ON THE TYPE CORRECTNESS OF POLYMORPHIC λ-TERMS. 2

A. H. ARAKELYAN*

Chair of Programming and Information Thechnologies, YSU

Abstract

In this paper the polymorphic lambda terms are considered, where no type information is provided for the variables. The aim of this work is to prove that presented typification algorithm [1] typifies such terms in most common way.

Keywords: type, term, constraint, skeleton, expansion, principal typing.

1. Introduction. Types are used in programming languages to analyze programs without executing them, for purposes such as detecting programming errors earlier, for doing optimizations etc. In some programming languages no explicit type information is provided by the programmer, hence some system of type inference is required to recover the lost information and do compile time type checking. One of such type inference systems is the well known Hindley/Milner system [2], used in languages such as Haskell, SML, OCaml etc. An important property of the type systems is the property of principal typings [3, 4], which allows the compiler to do compositional analysis, i.e. analysis of modules in absence of information about other modules [3, 4]. Unfortunately the Hindley/Milner system doesn't support the property of principal typings [3]. This paper is the continuation of [1], in which we consider the extension of the type inference system called System E. In section 2 we prove that the type inference algorithm returns the principal typing of a term.

2. Principal Typing of a Term.

2.1. Preliminary Definitions and Facts. Before proving that the type inference algorithm returns the principal typing of a term let us present some definitions and facts.

Definition 2.1. Let $Q_{1}, Q_{2} \in$ Skeleton. Q_{1} and Q_{2} are equivalent, written $Q_{1} \approx Q_{2}, \quad$ iff $\quad \operatorname{term}\left(Q_{1}\right)=\operatorname{term}\left(Q_{2}\right), \quad$ typing $\left(Q_{1}\right)=$ typing $\left(Q_{2}\right), \quad$ constraint $\left(Q_{1}\right)=$ $=$ constraint $\left(Q_{1}\right) . \quad$ In other words, $Q_{1} \approx Q_{2}$, iff the judgements $\left(M \triangleright Q_{1}\right):(A \vdash \tau) / \Delta$ and $\left(M \triangleright Q_{2}\right):(A \vdash \tau) / \Delta$ are both inferable or not inferable.

Lemma 2.1. The following skeletons are equivalent:

1. $\left(Q_{1} \cap\left(Q_{2} \cap Q_{3}\right)\right) \approx\left(\left(Q_{1} \cap Q_{2}\right) \cap Q_{3}\right) ; 2$. $\left(Q_{1} \cap Q_{2}\right) \approx\left(Q_{2} \cap Q_{1}\right)$;
2. $\left(\omega^{M} \cap Q\right) \approx Q$; 4. $e\left(Q_{1} \cap Q_{2}\right) \approx\left(e Q_{1} \cap e Q_{2}\right)$; 5. $e \omega^{M} \approx \omega^{M}$,
where $Q_{1}, Q_{2}, Q_{3} \in$ Skeleton and $M \in$ Term and $e \in$ ExpansionVariable.
[^0]Let us consider the judgement $(M \triangleright Q):(A \vdash \tau) / \Delta$ that is inferable. In many cases we will consider the maximal subtrees of the inference tree of that judgement that have root node corresponding to one of the following type inference rules: [VAR], [CONST], [OMEGA], [ABS] and [APP].

Lemma 2.2. Let $(M \triangleright Q):(A \vdash \tau) / \Delta$ be an inferable judgement. Then there exist E-paths $e_{1}^{\prime}, \ldots, e_{n}^{\prime}$, environments $A_{1}, \ldots, A_{n}, Q_{1}, \ldots, Q_{n} \in$ Skeleton, $\tau_{1}, \ldots, \tau_{n} \in$ Type and $\Delta_{1}, \ldots, \Delta_{n} \in$ Constraint, $n \geq 1$, such that $Q \approx e_{1}^{\prime} Q_{1} \cap \ldots \cap e_{n}^{\prime} Q_{n}$, $A=e_{1}^{\prime} A_{1} \cap \ldots \cap e_{n}^{\prime} A_{n}, \quad \tau=e_{1}^{\prime} \tau_{1} \cap \ldots \cap e_{n}^{\prime} \tau_{n}, \quad \Delta=e_{1}^{\prime} \Delta_{1} \cap \ldots \cap e_{n}^{\prime} \Delta_{n} \quad$ and judgements $\left(M \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}, i=1, \ldots, n$, are inferable, and in the last step of inference of that judgements one of the following rules is used: [VAR], [CONST], [OMEGA], [ABS] and [APP].

