 0 to 300 mg/kg. Absent
scaling, features with more expansive numeric ranges have the potential to exert an
undue influence over regression coefficients, a circumstance that may give rise to
the promulgation of a biased or misleading model. To address this challenge,
Min-Max normalization was implemented to scale all input features to a uniform
[0,1] range [17]:

norm __ xl - xi,min

Xi

Ximax — Xi,min l
The normalized data are presented in Tabs. 3 and 4.
Table 1

Concentrations of some transition metals in samples of mountain chernozem, mg/kg

Transition The territory of the Gavar, Nor_atus Martuni, Ye_ranos
metall Hrazdan Cement Plant community community
| 1 11 v | 11 11 v | 1 11 v
Sc 98.17 trace | 137.90 | 171.8 | 162.0 trace 173.5 166.5 | 177.65 131.1 213.25 | 1716
Ti 3550.80 | 3928.7 | 4115.33 |4050.15|4272.80 | 4065.35 | 3967.55 | 4650.7 | 3999.8 | 3239.80 | 3631.10 |4076.45
\ 124.87 | 125.93 | 153.10 | 131.2 | 130.55 | 128.25 | 121.85 | 122.8 | 116.55 | 104.55 | 114.65 | 115.25
Cr 97.73 | 102.33 | 138.50 | 118.9 | 113.30 | 146.25 | 127.20 | 109.9 | 135.30 | 111.95 | 129.00 | 131.95
Mn 849.07 | 858.6 | 799.10 | 401.8 | 819.65 | 810.90 | 792.50 | 780.8 | 737.40 | 776.05 | 725.30 | 741.5
Fe 29633.10(29432.4|29639.13| 20903.4 | 38515.0|36379.35|36027.95 | 37116.6 | 31548.45|29325.95|31199.50 | 30847.7
Co 84.0 trace trace | 162.2 | 137.0 | 280.05 | 93.70 | 216.55| 78.80 | 139.80 | 138.10 | 182.7
Ni 62.0 65.77 | 65.80 64.2 | 80.70 | 84.25 | 86.65 | 81.65 57.0 84.25 65.20 | 76.85
Cu 85.10 58.47 67.30 7158 | 84.40 69.95 65.45 69.8 71.80 58.65 53.60 54.45
Zn 99.27 | 109.97 | 118.13 | 116.9 | 87.50 | 126.50 | 89.50 90.1 85.45 98.60 | 85.40 83.2
Table 2
Concentrations of some transition metals in water samples near mountain chernozem, mg/L
. The territory of the Gavar, Noratus Martuni, Yeranos
Transition - .
metall Hrazdan Cement Plant community community
| 1 11 v | 1 11 v | 1 11 [\
Sc 0.09 0.11 0.18 0.078 | 0.09 0.04 0.09 0.043 0.04 - 0.06 0.048
Ti 0.09 0.51 1.46 0.106 0.03 0.04 Trace 0.055 trace - trace 0.021
\ 0.003 | 0.02 0.04 0.007 | 0.03 0.02 0.03 0.020 | 0.001 - 0.004 | trace
Cr trace trace 0.05 0.003 | trace 0.01 0.02 0.007 trace - 0.03 trace
Mn 0.09 0.07 0.18 - 0.02 0.01 trace trace trace - trace trace
Fe 1.06 3.63 13.91 | 1.318 | 0.65 0.91 0.39 1.280 0.14 - 0.24 0.284
Co trace trace trace trace trace | trace trace trace trace - trace trace
Ni trace trace trace trace trace | trace trace trace trace - trace trace
Cu 0.07 0.04 0.07 0.019 0.02 0.07 0.02 trace 0.012 - 0.02 0.013
Zn 0.07 0.05 0.09 0.023 | 0.02 0.12 0.02 0.012 | 0.007 - 0.01 0.011
Table 3
Normalized values of some transition metals in samples of mountain chernozems
Transition The territory of the Gavar, Noratus Martuni, Yeranos
metall Hrazdan Cement Plant community community
| 1 11 v | 1 11 v | 1 1] v
Sc 0.46 0.00 0.65 0.81 0.76 0.00 0.81 0.78 0.83 0.61 1.00 0.80
Ti 0.22 0.49 0.62 0.57 0.73 0.59 0.52 1.00 0.54 0.00 0.28 0.59
\Y 0.42 0.44 1.00 0.55 0.54 0.49 0.36 0.38 0.25 0.00 0.21 0.22
Cr 0.00 0.09 0.84 0.44 0.32 1.00 0.61 0.25 0.77 0.29 0.64 0.71
Mn 0.98 1.00 0.87 0.00 0.91 0.90 0.86 0.83 0.73 0.82 0.71 0.74
Fe 0.50 0.48 0.50 0.00 1.00 0.88 0.86 0.92 0.60 0.48 0.58 0.56
Co 0.30 0.00 0.00 0.58 0.49 1.00 0.33 0.77 0.28 0.50 0.49 0.65
Ni 0.17 0.30 0.30 0.24 0.80 0.92 1.00 0.83 0.00 0.92 0.28 0.67
Cu 1.00 0.15 0.43 0.57 0.98 0.52 0.38 0.51 0.58 0.16 0.00 0.12
Zn 0.37 0.62 0.81 0.78 0.10 1.00 0.15 0.16 0.05 0.36 0.05 0.00
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Table 4

