Physical and Mathematical Sciences

2009, № 3, p. 58–60

COMMUNICATIONS

Mathematics

ON SYMMETRIC SUBALGEBRAS IN BANACH ALGEBRA

M. I. KARAKHANYAN*, T. M. KHUDOYAN

Chair of Differential Equations, YSU

Symmetric subalgebras of a complex Banach algebra are studied with the help of von Neiman–Fuglede Theorem. The result is closely related to the problems of approximation theory.

Keywords: symmetric Banach algebra.

Let A be a Banach algebra with unity **1** over the field of complex numbers $\mathbb{C}([1,2])$.

Note that \mathbb{C} is a linear functional $\psi: A \to \mathbb{C}$ called a *state*, if $\|\psi\| = \psi(\mathbf{1}) = 1$. The set St(A) of all states is $\sigma(A^*, A)$ a compact, convex subset of the conjugate space A^* .

A convex compact

$$V(a) = \{ \psi(a) \in \mathbb{C} : \psi \in St(A) \}$$

is called (algebraic) numerical image of element $a \in A$. Taking into account the fact, that $V(a) = \bigcap_{z \in \mathbb{C}} \Delta(z; ||z\mathbf{1} - a||)$, where $\Delta(z; ||z\mathbf{1} - a||) = \{\xi \in \mathbb{C} : |\xi - z| \le ||z\mathbf{1} - a||\}$, it is easy to see, that $sp(a) \subset V(a)$ holds for any

element $a \in A$. Here sp(a) is the spectrum of the element $a \in A$.

Element $\mathbf{h} \in A$ is called "harmitian" if $V(\mathbf{h}) \subset \mathbb{P}$, where \mathbb{P} is the field of

Element $\mathbf{h} \in A$ is called "hermitian", if $V(\mathbf{h}) \subset \mathbb{R}$, where \mathbb{R} is the field of real numbers. The set H(A) of the all hermitian elements in algebra A is a closed \mathbb{R} -linear subset in A.

The condition $\mathbf{h} \in H(A)$ is equivalent to $\|\exp(it\mathbf{h})\| = 1$ for all $t \in \mathbb{R}$. The equality $\|\mathbf{h}\| = \rho(\mathbf{h})$ holds for any \mathbf{h} hermitian element, where $\rho(\mathbf{h})$ is the spectral radius of the element \mathbf{h} . The latter equality is equivalent to the classical S.N. Bernstein inequality for the derivative of an exponential type entire function bounded on the real axis (see [3–6]).

-

^{*} E-mail: karakhanyan@yahoo.com

Note that an element $a \in A$ is called "hermitian"-expandable, if it may be represented as $a = \mathbf{h} + i\mathbf{k}$, where $\mathbf{h}, \mathbf{k} \in H(A)$. If there is such a representation, then it is unique. The system of all expandable elements of the A-algebra is a \mathbb{C} -linear closed subspace in algebra A, which is denoted as $H_{\mathbb{C}}(A)$.

The element $a = \mathbf{h} + i\mathbf{k}$ under condition $[\mathbf{h}, \mathbf{k}] = \mathbf{h}\mathbf{k} - \mathbf{k}\mathbf{h} = 0$ is called a normal element of the algebra A, and the element $a^+ = \mathbf{h} - i\mathbf{k}$ is called its "conjugate" element.

It is easy to see, that for any normal element $a \in A$ there holds $V(a) = \langle sp(a) \rangle$, where $\langle sp(a) \rangle$ is a convex spectrum shell of the element $a \in A$.

Proposition 1. If $\mathbf{h}, \mathbf{k} \in H(A)$, then for m = 1, 2, ... it holds $i^m[\mathbf{h}, [\mathbf{h}, ..., [\mathbf{h}, \mathbf{k}]...]] \in H(A)$.