A free occurrence of the subskeleton $x^{\tau \tau}$ in skeleton Q is defined in a conventional way, i.e. the occurrence of the subskeleton $x^{i \tau}$ in skeleton Q is called free, if it doesn't fall within the scope of a lambda that uses variable x, otherwise, the occurrence is called bounded. It is easy to see, that if the skeleton Q^{\prime} is obtained from the skeleton Q by renaming some term variables, then $Q \approx Q^{\prime}$. Let us introduce the following notations:

1. We denote by $Q\left\langle Q_{1}, \ldots, Q_{n}\right\rangle, n \geq 0$, the skeleton Q, in which mutually different subskeletons Q_{1}, \ldots, Q_{n} are considered.
2. We denote by $Q\left\langle Q_{1}:=Q_{1}^{\prime}, \ldots, Q_{n}:=Q_{n}^{\prime}\right\rangle, n \geq 0$, those skeletons that are obtained from the skeleton $Q\left\langle Q_{1}, \ldots, Q_{n}\right\rangle$ through substituting the subskeletons Q_{1}, \ldots, Q_{n} by $Q_{1}^{\prime}, \ldots, Q_{n}^{\prime}$ respectively. The substitution mentioned above is called canonical, iff all free occurrences of subskeletons in Q_{i} are also free in $Q\left\langle Q_{1}, \ldots, Q_{n}\right\rangle$, and all free occurrences of subskeletons in Q_{i}^{\prime} are also free in $Q\left\langle Q_{1}:=Q_{1}^{\prime}, \ldots, Q_{n}:=Q_{n}^{\prime}\right\rangle, i=1, \ldots, n$. Henceforth only canonical substitutions of skeletons will be considered.

Definition 2.2. Let $Q\left\langle Q^{\prime}\right\rangle \in$ Skeleton. Then the E-Path of the skeleton Q^{\prime} in Q, written as E-Path $\left(Q\left\langle Q^{\prime}\right\rangle\right)$, is calculated as follows:

1. If $Q=Q^{\prime}$, then E-Path $\left(Q\left\langle Q^{\prime}\right\rangle\right)=\varepsilon$;
2. If $Q=e Q_{1}$, and Q^{\prime} is a subskeleton of Q_{1}, then $E-\operatorname{Path}\left(Q\left\langle Q^{\prime}\right\rangle\right)=$ $=e E-P a t h\left(Q_{1}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1} \in$ Skeleton and $e \in$ ExpansionVariable;
3. If $Q=\left(\lambda x \cdot Q_{1}\right)$, and Q^{\prime} is a subskeleton of Q_{1}, then $\operatorname{E-Path}\left(Q\left\langle Q^{\prime}\right\rangle\right)=$ $=E-P a t h\left(Q_{1}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1} \in$ Skeleton and $x \in$ TermVariable ;
4. If $Q=\left(Q_{1} \cap Q_{2}\right)$, and Q^{\prime} is a subskeleton of Q_{1}, then $E-\operatorname{Path}\left(Q\left\langle Q^{\prime}\right\rangle\right)=$ $=E-\operatorname{Path}\left(Q_{1}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1}, Q_{2} \in$ Skeleton $;$
5. If $Q=\left(Q_{1} \cap Q_{2}\right)$, and Q^{\prime} is a subskeleton of Q_{2}, then E-Path $\left(Q\left\langle Q^{\prime}\right\rangle\right)=$
$=E-\operatorname{Path}\left(Q_{2}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1}, Q_{2} \in$ Skeleton ;
6. If $Q=\left(Q_{1} Q_{2}\right)^{\text {: }}$, and Q^{\prime} is a subskeleton of Q_{1}, then $E-\operatorname{Path}\left(Q\left\langle Q^{\prime}\right\rangle\right)=$ $=$ E-Path $\left(Q_{1}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1}, Q_{2} \in$ Skeleton and $\tau \in$ Type ;
7. If $Q=\left(Q_{1} Q_{2}\right)^{: \tau}$, and Q^{\prime} is a subskeleton of Q_{2}, then E-Path $\left(Q\left\langle Q^{\prime}\right\rangle\right)=$ $=E-P a t h\left(Q_{2}\left\langle Q^{\prime}\right\rangle\right)$, where $Q_{1}, Q_{2} \in$ Skeleton and $\tau \in$ Type .

Let us present some simple propositions without proof.
Proposition 2.1. Let $Q \in$ Skeleton and type $(Q)=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}, n \geq 1$, where $\tau_{1}, \ldots, \tau_{n} \in$ Type and $\vec{e}_{1}, \ldots, \vec{e}_{n}$ are E-Paths. Then $\exists Q_{1}, \ldots, Q_{n} \in$ Skeleton such that $Q \approx \vec{e}_{1} Q_{1} \cap \ldots \cap \vec{e}_{n} Q_{n}$ and type $\left(Q_{i}\right)=\tau_{i}, i=1, \ldots, n$.

