Physical and Mathematical Sciences

2009, № 2, p. 63–66

COMMUNICATIONS

Mathematics

A REMARK ON ASYMPTOTIC PROPERTY OF COMMUTATORS

I. M. KARAKHANYAN, M. I. KARAKHANYAN*

Chair of Differential Equation, YSU

In the present paper the asymptotic variance of the classical Von-Neiman– Fuglede Theorem for elements of the complex Banach algebra is extended.

Keywords: Banach algebra, hermitian, normal element, commutator.

It has been proved in [1], that if *a*, *b*, *x* are elements of the complex Banach algebra with unit element, whereas [a, b] = ab - ba = 0 and $\|\exp(ita)\| = o(|t|^{1/2})$,

 $\|\exp(itb)\| = o(|t|^{1/2})$, for real $t \to \pm \infty$ and [a+ib, x] = 0, then [a-ib, x] = 0.

Later in [2] it was shown that in the above mentioned result the condition $o(|t|^{1/2})$ can not be replaced by $O(|t|^{1/2})$, however here the weakening of the condition [a,b] = 0 plays the central role.

In [3] the class Gr(A) with weakening condition [a,b]=0 was introduced.

In the present paper we consider the asymptotic cases of these results.

Let *A* be a Banach algebra with unit element **1** over the field of complex numbers \mathbb{C} (we assume that $\|\mathbf{1}\| = 1$ and $\|xy\| \le \|x\| \cdot \|y\|$ for all $x, y \in A$). \mathbb{C} – linear functional, then $\varphi : A \to \mathbb{C}$ is called a "state", if $\|\varphi\| = \varphi(\mathbf{1}) = 1$.

The set St(A) of all states forms $\sigma(A^*, A)$ -compact, convex subset of the dual space A^* . Note that (see [3, 4]) the element $\mathbf{h} \in A$ is called "hermitian", if $\varphi(\mathbf{h}) \subset \mathbb{R}$ for all $\varphi(\mathbf{h}) \in St(A)$, which is equivalent to the condition $\|\exp(it\mathbf{h})\| = 1$ for all real t. The set of all hermitian elements H(A) of the algebra A is a closed \mathbb{R} -linear subspace of the algebra A. Note that an element $a \in A$ is called hermitian-decomposable, if it allows a representation of the form $a = \mathbf{h} + i\mathbf{k}$, where $\mathbf{h}, \mathbf{k} \in H(A)$. Such a representation if exists is unique. The class of all hermitian-decomposable elements of algebra A is denoted by $H_{\mathbb{C}}(A)$, and it is

^{*} E-mail: karakhanyan@yahoo.com

closed, \mathbb{C} -linear subspace of A, which appears to be at the same time a Lie algebra with respect to commutator.

Let's choose a local convex topology τ on algebra A, satisfying the following properties: the mapping $(A, \|\cdot\|) \to (A, \tau)$ is continuous, the multiplication is separately τ -continuous. Note that standard topologies in algebras of operators do have these properties. Remember (see [3]), that an element $a \in A$ belongs to class Gr(A), if there exists an element $b \in A$ such that

$$\max\left\{\left\|\exp(-\lambda b)\cdot\exp(\overline{\lambda}a)\right\|;\left\|\exp(-\overline{\lambda}a)\cdot\exp(\lambda b)\right\|\right\}=o(\left|\lambda\right|^{1/2}) \text{ for } \left|\lambda\right|\to\infty, \lambda\in\mathbb{C}.$$

Theorem 1. Let A be a complex Banach algebra with unit element, on which the above mentioned local-convex topology τ is defined. Then for each neighborhood $U \subset A$ of zero in topology τ , there exists a neighborhood $V \subset A$ of zero in the same topology τ , such that if $x \in A$, $||x|| \le 1$, $a \in Gr(A)$, $[a,x] \in V$, then $[b,x] \in U$.