Proof. Let $\varphi \in St(A)$ and $t \in \mathbb{R}$. We consider a functional φ_t , defined by formula

$$\varphi_t(x) = \varphi \left[\exp(it\mathbf{h}) \cdot x \cdot \exp(-it\mathbf{h}) \right].$$

It follows from the definition that $\varphi_t \in St(A)$ for any $t \in \mathbb{R}$. It means that for $\mathbf{k} \in H(A)$ we have $\varphi_t(\mathbf{k}) \in \mathbb{R}$. On the other hand, since

$$\exp(it\mathbf{h}) \cdot x \cdot \exp(-it\mathbf{h}) = x + it[\mathbf{h}, x] + \frac{(it)^2}{2!} [\mathbf{h}, [\mathbf{h}, x]] + \dots + \frac{(it)^m [\mathbf{h}, [\mathbf{h}, \dots, [\mathbf{h}, x] \dots]]}{m!} + \dots,$$

then
$$\varphi_t(x) = \sum_{m=0}^{\infty} \frac{(it)^m \varphi([\mathbf{h}, [\mathbf{h}, \dots, [\mathbf{h}, x] \dots]])}{m!}$$
. Therefore,

$$\frac{d^m \varphi_t(\mathbf{k})}{dt^m}\bigg|_{t=0} = \varphi\Big(i^m \Big[\mathbf{h}, \Big[\mathbf{h}, \dots, \Big[\mathbf{h}, \mathbf{k}\Big] \dots \Big]\Big]\Big) \in \mathbb{R} \text{ , and so } i^m \Big[\mathbf{h}, \Big[\mathbf{h}, \dots, \Big[\mathbf{h}, \mathbf{k}\Big] \dots \Big]\Big] \text{ is an}$$

hermitian element.

Proposition 2. If $\mathbf{h} \in H(A)$ and $\mathbf{h}^2 \in H_{\mathbb{C}}(A)$, then $\mathbf{h}^2 \in H(A)$.

Proof. Assume $\mathbf{h}^2 = \mathbf{p} + i\mathbf{q}$, where $\mathbf{p}, \mathbf{q} \in H(A)$. But then $\mathbf{h}(\mathbf{p} + i\mathbf{q}) = (\mathbf{p} + i\mathbf{q})\mathbf{h}$, whence it follows that $[\mathbf{h}, \mathbf{p}] = i[\mathbf{q}, \mathbf{h}]$. According to Proposition 1, $[\mathbf{h}, \mathbf{p}]$ and $i[\mathbf{h}, \mathbf{p}]$ are hermitian elements, therefore, $[\mathbf{h}, \mathbf{p}] = 0$ and analogously $[\mathbf{h}, \mathbf{q}] = 0$. It means that $[\mathbf{h}, \mathbf{q}] = 0$ and the element \mathbf{h}^2 is a normal element. Taking into account that $V(\mathbf{h}^2) = \langle sp(\mathbf{h}^2) \rangle$, we have $V(\mathbf{h}^2) \subset \mathbb{R}$ and hence $\mathbf{h}^2 \in H(A)$.

Note that for a hermitian element ${\bf h}$, the element ${\bf h}^2$ may be non-expandable.

A set $S \subset H_{\mathbb{C}}(A)$ is called a *normal* set, if S is a commutative subset in algebra A, and each element in S is a normal element of the algebra A.

Theorem. Let B be a maximal normal subset in algebra A. Then B is a closed commutative and symmetric with respect to "conjugation" subalgebra in algebra A.

