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ON CONNECTION OF ONE CLASS OF ONE-DIMENSIONAL
PSEUDODIFFERENTIAL OPERATORS WITH SINGULAR INTEGRAL
OPERATORS

V. V. SIMONYAN"
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The paper discusses a homogeneous one-dimensional pseudodifferential
equation with a symbol of the form

A(x,é):AO@)&thf[x—ﬂk +i%}u(5)
k=1 o

(x,&, 4, eR, a>0, -1<p<l, k=12,..,N),
where 4,(¢) (k=0,1,...,N) are locally integrable functions from class of

symbols of non-negative order r .
The method of bringing the pseudodifferential equation to a system of one-
dimensional singular integral equations with Cauchy’s kernel is proposed.
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1°. The paper is devoted to the study of one-dimensional pseudodifferential

operators  A(x,D)=F; | A(x,E)F, . with A(x,&)=1+4,(&)+ i o(x, 4, )4, (€)
P

(x,& €R) symbols, where go(x,/ik):thz(x—/ikﬂ%j (xeR, @>0,-1< <],
(24

2 €R, k=12,.,N). It is assumed that 4, (&)eS, (k=0,1...,N) for some

r>0, where S” is a set of locally integrable on R functions f, which

correspond to the following condition: | f | < c(l + |§|)
Earlier, the cases of »=0 and N =1 had been discussed in [1] and [2]
correspondingly. In this paper the study of solvability of equation A(x,D) y=01is

brought to solvability of some characteristic system of one-dimensional singular
integral equations with Cauchy’s kernel. Theory of matrix singular integral
operators is currently quite well developed (e.g. see [3—7]).

* E-mail: smnvhn@yahoo.com



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 2, p. 8-15. 9

2°. Let H.(R) (reR) be the Sobolev—Slobodetsky space of genera-

lized functions u, the Fourier transformation u of which belongs to the
space  L,(R,(1+|x|)"). Below, we denote by A, the operator of multi-
plication by matrix-function u (A, y=uy). It is well known (e.g.see [8])
that a pseudodifferential operator ~ A(x,D) with symbol A(x,&):

A(x,D)uzTef’Afo(x,f);t(é‘)a’gZ (ung’(]R)) may be extended up to a

continuous operator from H,(R) to L,(R). We assume below that A(x,D)
acts onH,(R). For a function y, defined on R, =(0,+%) through y,y
(k=0,1,...,N), we introduce the function e*"y(e*"), where c=a(f+1)/2

and s, =o+i4 (4 €R). It is obvious, that the operators y, are continuous
mappings from L,(R,,p) to L, (]R) , where p(t)=t’(-1<f<1) for t>0.
h(x)=a'Inx (xeR,) and @(é):(l+|§|)r are given. We define
functions ¥, ¥, (k=0,L,...N) as ¥ =®oh, ¥, =A4,oh. Let M (R) be some
direct complement to linear space H,(R) in space L,(R), and
7 :L,(R)—>H (R), x,:L,(R)—> M, (R) be operators of projecting linked with
my+my=y for yelL,(R). Let’s define spaces W, = {f;Y/,:lfeLz(]R+,p)}
(k=12,....N), W={f;¥'fe L,(R,,p)} and operator m;:W = L,(R,,p)
acting identically on L,(R,,p)(N\W . Let S, be operator of singular

. . . 1
integration along the contour /7, i.e. (Sry)(t)z—_v.p.jy(r)d—rt (tel).

Let’s define the functions A, @)= exp{i%lnt} (k,/=1,2,...,N). Consi-
der a collection of operators: @, : L) (R,,p)—> H,(R), w,:H,(R)—> L) (R,,p),
o, L (R,,p)—> M, (R), w, W, W, ®---@W, - LY (R,,p) and
s : W, ®W, ®---®W, > LY (R_,p(|f])) (R_=RIR,) defined by the following
equalities:

a)l=|:ﬂlF_17/l ”1F_17/2 ”1F_17/N]

77" F4y (D) + Sg_77'F4,(D) ]
Se. 7> FA, (D)