Proposition 2.2. Let $Q\left\langle Q_{1}, \ldots, Q_{n}\right\rangle \in$ Skeleton, $n \geq 0$, and $Q_{1}^{\prime}, \ldots, Q_{n}^{\prime} \in$ Skeleton. Then if type $\left(Q_{i}\right)=$ type $\left(Q_{i}^{\prime}\right) \quad \forall i=1, \ldots, n, \quad$ then type $\left(Q\left\langle Q_{1}, \ldots, Q_{n}\right\rangle\right)=$ type $\left(Q\left\langle Q_{1}:=Q_{1}^{\prime}, \ldots, Q_{n}:=Q_{n}^{\prime}\right\rangle\right)$.

Proposition 2.3. Let $Q\left\langle x^{: \tau_{1}}, \ldots, x^{: \tau_{n}}\right\rangle \in$ Skeleton and only subskeletons $x^{: \tau_{1}}, \ldots, x^{: \tau_{n}}$ have free occurrence in Q and $Q_{1}, \ldots, Q_{n} \in$ Skeleton, where $x \in$ TermVariable and $\tau_{1}, \ldots, \tau_{n} \in$ Type, $n \geq 0$. Then if $\operatorname{term}\left(Q\left\langle x^{: \tau_{1}}, \ldots, x^{: \tau_{n}}\right\rangle\right)=M_{1}$ and $\quad \operatorname{term}\left(Q_{i}\right)=M_{2} \quad \forall i=1, \ldots, n, \quad$ then $\quad \operatorname{term}\left(Q\left\langle x^{: \tau_{1}}:=Q_{1}, \ldots, x^{: \tau_{n}}:=Q_{n}\right\rangle\right)=$ $=M_{1}\left[x:=M_{2}\right]$.

Proposition 2.4. Let $Q\left\langle x^{: \tau}\right\rangle \in$ Skeleton and $Q^{\prime} \in \operatorname{Skeleton}$ and type $\left(Q^{\prime}\right)=\tau$, where $\quad \tau \in$ Type and $x \in$ TermVariable. Then constraint $\left(Q\left\langle x^{: \tau}:=Q^{\prime}\right\rangle\right)=$ $=$ constraint $\left(Q\left\langle x^{: \tau}\right\rangle\right) \cap E$-Path $\left(Q\left\langle x^{i \tau}\right\rangle\right)$ constraint $\left(Q^{\prime}\right)$.

Let us consider the term $M \notin \beta-N F$ and one step of β-reduction: $M \rightarrow{ }_{\beta} M^{\prime}$. Now we are going to show that if $(A \vdash \tau)$ is a typing of term M, then it is also a typing of term M^{\prime}.

Lemma 2.3. Let $Q\left\langle x^{: \tau_{1}}, \ldots, x^{: \tau_{n}}\right\rangle \in$ Skeleton and only subskeletons $x^{: \tau_{1}}, \ldots, x^{: \tau_{n}}$ have free occurrence in Q and $\vec{e}_{i}=E-\operatorname{Path}\left(Q\left\langle x^{: \tau_{i}}\right\rangle\right), i=1, \ldots, n$, where $\tau_{1}, \ldots, \tau_{n} \in$ Type and $x \in$ TermVariable, $n \geq 0$. Then $\operatorname{env}(Q)(x)=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$.

Proof. By induction on form of skeleton Q.