Normalized values of some transition metals in water samples near mountain chernozems

Transition The territory of the Gavar, Nor_atus Martuni, Ye_ranos
metall Hrazdan Cement Plant community community
| 1] 1l v | 1l 1 v | 1 1] \%
Sc 0.50 0.61 1.00 0.44 0.50 0.22 0.50 0.22 0.22 0.00 0.33 0.28
Ti 0.06 0.35 1.00 0.07 0.02 0.03 0.00 0.04 0.00 0.00 0.00 0.01
\ 0.00 0.50 1.00 0.25 0.75 0.50 0.75 0.50 0.00 0.00 0.00 0.00
Cr 0.00 0.00 1.00 0.00 0.00 0.20 0.40 0.20 0.00 0.00 0.60 0.00
Mn 0.50 0.39 1.00 0.00 0.11 0.06 0.00 0.00 0.00 0.00 0.00 0.00
Fe 0.08 0.26 1.00 0.09 0.05 0.07 0.03 0.09 0.01 0.00 0.02 0.02
Co 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Ni 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Cu 1.00 0.57 1.00 0.29 0.29 1.00 0.29 0.00 0.14 0.00 0.29 0.14
Zn 0.58 0.42 0.75 0.17 0.17 1.00 0.17 0.08 0.08 0.00 0.08 0.08

To evaluate the impact of normalization, a comparison was made between the
Pearson correlation coefficients between the concentrations of soil metals and the
total concentrations of metal present in water before and after the normalization
process [18]. The results of this study are demonstrated in Figs. 1 and 2 below.

Water

Fall 0.18 -0.21

er -0.03 -0.07 -0.33
Spring 0.06 0.44 -0.33 -0.33
Summer -0.22 -0.17 -0.33 -0.33 -0.33
Hrazdan -0.65 0.58 0.00 0.00 0.00 0.00
Gavar 0.83 -0.22 0.00 0.00 0.00 0.00
Martuni -0.18 -0.36 0.00 0.00 0.00 0.00

Soil Water Fall Winter Spring Summer Hrazdan | Gavar Martuni

Fig. 1. Correlation matrix before normalization.

Water
Fall 0.00 -0.13

Winter -0.12 -0.02 -0.33

Spring 0.07 0.48 -0.33 -0.33
Summer 0.06 -0.32 -0.33 -0.33 -0.33
Hrazdan -0.38 0.58 0.00 0.00 0.00 0.00

Gavar 0.83 -0.02 0.00 0.00 0.00 0.00
Martuni —0.45 —0.56 0.00 0.00 0.00 0.00 . —0.50
Soil Water Fall Winter Spring Summer Hrazdan | Gavar Martuni

Fig. 2. Correlation matrix after normalization.

The matrices illustrate the linear relationship between each input feature and
“Water”. In this context, normalization refers to the process of scaling the input data,
so that disparate variables can be analyzed comparatively on an equal footing,
particularly when their raw values are expressed in different units or ranges.

A significant insight derived from these matrices is that specific relationships
experience substantial enhancement after normalization. For example, Spring
consistently shows a positive correlation with water TMs concentrations, suggesting
that seasonal processes — such as snowmelt or increased surface runoff — are major
contributors to metal transport into water bodies during this period. In contrast,
Summer has been observed to exhibit a negative correlation, attributable to reduced
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runoff and elevated evaporation rates. Among the geographical features, one location
reveals a notably strong positive correlation with “Water” in both matrices,
indicating persistent regional factors influencing metal presence, such as geological
composition or local industrial activity.