RS
Il

, ("3:[7[2}7_171 o F 7[2F_17N}

Se. 7y FAy (D)
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A 0 0 |
AWI a)ls e a)ls
. . 1 N
0)42 0 Ay/gl . ‘ , (()52 ,
: 0 s
0 0 /1.,,4 N1 NN

where operators @) : W, — L (Rf,p(| t |)) (i,j=1,2,..,N) are defined by
.. 5 1 < ~ -1 dT ~ -1
equalities  (w;v)(?) =—.J.A[(r)(7r3/1.,,70 7j/LP,1v)(r)—t, and 4, =A, V¥
iy, J T— '

on R,. Note, that pseudodifferential operator A (x, D)
(A(x,D):H,(]R)—)Hr(]R)G-)Mr(]R)) could be represented by the equality
T
W3,
Let’s also consider the linear operators
L) (R,,p)®M,(R)® LY (R_,p(|1]) > H,(R)® M, (R),
H,(R)>W, @W, - @Wy ®LY (R_,p(|1])),
LY (R, p) O M, (RYDLY (R_,p(|])) > W, @W, - @Wy ®LY (R_, p(|1])),
1 Hr(R)(—BMr(R)_)Hr(R)a
K, W, ew,®--@w, &L (R_,p(|t])) > H,(R),
K, :H,(R)®M, (R) > L) (R,,p)®M,(R)® L) (R_, p(| ])),
K:Wow,®--ew, ®L) (R_,p(|t]) > L) (R,.p)®M,R)® L) (R_, p(|1])),
defined by equalities

. o, 0 0 . _(0210)2 _ a);l 0 0
Polmes Lyw O T owle, | T |tes@ 0 [L’zV(R—aP(lfl))’

Ny
—_ (S}

o

, 0
KIIZI:IH,(]R) O]’ K12:[w1w4 O]’ Ky =|0 [M,(]R) >
0 0
w, + 0,00, 0
K= [ONOR 0
s 1

L (Rp(f))

By direct calculation it is easy to verify the equality

1
{A(va) le}:{Kn K12:|
T, T, K, K

The next lemma follows from the results of the paper [2]:
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Lemma 1. Spaces KerA(x,D) and KerK are isomorphic, besides the
following equalities are true KerA(x,D)= K,KerK, KerK =T, » Kerd(x,D).

3°. Operator U:W, ®W, ®---®@W, ->W ® L) (R,,p)is defined through
the following equality:

Ay Ny Mg Ay AV A Ty Ay
0 Al;/*‘ 0 vee 0
U= o 0 A :

0 0 0 Ay
Let’s define also the operator K = A, +SgA, : LY (]R,p(|t|)) - (R,p(|t|)) ,

where

"U_IALO""’UO'P_IALO A, A o Ay
0 1 0 - 0
M= 0 0 ' o
: 0
| 0 0 0o 1 |
YA, 0 - 0
PN, 0 e 0
Py Ay O - 0

on R, , and correspondingly equal to unit and zero matrices onRR _.
Lemma 2. If vector-function z= (Z+,Z_)T , where z, e, @W, ®---@W,

and z_e Ll (]R_, p(| t |)) , is a solution of the equation Kz =0, then vector-function

u,being equal to Uz, on R, andto z_ on R_, is a solution of equation Ku=0.
Vice versa, if vector-function u is a solution of the equation Ku=0,
then vector-function z, being equal to U 'u on R, and to u on R_, is a

solution of the equation Kz=0.

Proof. First of all let’s note that for the function f, defined on R, , the
condition feL,(R,,p) is equivalent to F'yA,, feH,(R). Indeed, let
F_l)/O/],f,lf eH, (R) , consequently @(D)F_lyo/lwlf el, (R) Hence
Vo FO(D)F 1o Ay f =75 Apro Ay f = f €L (R, p).

Vice versa, let fel, (R o p). Consequently F~'y,f €L, (]R) , and therefore

O (D)F 'y f =F A, pof =F 'y A, . f € H,(R).



12 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 2, p. §-15.

For the vector-function z = (z+,zf )T , which is the solution for the equation Kz=0,

the following equalities are true:
w,z, +w,00,z, =0, w0z, =0, wsz, +z_=0. 1)

Let Uz, = (uf JUy 5oy Uy jT . Since from the second equality of (1) it follows
that F~'y, A, .u; € H,(R), then u eL,(R,,p). From the definitions of
spaces W, (k=2,..,N) it follows that u €L, (R+,p) (k=2,..,N). Thus
uel) (]R, p(| t |)) . First equality (1) could be represented in the following form:
I Vo Ayatt] + 37 FA (D) Pl yo Ay =7 ytty == 7 iy +
+Sg 71 FA (D) F ™' 7oA, uy =0, )
up +Sg 75 FA, (D)mF 7 A,uf =0 (k=2,..,N).
Taking into account that 7, F 'y A, .u} = F~'yy A, u;, we find
I YoAyatt] + 37 FA (D) F 7l yo Ay =7 pouy ==y iy +
+Sg, 7 FA, (D)Filﬁ/o/lw“r =0, (3)
ui +Sg 7i FA((D)F'yy A, uf =0 (k=2,..,N).