Proof. Let q be a continuous algebraic semi-norm on $\{A, \tau\}$ and $\varepsilon > 0$. We have to point out in the topology τ a neighborhood V of zero, such that if $||x|| \le 1$ and [a,x] = V, then $[b,x] \in U$. We assume $q(x) \le ||x||$ and $||a|| \le 1$, $||b|| \le 1$ for all $x \in A$.

Let φ be an arbitrary linear functional on A, and $|\varphi(x)| \le q(x)$ for all $x \in A$. Let consider the following entire function $f_{\varphi}(\lambda) = \varphi(\exp(-\lambda b) \cdot x \cdot \exp(\lambda b))$, which can be represented as

$$f_{\varphi}(\lambda) = \varphi \Big(\exp(-\lambda b) \cdot \exp(\overline{\lambda}a) \cdot x \cdot \exp(-\overline{\lambda}a) \cdot \exp(\lambda b) \Big) - \varphi \Big(\exp(-\lambda b) \cdot \Big(\exp(\overline{\lambda}a) \cdot x - x \cdot \exp(\overline{\lambda}a) \Big) \cdot \exp(-\overline{\lambda}a) \exp(\lambda b) \Big).$$

Then

$$\begin{split} \left| f_{\varphi}(\lambda) \right| &\leq \left| \varphi \Big(\exp(-\lambda b) \cdot \exp(\overline{\lambda}a) \cdot x \cdot \exp(-\overline{\lambda}a) \cdot \exp(\lambda b) \Big) \right| + \\ &+ \left| \varphi \Big(\exp(-\lambda b) \cdot \Big(\exp(\overline{\lambda}a) \cdot x - x \cdot \exp(\overline{\lambda}a) \Big) \cdot \exp(-\overline{\lambda}a) \exp(\lambda b) \Big) \right| \leq \\ &\leq q \Big(\exp(-\lambda b) \cdot \exp(\overline{\lambda}a) \cdot x \cdot \exp(-\overline{\lambda}a) \cdot \exp(\lambda b) \Big) + \\ &+ q \Big(\exp(-\lambda b) \cdot \Big(\exp(\overline{\lambda}a) \cdot x - x \cdot \exp(\overline{\lambda}a) \Big) \cdot \exp(-\overline{\lambda}a) \exp(\lambda b) \Big) \leq \\ &\leq o(|\lambda|) + q([a,x]) |\lambda| o(|\lambda|^{1/2}) e^{2|\lambda|}. \end{split}$$

Due to the Cauchy integral formula

$$f_{\varphi}'(0) = \frac{1}{2\pi i} \int_{\gamma_r} \frac{f_{\varphi}(\lambda)}{\lambda^2} d\lambda,$$

where γ_r is a circumference with radius r and with centre in the origin of coordinates. Since $f_{\varphi}(0) = -\varphi([b,x])$, we have $|\varphi([b,x])| \le \frac{o(r)}{r} + \frac{o(r)}{r}$ $+q([a,x])o(\sqrt{r})e^{2r}. \quad \text{Since} \quad q([b,x]) = \sup\{|\varphi([b,x])| : \varphi \in S\}, \quad \text{where} \\ S = \{\varphi \in A^* : |\varphi(x)| \le p(x) \text{ for all } x \in A\}, \text{ we get}$

$$q([b,x]) \le \frac{o(r)}{r} + q([a,x])o(\sqrt{r})e^{2r}.$$

Let's choose for $\varepsilon > 0$ a radius *r* such that $\frac{o(r)}{r} < \frac{\varepsilon}{2}$ and $\delta < \frac{\varepsilon}{o(\sqrt{r})}e^{-2r}$.

Therefore, if $q([a,x]) < \delta$, then $q([b,x]) < \varepsilon$, i.e. $[b,x] \in U$.

As a consequence we obtain the following results.

Theorem 2. Let A be a complex Banach algebra with unit element, and $a \in Gr(A)$. Then for every $\varepsilon > 0$ there exists $\delta > 0$, such that if $x \in A ||x|| \le 1$ and $||[a,x]|| < \delta$, then $||[b,x]|| < \varepsilon$.

