ON INTERPRETATION OF TYPED AND UNTYPED FUNCTIONAL PROGRAMS

S. A. NIGIYAN

Chair of Programming and Information Technologies YSU, Armenia

In this paper the interpretation algorithms for typed and untyped functional programs are considered. Typed functional programs use variables of any order and constants of order \(\leq 1 \), where constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. The basic semantics of the typed functional program is a function with indeterminate values of arguments, which is the main component of its least solution. The interpretation algorithms of typed functional programs are based on substitutions, \(\beta \)-reduction and canonical \(\delta \)-reduction. The basic semantics of the untyped functional program is the untyped \(\lambda \)-term, which is defined by means of the fixed point combinator. The interpretation algorithms of untyped functional programs are based on substitutions and \(\beta \)-reduction. Interpretation algorithms are examined for completeness and comparability. It is investigated how the “behavior” of the interpretation algorithm changes after translation of typed functional program into untyped functional program.

Keywords: typed functional program, untyped functional program, basic semantics, interpretation algorithm, completeness, comparability, translation.

Introduction. The paper is devoted to typed and untyped functional programs. A typed functional program is a system of equations (with separating variables) in the monotonic models of typed \(\lambda \)-calculus. Typed functional programs use variables of any order and constants of order \(\leq 1 \), where constants of order 1 are strongly computable functions with indeterminate values of arguments. The basic semantics of the typed functional program is a function with indeterminate values of arguments, which is the main component of its least solution (see [1–5]). The interpretation algorithms of typed functional programs are based on substitutions, \(\beta \)-reduction and canonical \(\delta \)-reduction [6]. An untyped functional program is a system of equations (with separating variables) in the untyped \(\lambda \)-calculus. The basic semantics of the untyped functional program is the untyped \(\lambda \)-term, which is defined by means of the

* E-mail: nigiyan@ysu.am
The interpretation algorithms of untyped functional programs are based on substitutions and β-reduction. In [5] an algorithm that translates the typed functional program \(P \) into the untyped functional program \(P' \) is suggested. It is proved that the basic semantics of the program \(P' \) λ-defines the basic semantics of the program \(P \). For typed and untyped functional programs, the four classical interpretation algorithms are examined for completeness and comparability. Those algorithms are the followings: FSRNF (algorithm of full substitution and reduction to the normal form); ACT (active algorithm); PAS (passive algorithm).

It is investigated how the “behavior” of these interpretation algorithms changes after the translation of typed functional program \(P \) into untyped functional program \(P' \).

Interpretation of Typed Functional Programs. The definitions of this section can be found in [1–6]. A partially ordered set is said to be complete, if each of its linear ordered subsets has the least upper bound. It is easy to see that every complete set has the least element. Let \(A, B \) be nonempty partially ordered sets. A mapping \(\varphi : A \rightarrow B \) is said to be monotonic, if \(a \leq b \) implies \(\varphi(a) \leq \varphi(b) \) for all \(a, b \in A \) \((\leq \) is the symbol of partial ordering relation).

Let \(M \) be a partially ordered set, which has an element \(\bot \), which corresponds to the indeterminate value. Each element of \(M \) is comparable only with itself and with \(\bot \), which is the least element of \(M \). Let us define the set of types (denoted by \(\text{Types} \)).

1. \(M \in \text{Types} \);
2. If \(\beta, \alpha_1, \ldots, \alpha_k \in \text{Types} \) \((k > 0)\), then the set of all monotonic mappings from \(\alpha_1 \times \ldots \times \alpha_k \) into \(\beta \) (denoted by \([\alpha_1 \times \ldots \times \alpha_k \rightarrow \beta] \)) belongs to \(\text{Types} \).

Let \(\alpha \in \text{Types} \), then the order of type \(\alpha \) (denoted by \(\text{ord}(\alpha) \)) will be a natural number, which is defined in the following way: if \(\alpha = M \), then \(\text{ord}(\alpha) = 0 \), if \(\alpha = [\alpha_1 \times \ldots \times \alpha_k \rightarrow \beta] \), \(\beta, \alpha_1, \ldots, \alpha_k \in \text{Types} \), \(k > 0 \), then \(\text{ord}(\alpha) = 1 + \max(\text{ord}(\alpha_1), \ldots, \text{ord}(\alpha_k), \text{ord}(\beta)) \). If \(x \) is a variable of type \(\alpha \) and a constant \(c \in \alpha \), then \(\text{ord}(x) = \text{ord}(c) = \text{ord}(\alpha) \). Every type \(\alpha \in \text{Types} \) is a complete set (see [1]).

Let \(\alpha \in \text{Types} \) and \(V^T_\alpha \) be a countable set of variables of type \(\alpha \), then

\[
V^T = \bigcup_{\alpha \in \text{Types}} V^T_\alpha
\]

is the set of all variables. The set of all terms, denoted by

\[
\Lambda^T = \bigcup_{\alpha \in \text{Types}} \Lambda^T_\alpha
\]

where \(\Lambda^T_\alpha \) is the set of terms of type \(\alpha \), is defined by:

1. If \(c \in \alpha, \alpha \in \text{Types} \), then \(c \in \Lambda^T_\alpha \);
2. If \(x \in V^T_\alpha, \alpha \in \text{Types} \), then \(x \in \Lambda^T_\alpha \);
3. If \(\tau \in \Lambda^T_{[\alpha_1 \times \ldots \times \alpha_k \rightarrow \beta]}, t_i \in \Lambda^T_{\alpha_i}, \beta, \alpha_i \in \text{Types}, i = 1, \ldots, k, k \geq 1 \), then \(\tau(t_1, \ldots, t_k) \in \Lambda^T_\beta \) (the operation of application);
4. If \(\tau \in \Lambda^T_{\beta}, x_i \in V^T_{\alpha_i}, \beta, \alpha_i \in \text{Types}, i \neq j \Rightarrow x_i \neq x_j, i, j = 1, \ldots, k, k \geq 1 \), then \(\lambda x_1 \ldots x_k[\tau] \in \Lambda^T_{[\alpha_1 \times \ldots \times \alpha_k \rightarrow \beta]} \) (the operation of abstraction).

The notions of free and bound occurrences of variables in terms as well as the notion of a free variable are introduced in the conventional way. The set of all free variables of a term \(t \) is denoted by \(\text{FV}(t) \). A term, which does not contain free
variables is called a closed term. Terms t_1 and t_2 are said to be congruent (which is denoted by $t_1 \equiv t_2$), if one term can be obtained from the other by renaming bound variables. In what follows, congurent terms are considered identical.

Let $t \in \Lambda_T^\alpha$, $\alpha \in \text{Types}$ and $FV(t) \subset \{y_1, \ldots, y_n\}$, $\bar{y}_0 = (\bar{y}_0^0, \ldots, \bar{y}_0^n)$, where $y_i \in V_\beta^T$, $y_i^0 \in \beta_i$, $\beta_i \in \text{Types}$, $i = 1, \ldots, n$, $n \geq 0$. The value of the term t for the values of the variables y_1, \ldots, y_n equal to $\bar{y}_0 = (\bar{y}_0^0, \ldots, \bar{y}_0^n)$ is denoted by $\text{Val}_{\bar{y}_0}(t)$ and is defined in the conventional way (see [1]). It follows from [1], that for any $\bar{y}_0 = \langle y_0^0, \ldots, y_0^n \rangle$ and $\bar{y}_1 = \langle y_1^0, \ldots, y_1^n \rangle$ such that $\bar{y}_0 \sqsubseteq \bar{y}_1$, where $y_i^0, y_i^1 \in \beta_i$ ($1 \leq i \leq n$), we have the following: $\text{Val}_{\bar{y}_0}(t) \in \alpha$ and $\text{Val}_{\bar{y}_1}(t) \sqsubseteq \text{Val}_{\bar{y}_0}(t)$.

