ԵՐԵՎԱՆԻ ՊԵՏԱԿԱՆ ՀԱՄԱԼՄԱՐԱՆԻ ԳԻՏԱԿԱՆ ՏԵՂԵԿԱԳԻՐ УЧЕНЫЕ ЗАПИСКИ ЕРЕВАНСКОГО ГОСУДАРСТВЕННОГО УНИВЕРСИТЕТА

Բնական գիտություններ

2,2008

Естественные науки

Физика

УДК 621.315

Л. А. ВАРДАНЯН, А. Л. ВАРТАНЯН, Э. М. КАЗАРЯН

ВЛИЯНИЕ ЭЛЕКТРИЧЕСКОГО ПОЛЯ НА СОБСТВЕННУЮ ЭНЕРГИЮ И ЭФФЕКТИВНУЮ МАССУ ПОЛЯРОНА В ПОЛУПРОВОДНИКОВОЙ КВАНТОВОЙ ПРОВОЛОКЕ

С помощью метода Ли–Лоу–Пайнса исследованы основные свойства фрелиховского полярона в квантовой проволоке при наличии электрического поля. Получены аналитические выражения для собственной энергии и эффективной массы полярона.

Введение. Вычислению собственной энергии и эффективной массы полярона в полупроводниковых квантовых проволоках (КП) посвящено много работ [1–4]. Однако влияние внешних полей на поляронные характеристики электрона в полупроводниковых наноструктурах изучено мало. Так, в [5] рассмотрены магнитополяронные состояния электрона в КП и вычислены поляронные вклады в уровни Ландау, а также в циклотронную массу полярона. В рамках теории возмущений в [6] изучены зависимости собственной энергии и массы полярона от ширины квантовой ямы и от напряженности внешнего электрического поля в квазидвумерной гетероструктуре AlAs / GaAs / AlAs . В настоящей работе с помощью вариационного метода Ли–Лоу–Пайнса [7] рассматривается аналогичная задача для полярона в КП во внешнем электрическом поле.

Теоретическая часть и результаты. Рассмотрим движение электрона в полярной полупроводниковой КП с полярным диэлектрическим окружением при наличии электрического поля \vec{F} , направленного вдоль одной из сторон прямоугольного сечения КП. В рамках приближения эффективной массы гамильтониан электрон-фононной системы при наличии внешнего однородного электрического поля можно представить в виде

$$H = \frac{p^2}{2m} + V(x, y) + |e|Fx + \sum_{\vec{q}} \hbar \omega_{LO} a_{\vec{q}}^+ a_{\vec{q}} + \sum_{\vec{q}} \left(V_{\vec{q}} e^{i\vec{q}\vec{r}} a_{\vec{q}} + h.c. \right), \tag{1}$$

где m – эффективная масса электрона, V(x, y) – потенциал, ограничивающий движение электрона в плоскости, перпендикулярной к оси КП, $a_{\vec{q}}^+(a_{\vec{q}})$ – оператор рождения (уничтожения) фонона с волновым вектором \vec{q} и частотой ω_{IQ} ,

$$V_{\bar{q}} = -\frac{i\hbar\omega_{LO}}{q} \left(\frac{4\pi\alpha}{\Omega}\right)^{1/2} \left(\frac{\hbar}{2m\omega_{LO}}\right)^{1/4}$$
(2)

 амплитуда взаимодействия электрона с полярными оптическими фононами, где

$$\alpha = \left(\frac{e^2}{2\hbar\omega_{LO}}\right) \left(\frac{2m\omega_{LO}}{\hbar}\right)^{1/2} \left(\frac{1}{\varepsilon_{\infty}} - \frac{1}{\varepsilon_{0}}\right),\tag{3}$$