Proof. The proof follows from Theorem 1, if instead of topology τ one takes the topology of the norm on algebra A.

Corollary 1. Let *A* be a complex Banach algebra with unit element and $a \in Gr(A) \cap H_{\mathbb{C}}(A)$. Then for every $\varepsilon > 0$ there exists $\delta > 0$, such that if $x \in A, ||x|| \le 1$ and $||[a,x]|| < \delta$, then $||[a^+,x]|| < \varepsilon$.

Using Theorem 1, we can prove the following result.

Theorem 3. Let A be a complex Banach algebra with unit element, on which the above mentioned local-convex topology τ is defined. Then for each neighborhood $U \subset A$ of zero in the topology τ , there exists a neighborhood $V \subset A$ of zero in the same topology τ , such that if $x \in A$, $||x|| \le 1$, $a \in Gr(A)$ and $ax - xb \in V$, then $bx - xa \in U$.

As in the proof of Theorem 1, for an arbitrary linear functional φ on A, for which $|\varphi(x)| < q(x)$ for all $x \in A$, we consider an entire function $F_{\varphi}(\lambda) = \varphi \Big(\exp(-\lambda b) x \exp(\overline{\lambda} a) \Big).$

Then

$$F_{\varphi}(\lambda) = \varphi \Big(\exp(-\lambda b) \exp(\lambda a) \cdot x \cdot \exp(-\overline{\lambda}b) \exp(\lambda a) \Big) - -\varphi \Big(\exp(-\lambda b) \Big(\exp(\overline{\lambda}a) \cdot x - x \cdot \exp(\overline{\lambda}b) \Big) \exp(-\overline{\lambda}b) \exp(\lambda a) \Big),$$

and we get a similar estimation

$$|F_{\varphi}(\lambda)| \le o(|\lambda|) + |\lambda| o(\sqrt{|\lambda|})q(ax-xb)e^{2|\lambda|}$$

Finally we have

$$q(ax-xb) \leq \frac{o(r)}{r} + q(ax-xb)o(\sqrt{r})e^{2r},$$

which proves the Theorem 3.

In the case, when the topology τ coincides with the topology of the norm on A, the following statement holds.

Theorem 4. Let *A* be a complex Banach algebra with unit element and $a \in Gr(A)$. Then for every $\varepsilon > 0$ there exists $\delta > 0$, such that if $x \in A ||x|| \le 1$ and $||ax - xb|| < \delta$, then $||bx - xa|| < \varepsilon$.

Corollary 2. Let A be a complex Banach algebra with unit element and $a \in Gr(A) \cap H_{\mathbb{C}}(A)$. Then for every $\varepsilon > 0$ there exists $\delta > 0$, such that if $x \in A ||x|| \le 1$ and $||ax - xa^+|| < \delta$, then $||a^+x - xa|| < \varepsilon$.

Received 19.11.2008

REFERENCES

- 1. Gorin E.A., Karakhanyan M.I. Matem. Zametki, 1977, v. 22, № 2, p. 179–188 (in Russian).
- 2. Gorin E.A. Algebra i Analiz, AN RF 1993, v. 5, № 5, p. 83–97 (in Russian).
- 3. Karakhanyan M.I. Izv. NAN Armenii. Matematika, 200, v. 42, № 3, p. 49–54 (in Russian).
- 4. Karakhanyan M.I. Funct. Anal. i Priloj., 2005, v. 39, № 4, p. 80–83 (in Russian).

Մեկ դիտողություն կոմուտատորների ասիմպտոտային հատկության վերաբերյալ

Տվյալ աշխատանքում ուժեղացվում է ֆոն Նեյմանի և Ֆուգլեդեի դասական թեորեմի ասիմպտոտային տարբերակը կոմպլեքս բանախյան հանրահաշվի տարրերի համար։

Одно замечание об асимптотическом свойстве коммутаторов

В настоящей работе усиливается асимптотический вариант классической теоремы фон Неймана–Фугледе для элементов комплексной банаховой алгебры.