Further quantifies how these relationships change due to normalization
(Fig. 3) as the difference matrix, highlighting the increase or decrease in correlation
values between features and the target variable after normalization. A particularly
significant change is observed in the correlation between “Soil”” and “Water”, which
increases by +0.45, increasing from —0.16 to 0.29. This shift underscores the impact
of normalization in revealing a more accurate linear relationship between soil and
water metal concentrations — two variables expected to be intrinsically connected in
natural systems. Other features, such as “Martuni” and “Gavar”, also show changes
in their relationships with “Water”, but the magnitude is less pronounced.
Interestingly, while the strength of some correlations increases, others show a slight
decrease, reflecting the nuanced effects of normalization on different feature types
(such as Summer).

Water 0.45
Fall -0.19 0.08

Winter -0.09 0.05 0.00

Spring 0.01 0.03 0.00 0.00
Summer 0.27 -0.16 0.00 0.00 0.00
Hrazdan 0.27 0.00 0.00 0.00 0.00 0.00

Gavar 0.00 0.20 0.00 0.00 0.00 0.00

Martuni -0.27 -0.20 0.00 0.00 0.00 0.00 0.00 0.00

Soil Water Fall Winter Spring Summer Hrazdan \ Gavar Martuni

Fig. 3. Normalized and original data correlation difference matrix.

Overall, the improved correlations after normalization suggest that this
preprocessing step improves the clarity of the linear relationships in the data set.
It makes the features more comparable, reduces the bias caused by scale differences,
and ultimately contributes to more effective regression modelling. This is
particularly important in environmental studies, where multivariate influences, such
as seasonal cycles and regional soil properties, interact to affect outcomes such as
water quality. By improving the internal consistency of the data, normalization
increases the reliability of predictive models and supports more accurate
interpretations of environmental interactions.

As shown in the correlation analysis, many of the input features, in particular
“Soil” and several seasonal indicators, have approximately linear relationships
with the target variable. Linear regression is a well-established method for
quantifying such relationships, offering interpretability, computational efficiency,
and robustness in situations, where linearity is present [19]. In addition, the
normalization process further improves the suitability of the data for linear modelling
by aligning feature scales and enhancing linear patterns. These factors make linear
regression a logical and effective choice for modelling metal concentrations in water
based on environmental and spatial indicators. The relationship between metal
concentrations in soil and total metal concentrations in water can be modelled using
a linear regression approach:
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n

— E norm

Cwater - ﬁo + ﬁi Xi ’
i=1

where n is the number of metal types (in our case n = 10); S, is the intercept of the
model; ; is the weight (coefficient) of each input feature x°™ ; x'°™™ is the
normalized concentration of the i-th metal in the soil. Normalization is a crucial
preprocessing step in regression modeling, particularly when input features
(predictors) vary in scale or unit.

The final regression model is formulated follows:

n
Xi — Ximin

Cwater = ﬂo + [))i o _ .

— Ximax — Xi,min

=1
where x; is the original concentration of the i-th metal in the soil; x; nax and x; min
are the maximum and minimum observed values for that metal in the soil data set.

The learned coefficients and intercepts of the model, which define the impact

of soil metal concentration, are summarized in Tab. 5.

Table 5
Model coefficients
N Coefficients, Value
1. Intercept —4.3892
2. Sc—Soil 1.7642
3. Ti—Soil —1.1038
4. V-Soil 7.2705
5. Cr—Soil 0.1539
6. Mn-Soil 4.1672
7. Fe—Soil —0.6444
8. Co—Soil 0.0174
9. Ni—Soil -0.2106
10. Cu—Soil -1.1616
11. Zn—Soil 1.9906

The effectiveness of the linear regression model is further evaluated using four
common error metrics: Mean Absolute Error (MAE), Mean Squared Error (MSE),
Root Mean Squared Error (RMSE), and the coefficient of determination (R?).
As shown in Tab. 6, the model achieves an MAE of 0.1, meaning that, on average,
the predicted total metal concentration in water deviates from the actual values by
only 0.1 units. The MSE and RMSE values are 0.02 and 0.14, respectively — both
relatively low, indicating that large prediction errors are rare and that the model
maintains a good overall fit.