1. Let $Q=\omega^{M}$, where $M \in \operatorname{Term}$. We must show that $\operatorname{env}(Q)(x)=\omega$. By the rule [OMEGA], $\operatorname{env}(Q)=e n v_{\omega} \Rightarrow e n v(Q)(x)=\omega$.
2. Let $Q=c^{: \tau}$, where $c \in$ Constant and $\tau \in$ Type. We must show that $e n v(Q)(x)=\omega$. By the rule [CONST], $\operatorname{env}(Q)=e n v_{\omega} \Rightarrow e n v(Q)(x)=\omega$.
3. Let $Q=y^{i \tau}$, where $x \neq y \in$ TermVariable and $\tau \in$ Type. We must show that $\operatorname{env}(Q)(x)=\omega$. By the rule $[\operatorname{VAR}], \operatorname{env}(Q)=e n v_{\omega}[y \rightarrow \tau] \Rightarrow e n v(Q)(x)=\omega$.
4. Let $Q=x^{i \tau}$, where $\tau \in$ Type. We must show that $\operatorname{env}(Q)(x)=\tau$. By the rule $[\operatorname{VAR}], \operatorname{env}(Q)=e n v_{\omega}[x \rightarrow \tau] \Rightarrow \operatorname{env}(Q)(x)=\tau$.
5. Let $Q=e Q^{\prime}$, where $e \in$ ExpansionVariable and $Q^{\prime} \in$ Skeleton. Assume that only subskeletons $x^{\tau_{1}}, \ldots, x^{\tau_{n}}$ have free occurrence in Q^{\prime} and $\vec{e}_{i}^{\prime}=E$-Path $\left(Q^{\prime}\left\langle x^{\tau \tau_{i}}\right\rangle\right)$, where $i=1, \ldots, n, n \geq 0$. We must show that $\operatorname{env}(Q)(x)=$ $=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$. By induction hypothesis, env $\left(Q^{\prime}\right)(x)=\vec{e}_{1}^{\prime} \tau_{1} \cap \ldots \cap \vec{e}_{n}^{\prime} \tau_{n}$. By the rule $\quad[\mathrm{E}-\mathrm{VAR}], \quad \operatorname{env}(Q)=\operatorname{eenv}\left(Q^{\prime}\right) \Rightarrow \operatorname{env}(Q)(x)=e e n v\left(Q^{\prime}\right)(x)=e\left(\vec{e}_{1}^{\prime} \tau_{1} \cap\right.$ $\left.\ldots \cap \vec{e}_{n}^{\prime} \tau_{n}\right)=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$.
6. Let $Q=\left(\lambda y \cdot Q^{\prime}\right)$, where $y \in$ TermVariable and $Q^{\prime} \in$ Skeleton. Assume that only subskeletons $x^{\cdot \tau_{1}}, \ldots, x^{\tau_{n}}$ have free occurrence in Q^{\prime} and $\vec{e}_{i}^{\prime}=E$-Path $\left(Q^{\prime}\left\langle x^{\tau_{i}}\right\rangle\right)$, where $i=1, \ldots, n, n \geq 0$. We must show that $\operatorname{env}(Q)(x)=$ $=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$. By induction hypothesis, env $\left(Q^{\prime}\right)(x)=\vec{e}_{1}^{\prime} \tau_{1} \cap \ldots \cap \vec{e}_{n}^{\prime} \tau_{n}$. By the rule $[\mathrm{ABS}], \operatorname{env}(Q)=\operatorname{env}\left(Q^{\prime}\right)[y \rightarrow \omega] \Rightarrow \operatorname{env}(Q)(x)=\operatorname{env}\left(Q^{\prime}\right)(x)=$ $=\vec{e}_{1}^{\prime} \tau_{1} \cap \ldots \cap \vec{e}_{n}^{\prime} \tau_{n}=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$.
7. Let $Q=\left(\lambda y \cdot Q^{\prime}\right)$, where $Q^{\prime} \in$ Skeleton. We must show that $\operatorname{env}(Q)(x)=\omega$. By the rule $[\mathrm{ABS}], \operatorname{env}(Q)=\operatorname{env}\left(Q^{\prime}\right)[x \rightarrow \omega] \Rightarrow \operatorname{env}(Q)(x)=\omega$.