Third equality (1) could be represented in the form

1% . N dr _

— o) |(t)—+2z, =0 (k=1..N). 4

ﬂi!Ak( )( 3 1]( )r—t k ( ) 4)
Now taking into account that 7yu,” =u,", we find

1%, dr  _
— [ 4w (1)——+z, =0 (k=1..,N). (5)
iy T—t

The equalities (3) and (5) means that Ku =0.

T
Let now Ku=0. Then, if u, = [uf Uy ,...,u;] is equal to vector-function u

on R, ,and z_= (z{ 22y 5eees 2y ]T is equal to vector-function u on R_, the equality
Ku=0 is equivalent to (3) and (5). Taking into account that u, € L, (R . p),
we find that F7y A, u €H, (R), ie. mF yA, uf =F 'y A, u,
m,F oA, uf =0 and 7z =u;. From here follows the truth of the equalities

(2) and (4). Consequently z, =U'u, and z_ suffice the equalities (1), which

means Kz=0.
From Lemmas 1 and 2 follows
Theorem 1. If A(x,D)y=0, and functions u,(x) when x>0 are

defined through the equalities
u = Ay Fy, w,==Sg 7i FA,(D)y (k=2,.,N),



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 2, p. 8-15. 13

then vector-function u, defined through the equality uz(ul,uz,...,uN)T when

x>0 and equality u(x)= —if N (t)u(t)i when x <0, suffice to equation
iy, t—x

Ku=0.

Vice versa, if for the vector-function u =(u,u,,...uy )T Ku=0, then
function y(x)= [ e™e"®;' () [e‘” ]dt suffice to equation 4(x,D)y=0.

4°. Due to Theorem 1 the solution of equation A4(x,D)y=0 inclass H, (R)
is brought to description of set Kerk .

Let B, =/+S; by analytic projectors. Let’s assume that
(M+N)'eL,. Operator K could be represented in the form
K =B Ay y+ B Ay =(PiAg+ Py | Ay, where G=(M +N)(M =N)"". Let

-1
N
V=1+¥,-2 ¥ i] . Through direct calculation it is easy to get convinced that
i=1
(129 2PN, 2PWA, e QWA
2PN, 2P 2P, e 2P,PA,

G=| 2% YA, 299, 1277

2 Ay, 2V, Ay, 1+2¥ ¥

on R, , and coincides with the unit matrix on R_.
Let L;(R) =P, (L, (R)). Under the factorization of the matrix-function G

in space L, (]R, p(| t |)) we understand the representation G(¢)=G_(¢)= ()G, (t)
(teR), where

L6 ) e LR, —— "G, (0)" e L(R),
t—1 t+1

t—i\" (e-i}"
:,(t)zdlag[(;) (E) j,

operator A_,SzA; 1s bounded in Ly (R), and k >--->k, are the integers

named particular indices of matrix-function G. Here the belongness to the
functional classes is considered element-wise.

Using the standard considerations (see [2]) and general theory of matrix
singular operators (see [5—7]), in those cases when matrix-function G allows

factorization in L, (R, p(| t |)) , kernel of operator K allows description in terms of



14 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2009, Ne 2, p. §-15.

factors of matrix-function G. Precisely, if k >k, >---2k 20>k, 2---2k,,
then KerK consists from vector-functions of a form u=(M - N )_IG;1 p, where
p= ( Dis-es Py )T is a polynomial vector for which the following conditions are true:
pi=py=-.=p,=0,and degp; <[k, [-1 (j=s+1,..,N). Particularly, dim KerK

is equal to the absolute value of sum of the negative particular indices.