Let terms $t_1, t_2 \in \Lambda_T^\alpha$, $\alpha \in \text{Types}$, $FV(t_1) \cup FV(t_2) = \{y_1, \ldots, y_n\}$, $y_i \in V_\beta^T$, $\beta_i \in \text{Types}$, $i = 1, \ldots, n$, $n \geq 0$, then terms t_1 and t_2 are called equivalent (denoted by $t_1 \sim t_2$), if for any $\bar{y}_0 = (\bar{y}_0^0, \ldots, \bar{y}_0^n)$, where $y_i^0 \in \beta_i$, $i = 1, \ldots, n$, we have: $\text{Val}_{\bar{y}_0}(t_1) = \text{Val}_{\bar{y}_0}(t_2)$. A term $t \in \Lambda_T^\alpha, \alpha \in \text{Types}$, is called a constant term with value $a \in \alpha$ if $t \sim a$.

To show mututally different variables of interest $x_1, \ldots, x_k, k \geq 1$, of a term t, the notation $t[x_1, \ldots, x_k]$ is used. The notation $t[t_1, \ldots, t_k]$ denotes the term obtained by the simultaneous substitution of the terms t_1, \ldots, t_k for all free occurrences of the variables x_1, \ldots, x_k respectively, where $x_i \in V_\alpha^T$, $i \neq j \Rightarrow x_i \neq x_j$, $t_i \in \Lambda_\alpha^\alpha$, $\alpha_i \in \text{Types}$, $i, j = 1, \ldots, k$, $k \geq 1$. A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term $t \in \Lambda_T$ with a fixed occurrence of a subterm $t_1 \in \Lambda_T^\alpha$, where $\alpha \in \text{Types}$, is denoted by t_{t_1}, and a term with this occurrence of τ_1 replaced by τ_2, where $\tau_2 \in \Lambda_T^\alpha$, is denoted by t_{t_2}.

Further, we assume that M is a recursive set and considered types use variables of any order and constants of order ≤ 1, where constants of order 1 are strongly computable, monotonic functions with indeterminate values of arguments. A function $f : M^k \rightarrow M, k \geq 1$, with indeterminate values of arguments is said to be strongly computable, if there exists an algorithm, which stops with value $f(m_1, \ldots, m_k)$ for all $m_1, \ldots, m_k \in M$ (see [5,6]). Suppose that each strongly computable function with indeterminate values of arguments is given by its algorithm. Hereafter, all such terms will be denoted by Λ_T and all such terms of type α will be denoted by Λ_T^α.

A term of the form $\lambda x_1, \ldots, x_k[\tau[x_1, \ldots, x_k]](t_1, \ldots, t_k)$, where $x_i \in V_\alpha^T$, $i \neq j \Rightarrow x_i \neq x_j$, $\tau \in \Lambda_T$, $t_i \in \Lambda_\alpha^\alpha$, $\alpha_i \in \text{Types}$, $i, j = 1, \ldots, k$, $k \geq 1$, is called a β-redex, its convolution is the term $\tau[t_1, \ldots, t_k]$. A one-step β-reduction (\$\beta\$) and β-reduction (\$\rightarrow_\beta\$) are defined in the conventional way (see [5,6]). A term containing no β-redexes is called a β-normal form. The set of all β-normal forms is denoted by $\beta \cdot NF_T$.

δ-redex has a form $f(t_1, \ldots, t_k)$, where $f \in [M^k \rightarrow M]$, $t_i \in \Lambda_M^T$, $i = 1, \ldots, k$, $k \geq 1$, its convolution is either $m \in M$ and in this case $f(t_1, \ldots, t_k) \sim m$ or a subterm t_i and in this case $f(t_1, \ldots, t_k) \sim t_i, 1 \leq i \leq k$. A one-step δ-reduction (\$\delta\$) and δ-reduction (\$\rightarrow_\delta\$) are defined in the conventional way (see [5,6]). A term containing no δ-redexes is called a δ-normal form.
A one-step $\beta\delta$-reduction ($\rightarrow_{\beta\delta}$) and $\beta\delta$-reduction($\rightarrow_{\beta\delta}$) are defined in the conventional way (see [5]6). It follows from [9], that if $t_1 \rightarrow_{\beta\delta} t_2$, then $t_1 \sim t_2$, where $t_1, t_2 \in \Lambda^T$, $\alpha \in \text{Types}$. A term containing no $\beta\delta$-redexes is called a normal form. The set of all normal forms is denoted by NFT. For every term $t \in \Lambda$ there exists a term $\tau \in NFT^T$ such that $t \rightarrow_{\beta\delta} \tau$ (see [9]).

A notion of δ-reduction is called a single-valued notion of δ-reduction, if δ is a single-valued relation, i.e. if $\langle t_0, \tau_1 \rangle \in \delta$ and $\langle t_0, \tau_2 \rangle \in \delta$, then $\tau_1 \equiv \tau_2$, where $t_0, \tau_1, \tau_2 \in \Lambda^T$.

A notion of δ-reduction is called an effective notion of δ-reduction, if there exists an algorithm, which for any term $f(t_1, \ldots, t_k)$, where $f \in [M^k \rightarrow M]$, $t_i \in \Lambda^T$, $i = 1, \ldots, k$, $k \geq 1$, gives its convolution if $f(t_1, \ldots, t_k)$ is a δ-redex and stops with a negative answer otherwise.

Definition 1 [6]. An effective, single-valued notion of δ-reduction is called a canonical notion of δ-reduction, if:

1. $t \in \beta - NFT$, $t \sim m$, $m \in M \setminus \{\bot\} \Rightarrow t \rightarrow_{\delta} m$;
2. $t \in \beta - NFT$, $\text{FV}(t) = \emptyset$, $t \sim \bot \Rightarrow t \rightarrow_{\delta} \bot$.

In [6] it was proved, that for every recursive set of strongly computable, monotonic functions with indeterminate values of arguments, there exists a canonical notion of δ-reduction. Further, we will only use the canonical notion of δ-reduction.

Typed functional program P is the following system of equations:

$$F_1 = t_1[F_1, \ldots, F_n],$$
$$\ldots$$
$$F_n = t_n[F_1, \ldots, F_n],$$

where $F_i \in V_\alpha^T$, $i \neq j \Rightarrow F_i \neq F_j$, $t_i[F_1, \ldots, F_n] \in \Lambda^T$, $\text{FV}(t_i[F_1, \ldots, F_n]) \subset \{F_1, \ldots, F_n\}$, $\alpha_i \in \text{Types}$, $i, j = 1, \ldots, n$, $n \geq 1$, $\alpha_i = [M^k \rightarrow M]$, $k \geq 1$.

We consider the mapping $\Psi_P : \alpha_1 \times \ldots \times \alpha_n \rightarrow \alpha_1 \times \ldots \times \alpha_n$, which is defined as follows: if $\bar{g} = \langle g_1, \ldots, g_n \rangle$, where $g_i \in \alpha_i$, $i = 1, \ldots, n$, then $\Psi_P(\bar{g}) = \langle \text{Val}_\bar{g}(t_1[F_1, \ldots, F_n]), \ldots, \text{Val}_\bar{g}(t_n[F_1, \ldots, F_n]) \rangle$. \bar{g} is said to be a solution of the program P, if $\Psi_P(\bar{g}) = \bar{g}$, i.e. $\langle \text{Val}_\bar{g}(t_1[F_1, \ldots, F_n]), \ldots, \text{Val}_\bar{g}(t_n[F_1, \ldots, F_n]) \rangle = \langle g_1, \ldots, g_n \rangle$. Every typed functional program P has a least solution (see [1]). Let $(f_1, \ldots, f_n) \in \alpha_1 \times \ldots \times \alpha_n$ be the least solution of P, then the first component $f_1 \in [M^k \rightarrow M]$ of the least solution is said to be the basic semantics of the program P and is denoted by f_P. Fix $(P) = \{(m_1, \ldots, m_k, m) | f_P(m_1, \ldots, m_k) = m, m, m_1, \ldots, m_k \in M, k \geq 1\}$.