 $\varepsilon_0(\varepsilon_{\infty})$ – статическая (оптическая) диэлектрическая постоянная, Ω – объем КП. Для исследования электронных состояний с деформацией фононного вакуума удобно произвести преобразование гамильтониана (1) и волновых функций с помощью унитарных преобразований Ли–Лоу–Пайнса [7]:

$$U_{1} = \exp\left(-iz\sum_{\vec{q}} q_{z} a_{\vec{q}}^{+} a_{\vec{q}}\right), \qquad U_{2} = \exp\left(\sum_{\vec{q}} f_{\vec{q}} a_{\vec{q}} - f_{\vec{q}}^{*} a_{\vec{q}}^{+}\right).$$
(4)

Тогда *H* заменяется эффективным гамильтонианом $H^* = U_2^{-1}U_1^{-1}HU_1U_2$. Среднее значение H^* вычисляется с помощью волновой функции $|\Phi\rangle$, которая выбирается в виде произведения волновой функции электрона

$$\Phi_0(x, y, z) = N\left(Bi(\zeta_+)Ai(\zeta) - Ai(\zeta_+)Bi(\zeta)\right)\cos\left(\frac{\pi y}{L_y}\right)\exp(-ik_z z)$$
(5)

и вектора основного состояния фононной подсистемы в отсутствие деформации вакуума $-|0\rangle$. В (5) N – нормировочная постоянная, а аргумент функций Эйри $Ai(\zeta)$ и $Bi(\zeta)$ задается выражением $\zeta = (xa_c/L_x) - (E_0/\hbar\omega_c) + (E_1/\hbar\omega_c)$, где $E_1 = \hbar^2 \pi^2 / 2mL_y^2$, $\omega_c = (eF)^{2/3} / (2m\hbar)^{1/3}$, $a_c = (2m\omega_c\hbar^{-1})^{1/2}L_x$, $\zeta_{\pm} = \zeta (z = \pm L_x/2)$, $L_x(L_y)$ – ширина КП вдоль (перпендикулярно) направления электрического поля, а $E_0(F, L_x, L_y)$ определяется из уравнения

$$Bi(\zeta_+)Ai(\zeta_-) - Ai(\zeta_+)Bi(\zeta_-) = 0.$$
(6)

После несложных вычислений получим

$$E(k_z) = \langle \Phi_0(x, y, z) | \langle 0 | H^* | 0 \rangle | \Phi_0(x, y, z) \rangle = E_0(F, L_x, L_y) + E_s + \frac{\hbar^2 k_z^2}{2m_p} + \cdots, \quad (7)$$

где собственная энергия E_s и масса полярона m_p задаются соответственно соотношениями

$$E_{S} = -\frac{\hbar\omega_{LO}\alpha}{2\pi}R(F, L_{x}, L_{y}), \qquad \frac{m_{p}}{m} = 1 + \frac{\alpha Q(F, L_{x}, L_{y})}{4\pi}, \qquad (8)$$

$$R(F, L_x, L_y) = \frac{\hbar}{2m\omega_{LO}} \int_{-\infty}^{\infty} dq_x \int_{-\infty}^{\infty} dq_y \frac{F(q_x, q_y)}{q_0(q_0 + 1)},$$
(9)

$$Q(F, L_x, L_y) = \frac{\hbar}{2m\omega_{LO}} \int_{-\infty}^{\infty} dq_x \int_{-\infty}^{\infty} dq_y \frac{F(q_x, q_y)(q_0 + 3)}{(q_0 + 1)^3},$$
 (10)

50

$$F(q_x, q_y) = \left| \left\langle \Phi_0(x, y, z) \right| \exp(-i(q_x x + q_y y)) \left| \Phi_0(x, y, z) \right\rangle \right|^2, q_0^2 = \frac{\hbar}{2m\omega_{LO}} \left(q_x^2 + q_y^2 \right).$$
(11)

Численные расчеты проведены для КП AlAs / GaAs / AlAs. На рисунке представлены зависимости собственной энергии и массы полярона от ширины КП, при различных значениях напряженности электрического поля.