8. Let $Q=\left(Q_{1} \cap Q_{2}\right)$, where $Q_{1}, Q_{2} \in$ Skeleton. Assume that only subskeletons $x^{\tau \tau_{1}^{\prime}}, \ldots, x^{\tau_{m}^{\prime}}$ have free occurrence in Q_{1} and only subskeletons $x^{\tau_{1}^{\prime \prime}}, \ldots, x^{\tau_{k}^{\prime \prime}}$ have free occurrence in Q_{2}, and $\vec{e}_{i}^{\prime}=E$-Path $\left(Q_{1}\left\langle x^{\left.\cdot x_{i}^{\prime}\right\rangle}\right\rangle\right), \vec{e}_{j}^{\prime \prime}=E-\operatorname{Path}\left(Q_{2}\left\langle x^{. \tau_{j}^{\prime \prime}}\right\rangle\right)$, where $i=1, \ldots, m, j=1, \ldots, k$ and $m, k \geq 0$. We must show that $\operatorname{env}(Q)(x)=\vec{e}_{1}^{\prime} \tau_{1}^{\prime} \cap$ $\ldots \cap \vec{e}_{m}^{\prime} \tau_{1}^{\prime} \cap \vec{e}_{1}^{\prime \prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime \prime} \tau_{k}^{\prime \prime}$. By induction hypothesis, env $\left(Q_{1}\right)(x)=\vec{e}_{1} \tau_{1}^{\prime} \cap$ $\ldots \cap \vec{e}^{\prime}{ }_{m} \tau_{1}^{\prime}$ and $\operatorname{env}\left(Q_{2}\right)(x)=\vec{e}_{1}^{\prime \prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime \prime} \tau_{k}^{\prime \prime}$. By the rule [INT], env $(Q)=\operatorname{env}\left(Q_{1}\right)$ $\cap \operatorname{env}\left(Q_{2}\right) \Rightarrow \operatorname{env}(Q)(x)=\operatorname{env}\left(Q_{1}\right)(x) \cap \operatorname{env}\left(Q_{2}\right)(x)=\vec{e}_{1}^{\prime} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{m}^{\prime} \tau_{1}^{\prime} \cap \vec{e}_{1}^{\prime \prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime \prime} \tau_{k}^{\prime \prime}$.
9. Let $Q=\left(Q_{1} Q_{2}\right)^{\text {it }}$, where $Q_{1}, Q_{2} \in$ Skeleton and $\tau \in$ Type. Assume that only subskeletons $x^{\tau_{1}}, \ldots, x^{i \tau_{m}^{\prime}}$ have free occurrence in Q_{1}, only subskeletons $x^{\tau_{1}^{\prime \prime}}, \ldots, x^{\tau \tau_{k}^{\prime \prime}}$ have free occurrence in $Q_{2}, \vec{e}_{i}^{\prime}=E-\operatorname{Path}\left(Q_{1}\left\langle x^{* x_{i}^{\prime}}\right\rangle\right)$ and $\vec{e}_{j}^{\prime \prime}=E-\operatorname{Path}\left(Q_{2}\left\langle x^{. z_{j}^{\prime \prime}}\right\rangle\right)$, where $i=1, \ldots, m, j=1, \ldots, k$ and $m, k \geq 0$. We must show that $\operatorname{env}(Q)(x)=\vec{e}_{1}^{\prime} \tau_{1}^{\prime} \cap$ $\ldots \cap \vec{e}_{m}^{\prime} \tau_{1}^{\prime} \cap \vec{e}_{1}^{\prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime} \tau_{k}^{\prime \prime}$. By induction hypothesis, $\operatorname{env}\left(Q_{1}\right)(x)=\vec{e}_{1}^{\prime} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{m}^{\prime} \tau_{1}^{\prime}$ and $\operatorname{env}\left(Q_{2}\right)(x)=\vec{e}_{1}^{\prime \prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime \prime} \tau_{k}^{\prime \prime}$. By the rule [APP], $\operatorname{env}(Q)=\operatorname{env}\left(Q_{1}\right) \cap$ $\operatorname{env}\left(Q_{2}\right) \Rightarrow \operatorname{env}(Q)(x)=\operatorname{env}\left(Q_{1}\right)(x) \cap \operatorname{env}\left(Q_{2}\right)(x)=\vec{e}_{1}^{\prime} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{m}^{\prime} \tau_{1}^{\prime} \cap \vec{e}_{1}^{\prime \prime} \tau_{1}^{\prime \prime} \cap \ldots \cap \vec{e}_{k}^{\prime \prime} \tau_{k}^{\prime \prime}$.