Theorem 1 (on basic semantics of typed functional programs). Let $f_P \in [M^k \rightarrow M]$, $k \geq 1$, be the basic semantics of a typed functional program P of the form (1), then for all $m_1, \ldots, m_k \in M$ we have:

$$f_P(m_1, \ldots, m_k) = \sup\{\Psi_P^\alpha(\bar{\Omega})(m_1, \ldots, m_k) | s < \omega\},$$

where $\bar{\Omega}$ is the least element of the set $\alpha_1 \times \ldots \times \alpha_n$, $\Psi_P^\alpha(\bar{\Omega}) = \bar{\Omega}$, $\Psi_P^{\alpha+1}(\bar{\Omega}) = \Psi_P(\Psi_P^\alpha(\bar{\Omega}))$ and $\Psi_P^\alpha(\bar{\Omega})_1$ is the first component of the $\Psi_P^\alpha(\bar{\Omega})$, $s < \omega$, ω is the ordinal corresponding to the set of natural numbers.

Proof. Proof follows from [2].
Theorem 2 (on substitutions for typed functional programs) [5]. Let $f_P \in [M^k \to M]$, $k \geq 1$, be the basic semantics of a typed functional program P of the form β-reduction, then for all $m_1, \ldots, m_k \in M$ we have: $f_P(m_1, \ldots, m_k) = m \neq \bot \iff \exists s \geq 1. t_s^i[F_1, \ldots, F_n](m_1, \ldots, m_k) \to^{\beta_\delta} m \neq \bot$, where $t_s^0[F_1, \ldots, F_n] = F_i$, $t_s^j[F_1, \ldots, F_n] = t_s[t_s^{-1}][F_1, \ldots, F_n]$, $r \geq 1$, $i = 1, \ldots, n$, $n \geq 1$.

Interpretation Algorithms. The input of the interpretation algorithm A is a program P of the form (1), a term $t \in \Lambda_T$, and a canonical notion of δ-reduction. Algorithm A stops with result $A(P, t) \in NF^T$, $FV(A(P, t)) \cap \{F_1, \ldots, F_n\} = \emptyset$ or works infinitely. Algorithm A uses three kinds of operations:

1. substitution of the terms t_1, \ldots, t_n instead of some free occurrences of the variables F_1, \ldots, F_n;
2. one-step β-reduction;
3. one-step δ-reduction.

$Proc_A(P) = \{ (m_1, \ldots, m_k, m) \}$ algorithm A stops for program P and term $F_1(m_1, \ldots, m_k)$ with a result m, where $m, m_1, \ldots, m_k \in M, k \geq 1$.

Interpretation algorithm A is consistent, if for any program P and for any canonical notion of δ-reduction we have: $Proc_A(P) \subset Fix(P)$.

Theorem 3. Every interpretation algorithm is consistent.

Proof. Proof follows from the results of [10].

Interpretation algorithm A is complete, if for any program P of the form (1) and for any canonical notion of δ-reduction we have: if $(m_1, \ldots, m_k, m) \in Fix(P)$ and $m \neq \bot$, then $(m_1, \ldots, m_k, m) \in Proc_A(P)$, $m, m_1, \ldots, m_k \in M, k \geq 1$.

Let A and B be interpretation algorithms, then $A < B$, if for any program P and any canonical notion of δ-reduction we have: if $(m_1, \ldots, m_k, m) \in Proc_A(P)$ and $m \neq \bot$, then $(m_1, \ldots, m_k, m) \in Proc_B(P)$, $m, m_1, \ldots, m_k \in M, k \geq 1$.

Interpretation algorithms A and B are incomparable, if $A \not< B$ and $B \not< A$.

Interpretation algorithm A depends on canonical notion of δ-reduction, if there exist a program P, $m_1, \ldots, m_k \in M, k \geq 1$, and canonical notions of δ-reduction δ_1 and δ_2 such, that A stops on P and $F_1(m_1, \ldots, m_k)$ with a result $m \in M, m \neq \bot$, for δ_1 and works infinitely for δ_2.

We explore four classical interpretation algorithms: FSRNF (algorithm of full substitution and reduction to the normal form); LSRNF (algorithm of left substitution and reduction to the normal form); ACT (active algorithm); PAS (passive algorithm).

Algorithm FSRNF.

1. If $t \in NF^T$ and $FV(t) \cap \{F_1, \ldots, F_n\} = \emptyset$, then t else go to 2.
2. If $t \notin NF^T$ and $t \equiv t_\tau$, where τ is leftmost redex (β-redex or δ-redex), then FSRNF(P, t_τ), where t_τ' is the convolution of the redex τ, else go to 3.
3. If $t \equiv t[F_1, \ldots, F_n]$, then FSRNF$(P, t[t_1, \ldots, t_n])$.

Algorithm LSRNF.

1. If $t \in NF^T$ and $FV(t) \cap \{F_1, \ldots, F_n\} = \emptyset$, then t else go to 2.
2. If \(t \not\in NF^T \) and \(t \equiv t_\tau \), where \(\tau \) is leftmost redex (\(\beta \)-redex or \(\delta \)-redex), then LSRNF(\(P, t_\tau \)), where \(\tau' \) is the convolution of the redex \(\tau \), else go to 3.

3. If \(t \equiv t_i (1 \leq i \leq n) \), where \(t_i \) is the term \(t \) with a fixed leftmost free occurrence of a variable of the set \(\{ F_1, \ldots, F_n \} \), then LSNFR(\(P, t_i \)).

Algorithm ACT.

1. If \(t \in NF^T \) and \(\text{FV}(t) \cap \{ F_1, \ldots, F_n \} = \emptyset \), then \(t \), else go to 2.

2. If \(t \equiv t_i (1 \leq i \leq n) \), where \(t_i \) is the term \(t \) with a fixed leftmost free occurrence of a variable of the set \(\{ F_1, \ldots, F_n \} \), which is located to the left of the leftmost redex, then ACT(\(P, t_i \)) else go to 3.

3. If \(t \equiv \lambda x_1 \ldots x_r : t[x_1, \ldots, x_r] (\tau_1, \ldots, \tau_r) \), where \(\lambda x_1 \ldots x_r : t[x_1, \ldots, x_r] (\tau_1, \ldots, \tau_r) \) is the leftmost redex, then ACT(\(P, t_i(\text{ACT}(P, \tau_1), \ldots, \text{ACT}(P, \tau_r)) \)) else go to 4.

4. If \(t \equiv t_\tau \), where \(\tau \) is the leftmost redex, which is a \(\delta \)-redex, then ACT(\(P, t_\tau \)), where \(\tau' \) is the convolution of the \(\delta \)-redex \(\tau \).

Algorithm PAS.

1. If \(t \in NF^T \) and \(\text{FV}(t) \cap \{ F_1, \ldots, F_n \} = \emptyset \), then \(t \), else go to 2.

2. If \(t \equiv t_i (1 \leq i \leq n) \), where \(t_i \) is the term \(t \) with a fixed leftmost free occurrence of a variable of the set \(\{ F_1, \ldots, F_n \} \) which is located to the left of the leftmost redex, then PAS(\(P, t_i \)) else go to 3.

3. If \(t \equiv \lambda x_1 \ldots x_r : t[x_1, \ldots, x_r] (\tau_1, \ldots, \tau_r) \), where \(\lambda x_1 \ldots x_r : t[x_1, \ldots, x_r] (\tau_1, \ldots, \tau_r) \) is the leftmost redex, then PAS(\(P, t_i(\text{ACT}(P, \tau_1), \ldots, \text{ACT}(P, \tau_r)) \)) else go to 4.

