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In the present paper the Neumann problem for the equation
Lu E(t“u”)” +au=f, where 0<a <4, te[0,b], feL/(0,b), is considered.

Firstly, the weighted Sobolev space W and generalized solution for the above-

mentioned equation are defined. Then, the existence and uniqueness of the gene-
ralized solution is studied, as well as the spectrum and the domain of correspon-
ding operator are described.

Keywords: Neumann problem, weighted Sobolev spaces, generalized solution,
spectrum of linear operators.

The Problem Formulation. Consider the Neumann problem for the
following ordinary differential equation of the fourth order

LuE(t“u")”-i-au:f, (1)
where 0<a <4, t<[0,b], f€L,(0,b), a=const.
Define the weighted Sobolev space W and consider behavior of functions

from W in neighborhood of # =0. Then we define the generalized solution to the
Neumann problem for the equation (1). Under some conditions on factor a we have
to prove the existence and uniqueness of the generalized solution. Moreover, we
have to give a description of the spectrum of operator L and the operator
domain D(L) . Note that the Dirichlet problem for degenerate ordinary differential
equations of second and fourth orders have been considered in [1, 2] and for higher
orders — in [3].

The Space Wa2 . Let >0 and ¢ belong to the finite interval (0,b).

Consider the set W of the functions u(¢), which have generalized derivative of
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u'(0)f dt is finite.

b
the second order, such that the following semi-norm ||u||1 = I t*
0

First note, that for the functions ueW_ for every t, (0,b] there exist finite
values u(f,) and u'(¢,) (see [3]). Below we study the behavior of functions u(z)
and u'(¢) in neighborhood of #=0.

Proposition 1. For u e Wm2 the following inequalities hold:
|u(t)|2 <(q +czt3_“)||u 12, a#l, a3, )
ulf ,a=1. 3)

In (2) £*is replaced with |1nt| for o =3, — with t2|1nt| for a =1.

|u'(z‘)|2 <(c +e,t %)

In (3) ¢ is replaced with |1n t| .
The proof is carried out analogously to those in [2] and [4]. Namely we use
t
the representation u(f) =u(f,) + I u'(t)dt and apply the Cauchy inequalities.
)

From Proposition 1 it follows that for 0<a <1 (weak degeneration) the
values u(0) and u'(0)are finite, for | <a <3 only u(0) is finite, while for o >3
both u#(0) and u'(0)may turn to infinity. From the inequality (2) for 0<a <4
we get the inequality

< c||u

e 2 “)

L,(0,b)

i.e. we have the following inclusion
W; < L(0.b). (5)
Inclusion (5) is true also for a =4. Indeed, using Hardy’s inequality

(see [5]), we get

b 2 b
flucof ae=]
0 0

2

u(b)+fu'(f)dr

b
dt <c[|u'()| dt,
0

2

b b
[21u' @ de=(e
a 0

u'(b) +jiu”(r)dr

b
dt < (¢, +cy)[t* u" () dt .
0
!
Inclusion (5) for o >4 doesn’t hold. Indeed, the function wu(¢)=t¢ ?

belongs to W, for a>4, but ugL,(0,b). Therefore, to remain in frames of
L,(0,b), we further assume that 0<a <4.Now we can define the following

norm in W] :

e

2 b 2 2
V=] (r“ (O +|uo) )dt . (6)
0

The space W’ is a Hilbert space with scalar product

(u,v), =("u",v") +(u,v), where () stands for the scalar product inL,(0,b).

Obviously, for 0 <a <4 we have the following inequality
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||u < c"u

ye- (7)

Proposition 2. The inclusion (4) for 0<a <4 is compact.
Indeed, using inequality (3) we get

L,(0,b)

b b 2
2

Jute+ By =u @)} 5., = [t + 1) u()| dt =

0 0

t+h
I u'(t)dr

t

dt <

2 , W eV
f o =t -1 |
0

2

b
<]
0

+h l-a
I (\/Z+c3t 2 ]dr

3—

3-a i3
(t+h)2 —t2

de |-l < el [l

b
< c5|h|+2c4j
0

i.e. we have the following inequality: ||u(t +h)—u(t)

Sc”u

L,(0.0) W'

The result now follows from the pre-compactness criterion in L, (0,0) . Note
also that for a =4 the continuous inclusion (5) is not compact (see [1]).

The Neumann Problem.

Definition 1. The function u €W, is called the generalized solution to
Neumann problem for equation (1), if for every v e Wm2 we have the equality
@ u" VY +a(u,v)=(f,v). (8)
Note that, if the generalized solution u € W is classical, then for a =0 we
get the following conditions (see [6]): u"(0)=u"(0)=u"(b)=u"(b)=0. Consider
the particular case of the equation (1) when a=1.

Buz(t“u")” +u=f. ©)

Proposition 3. For every f €L,(0,b)the generalized solution of Neumann
problem for equation (9) exists and is unique.