Lemma 2.4. Let $M_{1}, M_{2} \in$ Term and $x \in$ TermVariable. If $(A \vdash \tau)$ is a typing of term $\left(\left(\lambda x . M_{1}\right) M_{2}\right)$, then it is also a typing of term $M_{1}\left[x:=M_{2}\right]$.

Proof. Because $(A \vdash \tau)$ is a typing of term $\left(\left(\lambda x . M_{1}\right) M_{2}\right)$, there exist $Q \in$ Skeleton and $\Delta \in$ Constraint such that the judgement $\left(\left(\left(\lambda x . M_{1}\right) M_{2}\right) \triangleright Q\right):(A \vdash \tau) / \Delta$ is inferable, and Δ is solved. There are three cases to consider:

1. In the last step of inference of the judgement $\left(\left(\left(\lambda x . M_{1}\right) M_{2}\right) \triangleright Q\right):(A \vdash \tau) / \Delta$ the rule [OMEGA] is used. Then $Q=\omega^{\left(\left(\lambda x \cdot M_{1}\right) M_{2}\right)}$, $(A \vdash \tau)=\left(e n v_{\omega} \vdash \omega\right)$ and $\Delta=\omega$. Because (env $\left.\nu_{\omega} \vdash \omega\right)$ is a typing of any term, it is also a typing of term $M_{1}\left[x:=M_{2}\right]$.
2. In the last step of inference of the judgement $\left(\left(\left(\lambda x . M_{1}\right) M_{2}\right) \triangleright Q\right):(A \vdash \tau) / \Delta$ rule [APP] is used. Then $Q=\left(Q_{1} Q_{2}\right)^{\tau}$ and the judgements $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{1}\right):\left(A_{1} \vdash \tau_{1}\right) / \Delta_{1}$ and $\left(M_{2} \triangleright Q_{2}\right):\left(A_{2} \vdash \tau_{2}\right) / \Delta_{2}$ are inferable, and $A=A_{1} \cap A_{2}$ and $\tau=\tau_{1} \cap \tau_{2}$, and $\Delta=\Delta_{1} \cap \Delta_{2} \cap\left(\tau_{1} \doteq\left(\tau_{2} \rightarrow \tau\right)\right)$ (1). Because Δ is solved, (1) $\Rightarrow \tau_{1}=\left(\tau_{2} \rightarrow \tau\right)$ (2), and constraints Δ_{1}, Δ_{2} are solved. (2) $\Rightarrow \mathrm{in}$ the last step of inference of the judgement $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{1}\right):\left(A_{1} \vdash \tau_{1}\right) / \Delta_{1}$ the rule [ABS] is used. Hence, $Q_{1}=\left(\lambda x . Q^{\prime}\right)$ and the judgement $\left(M_{1} \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ is inferable, and $A_{1}=A^{\prime}[x \rightarrow \omega]$ and $\tau_{1}=\left(\tau_{2} \rightarrow \tau\right)=\left(A^{\prime}(x) \rightarrow \tau^{\prime}\right)$, and $\Delta_{1}=\Delta^{\prime}$ (3). (3) $\Rightarrow \tau_{2}=A^{\prime}(x)$ and $\tau=\tau^{\prime}$, and constraint Δ^{\prime} is solved (4). Assume that only subskeletons $x^{\tau_{1}^{\prime}}, \ldots, x^{\tau_{n}^{\tau_{n}^{\prime}}}, n \geq 0$, have free occurrence in Q^{\prime}. By Lemma 2.3, $A^{\prime}(x)=\vec{e}_{1} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} \tau_{n}^{\prime} \quad$ (5), where $\vec{e}_{i}=E-\operatorname{Path}\left(Q^{\prime}\left\langle x^{\tau_{i}^{\prime}}\right\rangle\right), \quad i=1, \ldots, n . \quad$ (4),(5) \Rightarrow $\Rightarrow \tau_{2}=\vec{e}_{1} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} \tau_{n}^{\prime}$ (6). By Proposition 2.1 and (6), $Q_{2} \approx \vec{e}_{1} Q_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} Q_{n}^{\prime}$ and $\operatorname{type}\left(Q_{i}^{\prime}\right)=\tau_{i}^{\prime}, \quad i=1, \ldots, n \quad$ (7). Let us consider the following skeleton: $Q^{\prime \prime}=Q^{\prime}\left\langle x^{\tau_{1}^{\prime}}:=Q_{1}^{\prime}, \ldots, x^{\tau_{n}^{\prime}}:=Q_{n}^{\prime}\right\rangle$. Now we will calculate $\operatorname{term}\left(Q^{\prime \prime}\right), \operatorname{env}\left(Q^{\prime \prime}\right)$, type $\left(Q^{\prime \prime}\right)$ and constraint $\left(Q^{\prime \prime}\right)$.

2a. (1), (3) $\Rightarrow \operatorname{term}\left(Q^{\prime}\right)=\operatorname{term}\left(Q^{\prime}\left\langle x^{\tau_{1}^{\prime}}, \ldots, x^{\tau_{n}^{\prime}}\right\rangle\right) \quad$ and $\quad \operatorname{term}\left(Q_{2}\right)=M_{2}$. (7) $\Rightarrow \operatorname{term}\left(Q_{2}\right)=\operatorname{term}\left(\vec{e}_{1} Q_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} Q_{n}^{\prime}\right)=\operatorname{term}\left(Q^{\prime}\right)=\ldots=\operatorname{term}\left(Q_{n}^{\prime}\right)=M_{2}$. Hence by Proposition 2.3, $\operatorname{term}\left(Q^{\prime \prime}\right)=M_{1}\left[x:=M_{2}\right]$ (8).

2b. Let us show that $\operatorname{env}\left(Q^{\prime \prime}\right)(y)=A(y) \quad \forall y \in$ TermVariable such that $y \neq x$. By Lemma 2.3, $A(y)$ depends on subskeletons of the form $y^{i^{\prime \prime}}$ that have free occurrence in skeleton $Q=\left(\left(\lambda x \cdot Q^{\prime}\right) Q_{2}\right)$, and their E-Paths in that skeleton and $\operatorname{env}\left(Q^{\prime \prime}\right)(y)$ depend on subskeletons of the form $y^{\cdot z^{\prime \prime}}$ that have free occurrences in skeleton $Q^{\prime \prime}=Q^{\prime}\left\langle x^{\tau_{1}^{\prime} 1}:=Q_{1}^{\prime}, \ldots, x^{x_{n}^{\tau_{n}^{\prime}}}:=Q_{n}^{\prime}\right\rangle$ and their E-Paths in that skeleton. Due to (7), $Q \approx\left(\left(\lambda x \cdot Q^{\prime}\right)\left(\vec{e}_{1} Q_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} Q_{n}^{\prime}\right)\right)$. Hence, it is easy to see that the both skeletons Q and $Q^{\prime \prime}$ have the same free occurrences of subskeletons of the form $y^{\tau^{\prime \prime}}$ with the same E-Path $\Rightarrow \operatorname{env}\left(Q^{\prime \prime}\right)(y)=A(y)$ (9). Now let us show that $\operatorname{env}\left(Q^{\prime \prime}\right)(x)=$ $=A(x)$. Assume that there is no subskeleton of form $x^{\tau^{\prime \prime}}$ that have free occurrence in skeleton Q_{2}, otherwise, we would rename the bound variable x in skeleton
($\left.\lambda x \cdot Q^{\prime}\right)$. Hence, it is easy to see that both skeletons Q and $Q^{\prime \prime}$ have no free occurrences of subskeletons of form $x^{i \tau^{\prime \prime}} \Rightarrow e n v\left(Q^{\prime \prime}\right)(x)=A(x)=\omega$ (10). (9), (10) $\Rightarrow \operatorname{env}\left(Q^{\prime \prime}\right)=A$ (11).