4. If \(t \equiv t_\tau \), where \(\tau \) is the leftmost redex, which is a \(\delta \)-redex, then PAS(\(P, t_\tau \)), where \(\tau' \) is the convolution of the \(\delta \)-redex \(\tau \).

Theorem 4. Interpretation algorithm FSRNF is complete.

Proof. Let \(f_d(m_1, \ldots, m_k) = m \neq \bot \), then according to the Theorem 2, there exists such \(s \geq 1 \), that \(t'_i[F_1, \ldots, F_n](m_1, \ldots, m_k) \rightarrow_{\beta \delta} m \), therefore, according to 9, \(t'_i[F_1, \ldots, F_n](m_1, \ldots, m_k) \sim m \). Let, the following sequence of normal forms corresponds to FSRNF algorithm: \(t'_1[F_1, \ldots, F_n], \ldots, t'_s[F_1, \ldots, F_n] \). Let us show, that for every \(r = 1, \ldots, s \), \(t'_i[F_1, \ldots, F_n](m_1, \ldots, m_k) = t'_i[F_1, \ldots, F_n] \) and, according to 9, \(t'_i[F_1, \ldots, F_n](m_1, \ldots, m_k) \sim t'_i[F_1, \ldots, F_n] \), and so on.

Since \(t'_i[F_1, \ldots, F_n](m_1, \ldots, m_k) \sim t'_i[F_1, \ldots, F_n] \), we have \(t'_i[F_1, \ldots, F_n] \sim m \). Since \(t'_i[F_1, \ldots, F_n] \in NF^T \), we have \(t'_i[F_1, \ldots, F_n] \in \beta \sim NF^T \) and, according to point 1 of Definition 1, \(t'_i[F_1, \ldots, F_n] \rightarrow_{\delta} m \), but \(t'_i[F_1, \ldots, F_n] \in NF^T \), therefore \(t'_i[F_1, \ldots, F_n] = m \).
Let us fix the set $M = N \cup \{\bot\}$, where $N = \{0, 1, 2, \ldots\}$, built-in functions $sg_1, sg_2 \in [M^2 \rightarrow M]$, and three canonical notions of δ-reduction: $\delta, \delta_1, \delta_2$.

For $m_1, m_2 \in M$ we have:

$sg_1(m_1, m_2)$ equals 0, if $m_1 = 0$,

equals 1, if $m_1 \neq \bot$ and $m_1 \geq 1$,

equals \bot, if $m_1 = \bot$.

$sg_2(m_1, m_2)$ equals 0, if $m_2 = 0$,

equals 1, if $m_2 \neq \bot$ and $m_2 \geq 1$,

equals \bot, if $m_2 = \bot$.

&(m_1, m_2) equals 0, if $m_1 = 0$ or $m_2 = 0$,

equals 1, if $m_1 \neq \bot, m_2 \neq \bot$ and $m_1 \geq 1, m_2 \geq 1$,

equals \bot, otherwise.

It is easy to see, that sg_1, sg_2 & are strongly computable, monotonic functions with indeterminate values of arguments; sg_1, sg_2 are λ-definable functions, & is not λ-definable function (see [3, 4]).

Canonical notion of δ-reduction δ:

$\langle sg_1(0, t), 0 \rangle \in \delta$, where $t \in A_M^T$,

$\langle sg_1(n, t), 1 \rangle \in \delta$, where $n \in N, n \geq 1, t \in A_M^T$,

$\langle sg_1(\bot, t), \bot \rangle \in \delta$, where $t \in A_M^T$,

$\langle sg_2(t, 0), 0 \rangle \in \delta$, where $t \in A_M^T$,

$\langle sg_2(t, n), 1 \rangle \in \delta$, where $n \in N, n \geq 1, t \in A_M^T$,

$\langle sg_2(t, \bot), \bot \rangle \in \delta$, where $t \in A_M^T$,

$\langle \& (0, t), 0 \rangle \in \delta$, where $t \in A_M^T$,

$\langle \& (t, 0), 0 \rangle \in \delta$, where $t \in A_M^T$,

$\langle \& (n_1, n_2), 1 \rangle \in \delta$, where $n_1, n_2 \in N, n_1, n_2 \geq 1$,

$\langle \& (\bot, n), \bot \rangle \in \delta$, where $n \in N, n \geq 1$,

$\langle \& (n, \bot), \bot \rangle \in \delta$, where $n \in N, n \geq 1$,

$\langle \& (\bot, \bot), \bot \rangle \in \delta$.

Canonical notion of δ-reduction δ_1:

$\delta_1 = \delta \cup \{ \langle \& (t_1, t_2), \& (t_2, t_1) \rangle | t_1, t_2 \in A_M^T \}$.

Canonical notion of δ-reduction δ_2:

$\delta_2 = \delta \cup \{ \langle \& (t_1, t_2), \& (t_2, t_1) \rangle, \& (t_2, t_1) \rangle | t_1, t_2 \in A_M^T \}$.

Theorem 5. Interpretation algorithms LSRNF, ACT, PAS are not complete.

Proof. Incompleteness of the algorithm ACT is obvious, it already exists for programs that do not use built-in functions. Incompleteness of the algorithm LSRNF follows from the results of [11]. Incompleteness of the program PAS follows from the results of [10]. In [10] and [11] incompleteness of LSRNF and PAS were proved for the programs that use not λ-definable functions. We will show incompleteness of the algorithms LSRNF, ACT, PAS for the programs that can use only λ-definable functions.

Let $M = N \cup \{\bot\}$, $x \in V_M^T$. $F_1, F_2, F_3, F_4 \in V_{[M \rightarrow M]}^T$.

Program P_1 is: $F_1 = \lambda x[F_2(F_3(x))]$.

\[F_2 = \lambda x[0] \]
\[F_3 = \lambda x[F_1(x)] \]

For all \(m \in MfP(m) = 0 \), therefore, \((1,0) \notin Fix(P_1)\). Let us show that \((1,0) \notin Proc_{ACT}(P_1)\). For \(ACT \) we have: \(F_1(1); \lambda x[F_2(F_3(x))][1] \rightarrow_\beta F_2(F_3(1)); \lambda x[0][F_3(1)]; \) now we must apply algorithm \(ACT \) to the term \(F_3(1); \lambda x[F_1(x)][1] \rightarrow_\beta F_3(1); \ldots \) and so on.

Program \(P_2 \) is:
\[F_1 = \lambda x[F_2(F_3(x))] \]
\[F_2 = \lambda x[sg2(F_3(x), x)] \]
\[F_3 = \lambda x[F_1(x)] \]

For all \(m \in MfP(m) = 0 \), therefore, \((1,0) \notin Fix(P_2)\). Let us show that \((1,0) \notin Proc_{LRSNF}(P_2)\) and \((1,0) \notin Proc_{PAS}(P_2)\). For \(LSRNF \) and \(PAS \) we have:
\[F_1(1); \lambda x[F_2(F_3(x))][1] \rightarrow_\beta F_2(F_3(1)); \lambda x[sg2(F_3(x), x)][F_3(1)] \rightarrow_\beta sg2(F_4(F_3(1)), F_3(1)); \lambda x[sg2(F_3(x), x)][F_3(1)] \rightarrow_\beta sg2(F_4(F_3(1)), F_3(1)); \ldots \) and so on.

Theorem 6. Interpretation algorithms \(LSRNF, ACT, PAS \) are pairwise incomparable.

Proof. Incomparability of algorithms \(ACT \) and \(PAS \), \(ACT \) and \(LSRNF \) follows from \([10]\). In \([10]\) this has been proved for programs that use not \(\lambda \)-definable functions. We will show incomparability of algorithms \(ACT \) and \(PAS \), \(ACT \) and \(LSRNF \) for programs that can use only \(\lambda \)-definable functions.