Table 6

Error metrics

MAE MSE RMSE R?
0.1 0.02 0.14 0.9945
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In particular, the R? score is 0.9945, which implies that the model explains
more than 99% of the variance in the target variable. This exceptionally high R? value
confirms that the model captures the underlying relationships between soil metal
concentrations and water metal concentration with great accuracy.

Together, these metrics demonstrate that the linear regression model is not
only interpretable and efficient but also highly reliable in predicting metal
concentration levels in water based on the given set of input features. This level of
performance makes the model suitable for practical applications, such as
environmental monitoring and early-warning systems for water contamination.

To further assess the accuracy of the model, trained regression models are
used to predict water metal concentrations using the same data set. The actual values,
predicted values, and absolute errors are displayed in Tab. 7 for each metal.

Table 7
Predicted values of total metal concentrations in water
Actual Predicted Absolute Error percent
concentration concentration error from actual value

2.721181 2.530304 0.190877 7.0%
3.098374 3.132100 0.033726 1.1%
7.750000 7.809350 0.059350 0.8%
1.317064 1.301301 0.015762 1.2%
1.880769 2.155323 0.274554 14.6%
3.070596 3.045271 0.025325 0.8%
2.130418 1.819638 0.310781 14.6%
1.138672 1.078421 0.060251 5.3%
0.458477 0.511329 0.052851 11.5%
0.000000 0.183271 0.183271 -

1.319635 1.306441 0.013194 1.0%
0.537796 0.550233 0.012437 2.3%

To further evaluate the predictive performance of the model at individual data
points, Tab. 7 compares the actual metal concentrations in water with the predicted
values produced by the linear regression model. In addition to these, the table lists
the absolute error and the percentage error relative to the actual value for each
instance. The absolute error represents the direct difference between the actual and
predicted values. Lower values indicate that the model predictions are closer to the
true concentrations. Most absolute errors in the table are small, often below 0.1,
which reflects strong prediction accuracy. The percentage of error from the actual
value provides a normalized view of these errors, making it easier to compare across
samples of different magnitudes. In this data set, the majority of percentage errors
are impressively low. Several instances show errors below 2%, with many below 1%,
indicating that the model can accurately replicate observed water metal concent-
rations even at different concentration scales. There are a few samples with relatively
higher errors (e.g., 14.6%), but these are likely influenced by outliers or edge cases
where input features may not fully capture variability in water metal concentration.
Despite these, the average error across the dataset is just 5.5%, which is a very strong
result in environmental modeling, particularly for systems as complex and variable
as soil-to-water metal transfer. This detailed comparison confirms that the model not
only performs well on average metrics like MAE and R?, but also maintains high
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accuracy at the individual prediction level — making it suitable for both overall trend
analysis and practical environmental decision-making.

The absolute error provides insight into the deviation between the actual and
predicted values. A lower value indicates a better fit to the model. The average error
is 5.5%, which is a real good result for the metal—water system.

The analysis, including data calculations, preprocessing, normalization, and
training and evaluation of the linear regression model, was conducted in the Python
environment using scikit-learn for machine learning workflows and stats models for
statistical analysis and inference.

Conclusion. The results suggest that linear regression can serve as a reliable
tool for environmental monitoring, allowing early detection of pollution risks and
aiding in the formulation of mitigation strategies. Given the robustness and precision
of the model, it has significant potential for practical applications, including real-
time assessment of water quality and ecosystem management. However, future
studies should explore the incorporation of more advanced machine learning techni-
ques, such as deep learning and ensemble methods, to further refine predictions and
account for nonlinear relationships in complex environmental systems.

In general, this research contributes to the growing body of knowledge on the
application of data-driven approaches to environmental science, demonstrating that
machine learning can be an efficient and cost-effective alternative to traditional
monitoring techniques.