2c. (3) $\Rightarrow \operatorname{type}\left(Q^{\prime}\right)=\operatorname{type}\left(Q^{\prime}\left\langle x^{: \tau_{1}^{\prime}}, \ldots, x^{: \tau_{n}^{\prime}}\right\rangle\right)=\tau^{\prime}$. By proposition 2.2, (4) and (7), type $\left(Q^{\prime \prime}\right)=\operatorname{type}\left(Q^{\prime}\right)=\tau^{\prime}=\tau \Rightarrow \operatorname{type}\left(Q^{\prime \prime}\right)=\tau$ (12).
$2 \mathrm{~d} . \quad(1),(3) \Rightarrow$ constraint $\left(Q_{2}\right)=\Delta_{2} \quad$ and \quad constraint $\left(Q^{\prime}\right)=\Delta^{\prime}=\Delta_{1} . \quad(7) \Rightarrow$ \Rightarrow constraint $\left(Q_{2}\right)=\vec{e}_{1}$ constraint $\left(Q_{1}^{\prime}\right) \cap \ldots \cap \vec{e}_{n}$ constraint $\left(Q_{n}^{\prime}\right)$ (13). By Proposition $2.4, \quad$ constraint $\left(Q^{\prime \prime}\right)=$ constraint $\left(Q^{\prime}\right) \cap E-P a t h\left(Q^{\prime}\left\langle x^{\cdot \tau_{1}^{\prime}}\right\rangle\right) \operatorname{constraint}\left(Q_{1}^{\prime}\right) \cap \ldots$ $\cap E-P a t h\left(Q^{\prime}\left\langle x^{\cdot \tau_{n}^{\prime}}\right\rangle\right) \operatorname{constraint}\left(Q_{n}^{\prime}\right)=\operatorname{constraint}\left(Q^{\prime}\right) \cap \vec{e}_{1} \operatorname{constraint}\left(Q_{1}^{\prime}\right) \cap \ldots \cap \vec{e}_{n} \operatorname{constraint}\left(Q_{n}^{\prime}\right)$ (14). (13), (14) \Rightarrow constraint $\left(Q^{\prime \prime}\right)=\Delta_{1} \cap \Delta_{2}$ (15). (8), (11), (12), (15) \Rightarrow $\Rightarrow\left(M_{1}\left[x:=M_{2}\right] \triangleright Q^{\prime}\left\langle x^{: \tau_{1}^{\prime}}:=Q_{1}^{\prime}, \ldots, x^{\cdot \tau_{n}^{\prime}}:=Q_{n}^{\prime}\right\rangle\right):(A \vdash \tau) / \Delta_{1} \cap \Delta_{2} \quad$ is inferable, and constraints Δ_{1}, Δ_{2} are solved. Hence, $(A \vdash \tau)$ is typing of term $M_{1}\left[x:=M_{2}\right]$.
3. In the last step of inference of the judgement $\left(\left(\left(\lambda x . M_{1}\right) M_{2}\right) \triangleright Q\right):(A \vdash \tau) / \Delta$ the rules [OMEGA] and [APP] is not used. By Lemma 2.2, $Q \approx \vec{e}_{1} Q_{1} \cap \ldots \cap \vec{e}_{n} Q_{n}, \quad A=\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n}, \quad \tau=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$ and $\Delta=\vec{e}_{1} \Delta_{1} \cap \ldots \cap \vec{e}_{n} \Delta_{n}$, and the following judgements are inferable: $\left(\left(\left(\lambda \times x . M_{1}\right) M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta, i=1, \ldots, n, n \geq 1$. In our case in the last step of inference of the judgements $\left(\left(\left(\lambda x . M_{1}\right) M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta, i=1, \ldots, n$, the rule [OMEGA] or rule [APP] is used \Rightarrow by 1 st and 2 nd points of our proof, $\left(A_{i} \vdash \tau_{i}\right)$ is typing of term $M_{1}\left[x:=M_{2}\right] \Rightarrow$ by the rules [INT], [E-VAR], $\left(\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n} \vdash \vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}\right)=(A \vdash \tau)$ is the typing of term $M_{1}\left[x:=M_{2}\right]$.