Let us show, that \((1,0) \notin Proc_{ACT}(P_1)\), \((1,0) \notin Proc_{PAS}(P_1)\), and \((1,0) \notin Proc_{LRSNF}(P_1)\). From the proof of Theorem 5 it follows that \((1,0) \notin Proc_{ACT}(P_1)\). Let us show, that \((1,0) \notin Proc_{PAS}(P_1)\) and \((1,0) \notin Proc_{LRSNF}(P_1)\). For \(PAS \) and \(LSRNF \) we have: \(F_1(1); \lambda x[F_2(F_3(x))][1] \rightarrow_\beta F_2(F_3(1)); \lambda x[0][F_3(1)] \rightarrow_\beta 0 \).

Let us show, that \((1,0) \in Proc_{ACT}(P_2), (1,0) \notin Proc_{PAS}(P_2)\) and \((1,0) \notin Proc_{LRSNF}(P_2)\). From the proof of Theorem 5 it follows that \((1,0) \notin Proc_{PAS}(P_2)\) and \((1,0) \notin Proc_{LRSNF}(P_2)\). Let us show, that \((1,0) \notin Proc_{ACT}(P_2)\). For \(ACT \) we have: \(F_1(1); \lambda x[F_2(F_3(x))][1] \rightarrow_\beta F_2(F_3(1)); \lambda x[sg2(F_3(x), x)][F_3(1)]; \ldots \) now we must apply algorithm \(ACT \) to the term \(F_3(1); \lambda x[0][1] \rightarrow_\beta 0 \); further we have \(\lambda x[sg2(F_3(x), x)][0] \rightarrow_\beta sg2(F_4(0), 0) \rightarrow_\delta 0 \).

Now we show that the algorithms \(PAS \) and \(LSRNF \) are incomparable.

Program \(P_3 \) is:
\[F_1 = \lambda x[sg2(F_2(x), sg2(1, x))] \]
\[F_2 = \lambda x[F_2(x)] \]

Let us show that \((0,0) \notin Proc_{PAS}(P_3)\) and \((0,0) \notin Proc_{LRSNF}(P_3)\).

For \(PAS \) we have: \(F_1(0); \lambda x[sg2(F_2(x), sg2(1, x))][0] \rightarrow_\beta sg2(F_2(0), sg2(1, 0)); \lambda x[sg2(F_2(x)][0], sg2(1, 0)] \rightarrow_\beta sg2(F_2(0), sg2(1, 0)); \ldots \) and so on.

For \(LSRNF \) we have: \(F_1(0); \lambda x[sg2(F_2(x), sg2(1, x))][0] \rightarrow_\beta sg2(F_2(0), sg2(1, 0)); \lambda x[sg2(F_3(x), sg2(1, x))][0] \rightarrow_\beta sg2(F_2(0), 0) \rightarrow_\delta 0 \).

Program \(P_4 \) is:
\[F_1 = \lambda x[(&F_2(x), F_3(x)), (&F_3(x), F_2(sg1(x, 1)))] \]
\[F_2 = \lambda x[0] \]
\[F_3 = \lambda x[F_1(x)] \]

Let us show, that \((0,0) \in Proc_{PAS}(P_4)\) and \((0,0) \notin Proc_{LRSNF}(P_4)\).
For PAS we have: $F_1(0); \lambda x[&(\& (F_2(x), F_3(x)), & (F_3(x), F_2(sg1(1, x)))])](0) \rightarrow \beta$
& $(\& (F_2(0), F_3(0)), & (F_3(0), F_2(sg1(1, 0)))) \rightarrow \beta$
& $(\& (\lambda x(0), F_3(0)), & (F_3(0), F_2(sg1(1, 0)))) \rightarrow \beta$
& $(\& (0, F_3(0)), & (F_3(0), F_2(sg1(0, 1)))) \rightarrow \delta_0$
& $(0, (F_3(0), F_2(sg1(0, 1)))) \rightarrow \delta_0$

For LSRNF we have:
- $F_1(0); \lambda x[&(\& (F_2(x), F_3(x)), & (F_3(x), F_2(sg1(1, x)))])](0) \rightarrow \beta$
- $(\& (F_2(0), F_3(0)), & (F_3(0), F_2(sg1(0, 1)))) \rightarrow \delta_0$
- $(\& (F_2(0), F_3(0)), & (F_3(0), F_2(0))) \rightarrow \delta_0$
- $(\& (\lambda x[F_3(x)](0), F_2(0))) \rightarrow \beta$
- $(\& (F_3(0), F_2(0)); \ldots$; and so on.

Theorem 7. Interpretation algorithms LSRNF, ACT, PAS depend on canonical notion of δ-reduction.

Proof. Let $M = N \cup \{\perp\}$, $x \in V_M^T$, $F_1, F_2, F_3 \in V_{[M \rightarrow M]}^T$.

- Program P_3 is: $F_1 = \lambda x[&(\& (F_2(x), F_3(x)), & (F_3(x), F_2(x)))],$
 $F_2 = \lambda x[0],$
 $F_3 = \lambda x[F_3(x)].$

Let us show, that $(1, 0) \notin Proclsfv(P_3), (1, 0) \notin ProcPAS(P_3), (1, 0) \notin ProcACT(P_3)$ for δ_1, and $(1, 0) \notin Proclsrnf(P_3), (1, 0) \notin ProcPAS(P_3), (1, 0) \notin ProcACT(P_3)$ for δ_2.

Let us show for LSRNF, PAS, ACT and δ_1:
- $F_1(1); \lambda x[&(\& (F_2(x), F_3(x)), & (F_3(x), F_2(x)))](1) \rightarrow \beta$
- $(\& (F_2(1), F_3(1)), & (F_3(1), F_2(1))) \rightarrow \delta_1$
- $(\lambda x[F_3(x)](1), F_2(1)) \rightarrow \beta$
- $(0, F_3(1)) \rightarrow \beta$
- $(\& (F_3(0), F_2(0)), \ldots$; and so on.

Let us show for LSRNF, PAS, ACT and δ_2:
- $F_1(1); \lambda x[&(\& (F_2(x), F_3(x)), & (F_3(x), F_2(x)))](1) \rightarrow \beta$
- $(\& (F_2(1), F_3(1)), & (F_3(1), F_2(1))) \rightarrow \delta_2$
- $(\lambda x[F_3(x)](1), F_2(1)) \rightarrow \beta$
- $(\& (F_3(1), F_2(1)); \ldots$; and so on.

Interpretation of Untyped Functional Programs. The definitions of this section can be found in [7][8]. Let us fix a countable set of variables V. The set Λ of terms is defined as follows:

1. If $x \epsilon V$, then $x \epsilon \Lambda$;
2. If $t_1, t_2 \epsilon \Lambda$, then $(t_1t_2) \epsilon \Lambda$ (the operation of application);
3. If $x \epsilon V$ and $t \epsilon \Lambda$, then $(\lambda x t) \epsilon \Lambda$ (the operation of abstraction).

The following shorthand notations are introduced: a term $(\ldots(t_1 t_2 \ldots t_k))$, where $t_i \epsilon \Lambda$, $i = 1, \ldots, k$, $k > 1$, is denoted by $t_1 t_2 \ldots t_k$, and a term $(\lambda x_1 (\lambda x_2 (\ldots (\lambda x_n t) \ldots)))$, where $x_j \epsilon V$, $j = 1, \ldots, n$, $n > 0$, $t \epsilon \Lambda$, is denoted by $\lambda x_1 x_2 \ldots x_n t$.

The notions of free and bound occurrences of variables in terms as well as the notion of free variable are introduced in the conventional way. The set of all free variables of a term t is denoted by $FV(t)$. A term, which does not contain free variables, is called closed term. Terms t_1 and t_2 are said to be congruent (which is denoted by $t_1 \equiv t_2$), if one term can be obtained from the other by renaming bound variables. In what follows, congruent terms are considered identical.