Proof. First of all we show, that if $a \in A$ is a normal element, and [a,b] = 0 for any $b \in B$, then $a,a^+ \in B$. Indeed, since [a,b] = 0, according to the von Neiman–Fuglede Generalized Theorem [7, 8], we have $a^+b = ba^+$. But then the set $\{a,a^+\}\cup B$ is a normal set, and since maximal normal set, then $a, a^+ \in B$. Now let us show that B is closed. Let $a \in B$. Then there exists a sequence of elements $\{a_n\} \subset B$ such that $a_n \to a \ (n \to \infty)$. Since $[a_n, b] = 0$, then according to the above-mentioned von Neiman-Fuglede Theorem, conditions $[a_n^+, b] = 0$, $[a_n, b^+] = 0$ hold for each $b \in B$. If $a_n = \mathbf{h}_n + i\mathbf{k}_n$, then $a_n - a_m = (\mathbf{h}_n - \mathbf{h}_m) + i(\mathbf{k}_n - \mathbf{k}_m)$. Since $\|\mathbf{h}_n - \mathbf{h}_m\| \le 2\|a_n - a_m\|$, $\|\mathbf{k}_n - \mathbf{k}_m\| \le 2\|a_n - a_m\|$, then due to the completeness of H(A) there exist limits $\mathbf{h} = \lim_{n} \mathbf{h}_{n}$, $\mathbf{k} \lim_{n} \mathbf{k}_{n}$ and $\mathbf{h}, \mathbf{k} \in H(A)$. Since $[\mathbf{h}_n, \mathbf{k}_n] = 0$ for each natural n, then $[\mathbf{h}, \mathbf{k}] = 0$ as $n \to \infty$. Due to the fact that $a_n = \mathbf{h}_n + i\mathbf{k}_n$ and $\mathbf{h}_n \to \mathbf{h}$, $\mathbf{k}_n \to \mathbf{k}$, we have $a_n \to a = \mathbf{h} + i\mathbf{k}$, where $a \in A$ is a normal element. Since $[a_n,b]=0$, $[a_n^+,b]=0$, $[a_n,b^+]=0$ for any $n \in \mathbb{N}$, then [a,b] = 0, $[a^+,b] = 0$, $[a,b^+] = 0$ as $n \to \infty$. Since B is the maximal subset, we have $a, a^+ \in B$.

It is clear that if $a,b \in B$ then since B = Z(Z(B)), a+b and ab belong to B. Thus, B is a closed, commutative and symmetric with respect to "conjugation" subalgebra in algebra A.

Corollary 4. Let B be a maximal normal subset in algebra A. Then for any $a \in B$ holds $sp_A(a) = sp_B(a)$.

The proof follows from Theorem.

Received 27.03.2009

REFERENCES

- 1. Rudin W. Functional Analysis. M.: Mir, 1975 (in Russian).
- 2. Naimark M.A. Normed Rings. M.: Nauka, 1968 (in Russian).
- 3. Akhiezer N.I. Lectures on the Approximation Theory. M.: Nauka, 1965 (in Russian).
- Asatryan H.A., Khachatryan I.G., Karakhanyan M.I., Kamalyan A.H. Banach Algebras and Spectral Theory. Yerevan State University Publisher, 2008, 251 p. (in Russian).
- 5. Gorin E.A. Vestnik Kharkov. Univ., Series Prikl. Math. i Mekh., 1980, v. 45, № 205, p. 77–105.
- 6. Gorin E.A. Functional Analysis and Its Applications, 2005, v. 39, № 4, p. 14–31.
- 7. **Karakhanyan M.I.** Functional Analysis and Its Applications, 2005, v. 39, № 4, p. 80–83 (in Russian).
- 8. Karakhanyan M.I. Izv. NAN Armenii. Matematika, 2007, v. 42, № 3, p. 49–54.

Բանախյան հանրահաշվի սիմետրիկ ենթահանրահաշիվների մասին

Աշխատանքում ուսումնասիրվում են կոմպլեքս բանախյան հանրա-հաշվի համար սիմետրիկ ենթահանրահաշիվները ֆոն Նեյման–Ֆուգլեդեի թեորեմի օգնությամբ։ Այս արդյունքը սերտորեն կապված է մոտարկման տեսության հարցերի հետ։

О симметричных подалгебрах в банаховой алгебре

В работе исследуются симметричные подалгебры в банаховой алгебре с помощью обобщенной теоремы фон Неймана–Фугледе. Этот результат тесно связан с вопросами теории аппроксимации.