Зависимости собственной энергии (а) и эффективной массы (б) полярона от ширины КП в единицах эффективного боровского радиуса α^* .

Анализ полученных результатов позволяет сформулировать некоторые общие особенности электрон-фононного взаимодействия в полярных полупроводниковых КП. Все кривые, полученные для различных значений напряженности электрического поля, сливаются при $L_x \leq 0,88a^*$, где $a^* = \varepsilon_0 \hbar^2 / me^2$ – эффективный боровский радиус электрона. Это означает, что при таких толщинах КП электрическое поле с $F \leq 200 \kappa B / cm$ не влияет на собственную энергию и массу полярона. Следовательно, в таких условиях состояние электрона полностью определяется размерным квантованием. При $L_x = 0,5a^*$ масса полярона превышает массу электрона на 20%. При $F = 200 \kappa B / cm$ отношение m_p/m может уменьшиться до 16,6%, а при $F = 30 \kappa B / cm - до 13\%$.

При наличии электрического поля как собственная энергия, так и масса полярона достигают насыщения в зависимости от толщины КП. Так, при полях 200, 100 и $30\kappa B/cM$ насыщение проявляется соответственно при значениях толщины КП 1,4 a^* , 1,86 a^* и 2,7 a^* .

ЕГУ, кафедра ФТТ, РАУ, кафедра общей и теор. физики Поступила 29.12.2007

ЛИТЕРАТУРА

1. Degani M.H., Hipolito O. - Solid State Commun., 1988, v. 65, p. 1185.

2. Li W.S., Gu S.-W., Au-Yeung T.C., Yeung Y.Y. – Phys. Rev. B, 1992, v. 46, p. 4630

- 3. Buonocore F., Iadonisi G., Ninno D., Ventriglia F. Phys. Rev. B, 2002, v. 65, p. 205415.
- 4. Xie H.-J. Physica E, 2004, v. 22, p. 906.

- 5. Wendler L., Chaplik A.V., Haupt R., Hipolito O. J. Phys.: Condens. Matter, 1993, v. 5, p. 4817.
- 6. Chen C.-Y., Liang S.-D., Li M. J. Phys.: Condens. Matter, 1994, v. 6, p. 1903.
- 7. Lee T.D., Low F.E., Pines D. Phys.Rev., 1953, v. 90, p. 297.

Լ. Ա. ՎԱՐԴԱՆՅԱՆ, Ա. Լ. ՎԱՐԴԱՆՅԱՆ, Է. Մ. ՂԱՉԱՐՅԱՆ

ԷԼԵԿՏՐԱԿԱՆ ԴԱՇՏԻ ԱՉԴԵՅՈՒԹՅՈՒՆԸ ՔՎԱՆՏԱՅԻՆ ԼԱՐՈՒՄ ՊՈԼԱՐՈՆԻ ՍԵՓԱԿԱՆ ԷՆԵՐԳԻԱՅԻ ԵՎ ԱՐԴՅՈՒՆԱՐԱՐ ՉԱՆԳՎԱԾԻ ՎՐԱ

Ամփոփում

Լի–Լոու–Փայնսի մեթոդի օգնությամբ ուսումնասիրվել են միաչափ ֆրյոլիխյան պոլարոնի հիմնական հատկությունները էլեկտրական դաշտում։ Ստացվել են վերլուծական արտահայտություններ պոլարոնի սեփական էներգիայի և արդյունարար զանգվածի համար։

L. A. VARDANYAN, A. L. VARTANIAN, E. M. KAZARYAN

EFFECT OF AN ELECTRIC FIELD ON POLARON SELF-ENERGY AND EFFECTIVE MASS IN A QUANTUM WIRE

Summary

By using the Lee–Low–Pines method the general properties of onedimensional Fröhlich polaron in a quantum wire in presence of electric field are investigated. Analytical expressions for polaron self-energy and the effective mass are obtained.