To show mutually different variables of interest x_1, \ldots, x_k, $k \geq 1$, of a term t, the notation $t[x_1, \ldots, x_k]$ is used. The notation $t[t_1, \ldots, t_k]$ denotes the term obtained...
by the simultaneous substitution of the terms \(t_1, \ldots, t_k \) for all free occurrences of variables \(x_1, \ldots, x_k \) respectively, \(i \neq j \Rightarrow x_i \neq x_j \), \(i, j = 1, \ldots, k, k \geq 1 \). A substitution is said to be admissible, if all free variables of the term being substituted remain free after the substitution. We will consider only admissible substitutions.

A term \(t \) with a fixed occurrence of a subterm \(\tau_1 \) is denoted by \(t_{\tau_1} \), and a term with this occurrence of \(\tau_1 \) replaced by a term \(\tau_2 \) is denoted by \(t_{\tau_1}^{\tau_2} \).

A term of the form \((\lambda x.t[x])\tau \), where \(x \in V, t, \tau \in \Lambda \), is called a \(\beta \)-redex and the term \(t[\tau] \) is called its convolution. A one-step \(\beta \)-reduction \((\rightarrow_\beta) \), \(\beta \)-reduction \((\rightarrow_\beta) \) and \(\beta \)-equality \((=_\beta) \) are defined in a standard way \cite{7}. A term containing no \(\beta \)-redexes is called a normal form. The set of all normal forms is denoted by \(\text{NF} \) and the set of all closed normal forms is denoted by \(\text{NF}^0 \). A term \(t \) is said to have a normal form, if there exists a term \(\tau \) such that \(\tau \in \text{NF} \) and \(t \rightarrow_\beta \tau \). From the Church–Rosser theorem \cite{7} it follows, that if \(t \rightarrow_\beta t_1, t \rightarrow_\beta t_2, t_1, t_2 \in \text{NF}, \) then \(t_1 \equiv t_2 \).

If a term has a form \(\lambda x_1 \ldots x_k.x_1 \ldots x_n \), where \(x_1, \ldots, x_k, x \in V, t_1, \ldots, t_n \in \Lambda, k, n \geq 0 \), it is called a head normal form and \(x \) is called its head variable. The set of all head normal forms is denoted by \(\text{HNF} \). A term \(t \) is said to have a head normal form, if there exists a term \(\tau \), such that \(\tau \in \text{HNF} \) and \(t \rightarrow_\beta \tau \). It is known, that \(\text{NF} \subset \text{HNF} \), but \(\text{HNF} \not\subset \text{NF} \) (see \cite{7}).

A term \(Z \in \Lambda \) is called a fixed point combinator, if for all terms \(t \in \Lambda, Zt \rightarrow_\beta t(Zt) \). We introduce notations for some terms: \((t_1, \ldots, t_n) \equiv \lambda x.x_1 \ldots x_n \), where \(x \in V, t_i \in \Lambda, x \notin \text{FV} (t_i), i = 1, \ldots, n, n \geq 1 \), \(U^n_1 \equiv \lambda x_1 \ldots x_n.\text{V} \), where \(x_j \in V, k \neq j \Rightarrow x_k \neq x_j, k, j = 1, \ldots, n, \leq i \leq n, n \geq 1 \), \(P^n_1 \equiv \lambda x.xU^n \), where \(x \in V, 1 \leq i \leq n, n \geq 1 \), \(\Omega \equiv (\lambda x.xx)(\lambda x.xx) \), where \(x \in V \).

Untyped functional program \(P \) is the following system of equations:

\[
\begin{align*}
F_1 &= t_1[F_1, \ldots, F_n], \\
& \vdots \\
F_n &= t_n[F_1, \ldots, F_n],
\end{align*}
\]

(2)

where \(F_i \in V, i \neq j \Rightarrow F_i \neq F_j, t_i[F_1, \ldots, F_n] \in \Lambda, \text{FV}(t_i[F_1, \ldots, F_n]) \subset \{F_1, \ldots, F_n\}, \)

\(i, j = 1, \ldots, n, n \geq 1 \). A sequence of terms \((\tau_1, \ldots, \tau_n) \) will be a solution of program \(P \), if for all \(i = 1, \ldots, n \) we have: \(\tau_i =_\beta t_i[\tau_1, \ldots, \tau_n] \).

We consider the solution \((\tau_1, \ldots, \tau_n) \) of the program \(P \), where \(\tau_i \equiv P^n_i (Z(\lambda x.x[t_i[P^n_1x, \ldots, P^n_nx]], \ldots, t_n[P^n_1x, \ldots, P^n_nx]])), x \in V, Z \in \Lambda \) and is a fixed point combinator, \(i = 1, \ldots, n \). The term \(\tau_1 \) is the basic semantics of the program \(P \) denoted by \(\tau_P \).

\[\text{Fix}(P,\Omega) = \{ \langle u_1, \ldots, u_k, t_0 \rangle | \tau_P u_1 \ldots u_k \rightarrow t_0, \ t_0 \in \text{NF}^0, \ u_j \in \text{NF}^0 \ \text{or} \ u_j \equiv \Omega, j = 1, \ldots, k, k \geq 0 \}.\]

Theorem 8 (on the invariance of the basic semantics of untyped functional programs). For any untyped functional program \(P \) and for any fixed point combiners \(Z_1, Z_2 \) we have: \(\text{Fix}(P, Z_1) = \text{Fix}(P, Z_2) = \text{Fix}(P) \).

Proof. Proof follows from the results of \cite{12}.

Theorem 9 (on substitutions for untyped functional programs). Let \(\tau_P \) be the basic semantics of an untyped functional program \(P \) of the form (2), \(u_1, u_2, \ldots, u_k \)
be terms, where \(v_j \in NF^0 \) or \(v_j \equiv \Omega, \quad j = 1, \ldots, k, \quad k \geq 0, \) and \(t_0 \in NF^0, \) then:
\[
\tau v_1 \ldots v_k \rightarrow_{\beta} t_0 \iff \exists s \geq 1, \quad t'_1[F_1, \ldots, F_n] v_1 v_2 \ldots v_k \rightarrow_{\beta} t_0,
\]
where
\[
i_0[F_1, \ldots, F_n] \equiv F_i, \quad t'_i[F_1, \ldots, F_n] \equiv t_i[t'_{i-1}[F_1, \ldots, F_n], \ldots, t'_{n-1}[F_1, \ldots, F_n]], \quad r \geq 1, \quad i = 1, \ldots, n, \quad n \geq 1.
\]

Proof. Proof follows from the results of [8] and [12]. □

Interpretation Algorithms. The input of the interpretation algorithm A is a program \(P \) of the form \(2 \) and \(t \in A. \) Algorithm A stops with result
\[
A(P, t) \in NF, \quad \forall v \in \{F_1, \ldots, F_n\} = \emptyset \text{ or works infinitely.}
\]
Algorithm A uses two kinds of operations:

1. substitution of the terms \(t_1, \ldots, t_n \) instead of some free occurrences of variables \(F_1, \ldots, F_n; \)
2. one-step \(\beta \)-reduction.

\[
\text{Proc}_A(P) = \{(v_1, \ldots, v_k, t_0)\} \text{ algorithm A stops for program } P \text{ and the term } v_1 v_2 \ldots v_k \text{ with result } t_0 \in NF^0, \text{ where } v_j \in NF^0 \text{ or } v_j \equiv \Omega, \quad j = 1, \ldots, k, \quad k \geq 0\}
\]

Interpretation algorithm A is consistent, if for any program \(P \) we have:
\[
\text{Proc}_A(P) \subset \text{Fix}(P).
\]

Theorem 10. Every interpretation algorithm is consistent.