Proof. Uniqueness of the generalized solution of equation (9) immediately
follows from equality (8) (with a=1), if we put =0 and v=u. To prove the

existence define the functional /,(v)=(f,v), f €L,(0,b), over the space w?.
Using the inequality (7) we get

<[

iz(o,b) < C"f

Lon Lon
L,(0,b) Y L,(0,b) v w2>

o) = ‘ff(r)@dr

L.e. [,(v) is a linear continuous functional over the space Wm2 . Using Riesz lemma

on representation we get /,(v) =(uy,v),, Uy € Wm2 . Therefore, the function u, is

the generalized solution to equation (9) (see [1]).
Define the operator B:L,(0,6) = L,(0,b) corresponding to Definition 1.
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Definition 2. We say that the function u Wm2 belongs to the domain D(B)
of operator B, if there exists f € L,(0,b) such that the equality (7) is valid. In this
case we write Bu= f.

Theorem 1. The operator B:L,(0,b) = L,(0,b) is positive and self-
adjoint. The bounded operator B~ : L, (0,b) — L,(0,b) for 0<a <4 is compact.

Proof. The symmetry and positivity of operator B is a direct consequence of
Definition 2. The coincidence of D(B) and D(B") (B" is the adjoint to operator
B) follows from the existence of a generalized solution of (9) for every
f €L,(0,b) (see Proposition 3). Note that Definition 2 implies the inequality

<c |Bu|| Compactness of the operator B~' for 0<a <4 now follows

i

w2 L,(0,6) "

from the Proposition 2.

Corollary. For 0<a <4 the operator B has discrete spectrum, and its
eigenfunction system is complete in f € L, (0,b) (see [7]).

Note that now we can rewrite the equation (1) in the form Bu=(1-a)u+ f,
i.e. we can refer the number 1—a as a spectral parameter.

Theorem 2. The domain of operator L consists of functions u(z,) for
which ©(0) is finite when 0<a <7/2 and u'(0) is finite for 0<a <2. The values
u(0) and u'(0) can not be specified arbitrarily, but are determined by the right-
hand side of (1).

Proof. Since D(L)=D(L—al), it is sufficient to study the properties of
Neumann problem for equation

(¢ru') = 1. (10)
Let 1<a <2. The derivative of the general solution to equation (10) has

the following form:
t

w(n=c +et”™ +| r'“](f —n)f(n)dndr.

0

3 g
We have <ct? ”f"L,(o,b)'

[ [ ~m) fodndz
0 0

For o >2 the value u'(0), generally speaking, can be infinite. Now assume
3<a<7/2. Then we can write the solution in the following form:

th n
u(t)=c; +egt = [ [0 [(n-&)f (§)d&dndr .
07 0

Then we have

th n z_a é_a
.f.[n_a.[(n_é)f(é)dédﬂd‘[ <clt? _(%_ajbz t
0t 0

10

which completes the proof.
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L. M. Skthnjub, Fwpniy Lwjuin

Utjdwth jutmhpp snppnpy upgh unynpujub JEpuubpdnn ghptpkughuy
hwjwuwpnidutph hwudwp

Ushiwnwipmyd nhunwplynid £ Ulgdwih pughpp hbnlyuy hwduuupdw
hwdwp. Lu=(“u") +au=f, npnby 0<a<4, t€[0,b], feL,(0,b): Luu
nwhdwiymd & Unpnjbh Yopughtt wnwpwénipymip b wyn hwuuwpdwb
puphwipugqusé (nidnidp:  Ujunithtnb  hbknwgqnuymd o pinhwbpugyws

nsdwtt gnmipjut b Jhwimpjutt hwpgbpp, htpywbu twbh wpdmd Go
huwdwwywwnwupuwb oy kpwnnph uykwnph b npnodwt whpnyph tupwuqptpp:

JL. I1. Tenosin, Japrom KanBanyg

3anaua HeiimaHa 17151 00bIKHOBEHHOI'0 BbIp O3kAat0Ierocs 1ugdepeHmaibHOro
YPABHEHHUSI YeTBEPTOro MOPsAKa

B pabGore paccmarpuBaercs 3amaua Heiimanma s ypaBHEeHHs
Lu=(t"u") +au=f, tne 0<a <4, t€[0,b], feL,(0,b). Cnauana mbl ompe-

JieisieM BecoBoe mpoctpanctBo CobolieBa Wm2 1 0000II[EHHOEe PEIICHUE JJIsi STOr0

ypaBHEHHUs. 3aTeM M3Yyd4aeTcs BOMPOC CYIIECTBOBAHMSA M E€JUHCTBEHHOCTH 0000-
LIEHHOTO pelIeHHs, a TaKKe JAIOTCS OMMCAaHUs CIEeKTpa M 00JacTH ONpeneneHus
JUISL COOTBETCTBYIOIIETO OIepaTopa.