This work was supported by the Science Committee of the MESCS RA, in the
frames of the research project No. 21T-2H216.
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Juijiuntiutne hwdwn: Quuywd tpuil, np wignidwyhtt tknwnittipp wthpu-
dtipm kb sbisht pubwnipyudp, vwljuwyl npubp Jupnn b Jhwuwljup wgntigni -
eynLh nLbbbuy ppwijun thpwjuyph Yypu: Guihiuwmnbudwd huniwip oquugnndyy
Ll utigniuyhtt L wphmuphwgpujut Wuipudtimptipp, hbsytu twle hnnnid
nongiwh opnid dtmwntitiph Ynbghitinpughwbtipp: Syjujitiph tnpdwpugnida
wju httmwgnunipjub wnwbgpwyhtt thnijtphg tp, npp gnyg £ wyb) hp wpngni -
tuwtnnipyniip” thnthnhuwjuitititiph thelt gouyhtt juipjudnm pyul puguwhuwjwn-
dwh hwdwp: Upulpud qduyhlt ntigpntuhuyh dnnbjp gnyg L wygty pwpap
tognunipnih. nhimtpdihtwghugh gnpdwjhgp Juquky k 0,9945, Whehti puugwp-
awl uppwyp® 0,1, hull dhohtt wnynuuyhtt uhawp® 5,5%: Wu wprynibpbtipn
hwunmwnnid G wnwewpyud dhpennh jhpwntjhnieniap oph npujh intthwn-
nhbogh, wnununiwd nhuljtinp qwhwmbnt b Eynhwdwljupgbipnid dwupnuohi
wgnbtgnipyudp yuydwbwynpjuwd htwpuynp vypunbwhpbtipp Jun thnynid
pugwhwyntint hwdwn:

A.P. CYKUACISH, I1. A. ECASH, 3. T. XAHAMMWPSH, A. A. KUPAKOCSH

I[MPOTHO3MPOBAHUE KOHLUEHTPALIMOHHOI'O U3MEHEHUA
HEKOTOPBIX ITEPEXOAHBIX METAJIJIOB B 5KOCUCTEME
[NOYBA-BOJIA C CITOJIbB3OBAHUEM MAIINHHOI'O OBYYEHUA

Pe3smome

B crarbe oOcyxmaercs MPUMEHHMMOCTh METOJOB MAIIMHHOTO OOYYEHHS C
0COOBIM YITOPOM Ha JIMHEHHYIO PErPECCHIO JIJIS POTHO3MPOBAHUS OOIICH KOHIICHT-
paly NepexoHbIX METAJIOB B 3KOCHUCTEME MouBa—Boja. HecMoTps Ha TO, 4TO
MIEPEXOTHBIC METAJUTBI TPEOYIOTCS B HE3HAUMTENHHBIX KOJIMYECTBaX, OHHM ITOTEH-
[IMaJTBFHO MOTYT OKa3bIBaTh MaryOHOE BO3JICHCTBHE Ha OKPYXKAIONIyIO0 cpemy. Jis
MPOTHO3MPOBAHMsI OBUTH UCIIONB30BAHbBI CE30HHBIE U TeorpaduiecKkue napamerpel,
a Tak)Ke KOHIIEHTpPAIMM METAIUIOB B II0YBE M OPOCHUTENBHON Boze. KiroueBbIM
HampaBJIeHUEM WCCIIEAOBaHUs ObllIa HOPMaTU3aIs JaHHBIX — IIPOIIECC, KOTOPBIH,
KakK GBIJ'IO IMOKa3aHoO, YJIYy4IIacT BBIABICHUC JIUHEWHBIX 3aBHUCHMOCTEN MCXKOY
nepeMeHHbIMU. Pa3paboTaHHas MOAETh IMHEWHOW PETPecCHH MPOAEMOHCTPUpOBAlia
BBICOKYIO CTEIIEHb TOYHOCTH, O YeM CBUJECTEIHCTBYIOT KO3I(PPUIMEHT AeTEPMHUHA-
mnn 0,9945, cpemusis abcomtotHast morpemHOocTh 0,1 W cpemHss TpOIEHTHAs
MOTPENTHOCTE 5,5%. DTH pe3yabTaThl IOATBEPKIAOT I1eJIeCO00Pa3HOCTH UCITOIB30-
BaHUS TPEUIOKECHHON METOMOJIOTHH JII MOHHTOPHUHIA KauecTBa BOJIbI, OICHKH
PUCKOB 3arpsi3HEHUS] U BBIABICHHUS TMOTEHIMAIBHBIX YIpO3 HA paHHEH CTaguu B
JKOCHCTEMAX, TIOJIBEPTIIHXCS BO3JICHCTBHIO aHTPOIIOTCHHBIX (DaKTOPOB.