Proof. Proof follows from [8]. □

Algorithm A is complete, if for any program \(P \) we have:
\[
\text{Proc}_A(P) = \text{Fix}(P).
\]

Let A and B be interpretation algorithms, then A\(\prec \)B, if for any program \(P, \) we have
\[
\text{Proc}_A(P) \subset \text{Proc}_B(P).
\]

Interpretation algorithm A and B are incomparable, if A\(\not\preceq \)B and B\(\not\preceq \)A.

For untyped functional programs, we explore the same four classical interpretation algorithms: FSRNF (algorithm of full substitution and reduction to the normal form); LSRNF (algorithm of left substitution and reduction to the normal form); ACT (active algorithm); PAS (passive algorithm).

Algorithm FSRNF.

1. If \(t \in NF \) and \(FV(t) \cap \{F_1, \ldots, F_n\} = \emptyset, \) then \(t \) else go to 2.
2. If \(t \notin NF \) and \(t \equiv \tau', \) where \(\tau \) is left \(\beta \)-redex, then FSRNF(\(P, t_{\tau'} \)), where \(\tau' \) is the convolution of the \(\beta \)-redex \(\tau \) else go to 3.
3. If \(t \equiv t[F_1, \ldots, F_n], \) then FSRNF(\(P, t[t_1, \ldots, t_n] \)).

Algorithm LSRNF.

1. If \(t \in NF \) and \(FV(t) \cap \{F_1, \ldots, F_n\} = \emptyset, \) then \(t \) else go to 2.
2. If \(t \notin NF \) and \(t \equiv \tau', \) where \(\tau \) is left \(\beta \)-redex, then LSRNF(\(P, t_{\tau'} \)), where \(\tau' \) is the convolution of the \(\beta \)-redex \(\tau \) else go to 3.
3. If \(t \equiv t_F(1 \leq i \leq n), \) where \(t_F \) is the term \(t \) with a fixed leftmost free occurrence of a variable of the set \(\{F_1, \ldots, F_n\}, \) then LSRNF(\(P, t_i \)).

Algorithm ACT.

1. If \(t \in NF \) and \(FV(t) \cap \{F_1, \ldots, F_n\} = \emptyset, \) then \(t \) else go to 2.
2. If \(t \equiv t_F(1 \leq i \leq n), \) where \(t_F \) is the term \(t \) with a fixed leftmost free occurrence of a variable of the set \(\{F_1, \ldots, F_n\}, \) which is located to the left of the
left β-redex, then $ACT(P,t_h)$ else go to 3.

3. If $t \equiv t_{(\lambda x.\tau[x])\tau_1}$, where $(\lambda x.\tau[x])\tau_1$ is the left β-redex, then $ACT(P,t_{\tau[ACT(P,\tau_1)]})$.

Algorithm PAS.
1. If $t \in NF$ and $FV(t) \cap \{F_1,\ldots,F_n\} = \emptyset$, then t else go to 2.
2. If $t \equiv t_i(1 \leq i \leq n)$, where t_i is the term t with a fixed leftmost free occurrence of a variable of the set $\{F_1,\ldots,F_n\}$, which is located to the left of the left β-redex, then $PAS(P,t_h)$ else go to 3.
3. If $t \equiv t_{(\lambda x.\tau[x])\tau_1}$, where $(\lambda x.\tau[x])\tau_1$ is the left β-redex, then $PAS(P,t_{\tau[\tau_1]})$.

From the results of [6] the following three theorems follow.

Theorem 11. Interpretation algorithm PAS is complete.

Theorem 12. Interpretation algorithms FSRNF, LSRNF, ACT are not complete.

Theorem 13. Interpretation algorithms FSRNF, LSRNF, ACT are pairwise incomparable.

Translation and Interpretation. Let M be a recursive, partially ordered set, which has a least element \bot and every element of M is comparable only with itself and with \bot. Every $m \in M$ is mapped into an untyped term m' in the following way:

If $m \in M \setminus \{\bot\}$, then $m' \in NF^0$ and for any $m_1,m_2 \in M \setminus \{\bot\}$, $m_1 \neq m_2 \Rightarrow m'_1 \neq m'_2$.

If $m \equiv \bot$, then $m' \equiv \Omega \equiv (\lambda x.xx)(\lambda x.xx)$.

We say that an untyped term $\Phi \in \Lambda \lambda$-defines (see [3, 4]) the function $f : M^k \to M$ ($k \geq 1$) with indeterminate values of arguments, if for all $m_1,\ldots,m_k \in M$ we have:

$f(m_1,\ldots,m_k) = m \neq \bot \Rightarrow \Phi m'_1 \ldots m'_k \rightarrow_\beta m'$,
$f(m_1,\ldots,m_k) = \bot \Rightarrow \Phi m'_1 \ldots m'_k$ does not have a head normal form.

We consider typed terms using the functions from a recursive set C, every $f \in C$ is a strongly computable function with indeterminate values of arguments, which has an untyped term that λ-defines it. From [5] it follows that every $f \in C$ is a strongly computable, monotonic function with indeterminate values of arguments. Therefore, according to [6], there exists a canonical notion of δ-reduction for the set C. Let us consider the algorithm of translation of any typed term t into the untyped term t' studied in [6]:

if $t \equiv m \in M$, then $t' \equiv m'$;
if $t \in C$, then $FV(t') = \emptyset$ and t' λ-defines t;
if $t = x \in V^T$, then $x' \in V$ and for any $x_1,x_2 \in V^T$, $x_1 \neq x_2 \Rightarrow x'_1 \neq x'_2$;
if $t = \tau(t_1,\ldots,t_k)$, $k \geq 1$, then $t' \equiv \tau_{\tau_1'} \ldots \tau_{\tau_k'}$;
if $t = \lambda x_1,\ldots,x_n[\tau]$, $n \geq 1$, then $t' \equiv \lambda x_1' \ldots x_n'[\tau]$.

Let P be a typed functional program of the form [1] and P' be the untyped functional program (the result of the translation) obtained by replacing typed terms
for corresponding untyped terms in program P. Program P':

\[F'_1 = t'_1[F'_1, \ldots, F'_n], \]
\[\quad \ldots \]
\[F'_n = t'_n[F'_1, \ldots, F'_n]. \]

Theorem 14 (on translation) [5]. Let $f_P \in [M^k \rightarrow M]$, $k \geq 1$, be the basic semantics of a typed functional program P of the form (1) and let τ_P be the basic semantics of the untyped functional program P' of the form (3), then for all $m_1, \ldots, m_k \in M$ we have:

\[f_P(m_1, \ldots, m_k) = m \neq \bot \Rightarrow \tau_P m'_1 \ldots m'_k \rightarrow_\beta m', \]
\[f_P(m_1, \ldots, m_k) = \bot \Rightarrow \tau_P m'_1 \ldots m'_k \text{ does not have a head normal form}. \]

Definition 2. We say, that an interpretation algorithm A can improve after the translation, if there exist such typed program P of the form (1), $m_1, \ldots, m_k \in M$, and canonical notion of δ-reduction, that A works infinitely on P and on the term $F_1(m_1, \ldots, m_k)$, and A stops on the untyped program P' of the form (3) and on the term $F'_1 m'_1 \ldots m'_k$ with a result m', where $m \in M$, $m \neq \bot$.

Definition 3. We say, that an interpretation algorithm A can deteriorate after the translation, if there exist such typed program P of the form (1), $m_1, \ldots, m_k \in M$, and canonical notion of δ-reduction, that A stops on P and on the term $F_1(m_1, \ldots, m_k)$ with a result m, where $m \in M, m \neq \bot$, and A works infinitely on the untyped program P' of the form (3) and on the term $F'_1 m'_1 \ldots m'_k$.