N
As an example let’s note that equation y"(x)+2ck¢(x,/1k) y(x)=0
k=1

(¢, €C) is brought to the factorization of the matrix-function
l+a¥ oA, a¥A; - aqPAy

azﬁf’Az’l l+a,¥ arzBf’Az’3 azﬁaAZW
G=| a PN, a¥fn,, 1+a¥

_a]\,ﬁf’AM1 aN'zf’AN,z 1+aN¥~’

on R, , and coincides with the unit matrix on R_, where a, =2¢, (k=L2,..,N),
~ 2 X
and ¥ (x)= —(a’l lnx) ->¢.
k=1
5°. Let’s consider the pseudodifferential operator A(x,D) with a symbol of

the form A(x,§) =1+P(g0(x,/1))A0(§) , Where P(z) =ﬁ(z—vk) is an arbitrary

polynom. Let’s define operators

N

& =mFy:L(R,,p)>H,(R), &= ¢Ss y ' FA4(D):H,(R) > L, (R,.p),
k=0

&y =m,F 'y L (R,,p) > M, (R), @& =A,,:W—>L(R,,p),

where Vsz{f:Agl(h)feLz(R+,p)}.

By direct calculation, we get the equality
-1

IH,(R) + 6:)167)2 _Cbl O IH (]R) O &’)15)4
3, —0y Ly @ | =| @ 0 ao+a,d0,
—a,'e, @' 0 0 lym @0

Using this matrix identity one can prove a result similar to Theorem 1, where
operator K plays role of the singular operator, defined through the equality

N
Kz=4,"(h)z+ chSﬂlé;.
k=0

Following § 3.1 of [1], the investigation of the pseudodifferential equation
A(x,D)y=0 is brought to the factorization of the matrix-function G=G,'G_,

where
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1 (£1-v,)A(h) 0 0 0
0 1 v, ¥l - 0 0
o 00 e
0 0 0 - 1 vy, 7l
vy Tl 0 o -0 1]
when x>0, and G, are equal to unit matrix when x<0.
Particularly, the solution of the differential equation

Y"(x)+ (go(x,/l) -V, )((p(x,/1) -V, )y(x) =0 from class H,(R) could be expressed

by factors of matrix

L4 (M) (=1v)(14vy) 24y (h)
o 1+ 4y (B)(=14v,) (=14 v,) 14+ 4y (h)(=1+v,)(=1+v,)
2 1+ 4y (h)(1+v,)(-1+v,)

1+ A4y (h)(-1+v))(=1+v,) 1+ 4,(h)(-1+v)(-1+v,)

on R, , and coincides with the unit matrix on R_.
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Uhwswth ywulnnphbbpbkughwy oybpuwnnpubtph dh nuup b
uhlgnijjup hunbkgpuy oykpunpubph juwh dwuhb

Uojuwunwipnid  ghuwpyyoud - & A(x,é)z%(ﬁ)iilth%(x—ﬂ,ﬁia—zﬁ ()
(x.&4eR, a>0, -1<f<l, k=L2,.,N) wmbkuph uhdynny hwdwubn dhwswih
wulnnnhdtipki-ghwy hwjwuwpnid, npnbn 4, -tpp (k=01..,N) |nluy
hwipugnidupbh $niujghw-ukp &' r ny pugwuwlub Jupgh uhdynjukph
nuuhg:

Unwowplynud £ wulpnphdbpbughw hwjwuwpnudp Unpnt  Ynphgnyg
dhwswth uhugnijjup htnbgpu) hwjwuwpnidiubph hwdwlupgh hwtqkgubny
Ubpnn:

O CBsI3U OOHOTO KJIACCa OTHOMEPHBIX IICeBAOIN(PPepeHIHATEHBIX OIIEPATOPOB C
CHHTYJISIPHBIMH HHTETPaJIbHBIMH OIlepaTopaMu

B paborte paccmatpuBaeTcs OAHOPOJHOE OJHOMEpPHOE TceBnoanddepeHInanbHOe
N, 127
ypaBHEHHE C CHMBOJIOM BHIa A(x,é):z4ﬁ(§)+2thf[x—ﬂk +i7ﬂ (&), (x,E,4, eR, a>0,
P=R—4

-1<pB<l, k=12,..,N),tne 4.(£) (k=0,1,...,N) — JOKaTbHO CyMMHUpyeMbIe (QYHKIIUHN U3
KJIacca CMBOJIOB HEOTPHUIIATEIILHOTO MOPSIKA 7'

[pemtaraercs MeTo] cBeeHUS NIceBIOMUBGEPEHIINATHFHOTO YPAaBHEHHS K CUCTEME
OJTHOMEPHBIX CHHTYJISIPHBIX HHTETPAbHBIX YpaBHEHHUH ¢ sitpom Korn.