We recall the following notation for some untyped terms to be used in what follows: $I \equiv \lambda x.x, T \equiv \lambda x.x, F \equiv \lambda x.y, \Omega \equiv (\lambda x.xx)(\lambda x.xx)$, if t_1 then t_2 else $t_3 \equiv t_1t_2\overline{t}_3$, Zero $\equiv \lambda x.xT, \overline{\bot} \equiv \Omega, \ 0' \equiv I, (n+1)' \equiv \lambda x.xFn'$, where $x, y \in V$, $t_1, t_2, t_3 \in \Lambda, n \in N$.

It is easy to see that: the term Ω does not have a head normal form, if T then t_2 else $t_3 \rightarrow_\beta t_2'$, if F then t_2 else $t_3 \rightarrow_\beta t_3$, Zero $0' \rightarrow_\beta T$, Zero $(n+1)' \rightarrow_\beta F$. $\overline{\bot}$ does not have a head normal form, term n' is closed normal form, and if $n_1 \neq n_2$, then n_1' and n_2' are not congruent terms, where $n, n_1, n_2 \in N$.

Theorem 15. Interpretation algorithm FSRNF can deteriorate after the translation, but cannot improve.

Proof. Interpretation algorithm FSRNF cannot improve after the translation, since FSRNF is complete for typed programs, Theorem 4. Let us show, that FSRNF can deteriorate after the translation. Let $M = N \cup \{ \bot \}$, $x \in V^T_M$, $F_1, F_2 \in V^T_{[M \rightarrow M]}$.

Program P_6 is: $F_1 = \lambda x[F_2(\bot)], \quad F_2 = \lambda x[0]$.

Program P'_6 is: $F_1 = \lambda x.F_2\Omega, \quad F_2 = \lambda x.0'$, where $x, F_1, F_2 \in V$.

Let us show, that $(1, 0) \in Proc_{FSRNF}(P_6)$ and $(1', 0') \notin Proc_{FSRNF}(P'_6)$.

For P_6 and FSRNF we have: $F_1(1); \lambda x[F_2(\bot)][(1) \rightarrow_\beta F_2(\bot)]; \lambda x[0](\bot) \rightarrow_\beta 0$.

For P'_6 and FSRNF we have: $F_1'(1); (\lambda x.F_2\Omega)1' \rightarrow_\beta F_2\Omega \rightarrow_\beta F_2\Omega \rightarrow_\beta \ldots$ and so on. \qed
Theorem 16. Interpretation algorithm LSRNF can both improve and deteriorate after the translation.

Proof. Let $M = N \cup \{ \bot \}$, $x \in V_M^T$, $F_1, F_2, F_3 \in V_{M \rightarrow M}^T$.

Program P_7 is: $F_1 = \lambda x[sg2(F_2(x), F_3(x))]$, $F_2 = \lambda x[F_2(x)]$, $F_3 = \lambda x[0]$.

Program P_7' is: $F_1 = \lambda x. Sg2(F_2x)(F_3x)$, $F_2 = \lambda x.F_2x$, $F_3 = \lambda x.0'$, where $Sg2 \equiv \lambda xy$. if Zero y then $0'$ else $1'$, $x, y, F_1, F_2, F_3 \in V$.

Let us show, that $(1, 0) \notin \mathcal{P}_{\text{LSRNF}}(P_7)$ and $(1', 0') \notin \mathcal{P}_{\text{LSRNF}}(P_7')$. For P_7 and LSRNF we have: $F_1(1); \lambda x[sg2(F_2(x), F_3(x))](1) \rightarrow_\beta sg2(F_2(1), F_3(1)); sg2(\lambda x[F_2(x)](1), F_3(1)) \rightarrow_\beta sg2(F_2(1), F_3(1)); \ldots$ and so on.

For P_7' and LSRNF we have: $F_1(1'; \lambda x.Sg2(F_2x)(F_3x))1' \rightarrow_\beta sg2(F_21')(F_31') \equiv (\lambda xy. if Zero y then $0'$ else $1')(F_21')(F_31') \rightarrow_\beta (\lambda y. if Zero y then $0'$ else $1')(F_21') \rightarrow_\beta$ if Zero (F_21') then $0'$ else $1' \equiv if (\lambda x.T)(F_31') then 0'$ else $1' \rightarrow_\beta if (F_31')T then 0'$ else $1'; if ((\lambda x.0')(T) then 0'$ else $1' \rightarrow_\beta if 0'T then 0'$ else $1' \rightarrow_\beta if T then 0'$ else $1' \rightarrow 0'$.

It is easy to see that $(1, 0) \notin \mathcal{P}_{\text{LSRNF}}(P_7)$ and $(1', 0') \notin \mathcal{P}_{\text{LSRNF}}(P_7')$. □

Theorem 17. Interpretation algorithm PAS can improve after the translation, but cannot deteriorate.

Proof. Interpretation algorithm PAS cannot deteriorate after the translation, since PAS is complete for untyped programs, Theorem 11. It is easy to see that $(1, 0) \notin \mathcal{P}_{\text{PAS}}(P_7)$ and $(1', 0') \notin \mathcal{P}_{\text{PAS}}(P_7')$. Therefore, PAS can improve after the translation. □

Theorem 18. Interpretation algorithm ACT can deteriorate after the translation, but cannot improve.

Proof. First we prove that ACT can deteriorate after the translation. Let $M = N \cup \{ \bot \}$, $x \in V_M^T$, $F_1, F_2 \in V_{M \rightarrow M}^T$.

Program P_8 is: $F_1 = \lambda x[sg1(F_2(x), F_3(x))]$, $F_2 = \lambda x[0]$, $F_3 = \lambda x[F_3(x)]$.

Program P_8' is: $F_1 = \lambda x. Sg1(F_2x)(F_3x)$, $F_2 = \lambda x.0'$, $F_3 = \lambda x.F_3x$, where $Sg1 \equiv \lambda xy$. if Zero x then $0'$ else $1'$, $x, y, F_1, F_2, F_3 \in V$.

Let us show, that $(1, 0) \notin \mathcal{P}_{\text{ACT}}(P_8)$ and $(1', 0') \notin \mathcal{P}_{\text{ACT}}(P_8')$.

For P_8 and ACT we have: $F_1(1); \lambda x[sg1(F_2(x), F_3(x))](1) \rightarrow_\beta sg1(F_2(1), F_3(1)); sg1(\lambda x[0](1), F_3(1)) \rightarrow_\beta sg1(0, F_3(1)) \rightarrow_\beta 0$.

For P_8' and ACT we have: $F_1(1'; \lambda x.Sg1(F_2x)(F_3x))1' \rightarrow_\beta sg1(F_21')(F_31') \equiv (\lambda xy. if Zero x then $0'$ else $1')(F_21')(F_31')$, now we must apply algorithm ACT to the term $F_21'; (\lambda x.0')(1') \rightarrow_\beta 0'$; further, we have $(\lambda xy. if Zero x then $0'$ else $1')0'(F_31') \rightarrow_\beta$
Now we prove that ACT cannot improve after the translation. We assume to the contrary that for some typed program P of the form (1), $m_1, \ldots, m_k \in M$, and for some canonical notion of δ-reduction ACT works infinitely on P and $F_1(m_1, \ldots, m_k)$, and ACT stops on the untyped program P' of the form (3) and on the term $F'_1m'_1 \ldots m'_k$ with a result m', where $m \in M$, $m \neq \bot$. Therefore, $(m'_1, \ldots, m'_k, m') \in \text{Proc}_{\text{ACT}}(P')$ and according to Theorem 10 we have $(m'_1, \ldots, m'_k, m') \in \text{Fix}(P')$ and $\tau_p m'_1 \ldots m'_k \rightarrow_{\beta} m'$. According to Theorem 14 $\tau P(m_1, \ldots, m_k) = m \neq \bot$. According to the translation algorithm and the property of algorithm ACT, that each “argument must be counted”, when ACT is applied to P' and $F_1(m_1, \ldots, m_k)$ (with the result m, Theorem 3), that is a contradiction.

Received 14.11.2017

REFERENCES