Lemma 2.5. Let $M, M^{\prime} \in$ Term and $M \rightarrow_{\beta} M^{\prime}$. If $(A \vdash \tau)$ is a typing of term M, then it is also a typing of term M^{\prime}.

Proof. Let us denote by M_{β} the β-redex corresponding to the one step of beta reduction $M \rightarrow_{\beta} M^{\prime}$. We will prove Lemma by induction on the form of term M.

1. Let $M=M_{\beta}$. By Lemma 2.4, $(A \vdash \tau)$ is typing of term M^{\prime}.
2. Let $M=\left(\lambda x . M_{1}\right)$, where $M_{1} \in$ Term and M_{β} is subterm of $M_{1} .(A \vdash \tau)$ is typing of term $\quad\left(\lambda x . M_{1}\right) \Rightarrow \exists Q \in$ Skeleton, s.t. the judgement $\left(\left(\lambda x . M_{1}\right) \triangleright Q\right):(A \vdash \tau) / \Delta \quad$ is inferable and Δ is solved. By Lemma 2.2, $Q \approx \vec{e}_{1} Q_{1} \cap \ldots \cap \vec{e}_{n} Q_{n}, A=\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n}, \tau=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$ and $\Delta=\vec{e}_{1} \Delta_{1} \cap \ldots \cap \vec{e}_{n} \Delta_{n}$, and the following judgements are inferable: $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$, $i=1, \ldots, n, n \geq 1$. In our case in the last step of inference of the judgements $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}, i=1, \ldots, n$, the rule [OMEGA] or rule [ABS] is used. Let us show that $\left(A_{i} \vdash \tau_{i}\right)$ is a typing of term M^{\prime}. In that case $(A \vdash \tau)=\left(\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n} \vdash \vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}\right)$ will also be typing of term M^{\prime}
(using the rules [E-VAR] and [INT]), which we need to prove. $M \rightarrow_{\beta} M^{\prime} \Rightarrow \exists M_{1}^{\prime} \in \operatorname{Term}$ such that $M^{\prime}=\left(\lambda x . M_{1}^{\prime}\right)$ and $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$. There are two cases to consider:

2a. In the last step of inference of the judgement $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$ the rule [OMEGA] is used. Then $\left(A_{i} \vdash \tau_{i}\right)=$ $=\left(e n v_{\omega} \vdash \omega\right)$. Because $\left(e n v_{\omega} \vdash \omega\right)$ is a typing of any term, it is also a typing of term M^{\prime}.

2b. In the last step of inference of the judgement $\left(\left(\lambda x . M_{1}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$ the rule $[\mathrm{ABS}]$ is used. Then $\exists \tau_{i}^{\prime} \in$ Type and environment A_{i}^{\prime} such that $\left(A_{i}^{\prime} \vdash \tau_{i}^{\prime}\right)$ is a typing of term $M_{1}, A_{i}=A_{i}^{\prime}[x \rightarrow \omega]$ and $\tau_{i}=\left(A_{i}^{\prime}(x) \rightarrow \tau_{i}^{\prime}\right)$. By induction hypothesis, $\left(A_{i}^{\prime} \vdash \tau_{i}^{\prime}\right)$ is a typing of term $M_{1}^{\prime} \Rightarrow\left(A_{i} \vdash \tau_{i}\right)=\left(A_{i}^{\prime}[x \rightarrow \omega] \vdash\left(A_{i}^{\prime}(x) \rightarrow \tau_{i}^{\prime}\right)\right)$ is a typing of term M^{\prime} (using the rule $[\mathrm{ABS}]$).
3. Let $M=\left(M_{1} M_{2}\right)$, where $M_{1}, M_{2} \in$ Term and M_{β} is a subterm of M_{1}. $(A \vdash \tau) \quad$ is typing of term $\quad\left(M_{1} M_{2}\right) \Rightarrow \exists Q \in$ Skeleton, s.t. the judgement $\left(\left(M_{1} M_{2}\right) \triangleright Q\right):(A \vdash \tau) / \Delta$ is inferable and Δ is solved. By Lemma 2.2, $Q \approx \vec{e}_{1} Q_{1} \cap \ldots \cap \vec{e}_{n} Q_{n}, A=\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n}, \tau=\vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}$ and $\Delta=\vec{e}_{1} \Delta_{1} \cap \ldots \cap \vec{e}_{n} \Delta_{n}$, and the following judgements are inferable: $\left(\left(M_{1} M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$, $i=1, \ldots, n, n \geq 1$. In our case in the last step of inference of the judgements $\left(\left(M_{1} M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}, i=1, \ldots, n$, the rule [OMEGA] or rule [APP] is used. Let us show that $\left(A_{i} \vdash \tau_{i}\right)$ is a typing of term M^{\prime}. In that case $(A \vdash \tau)=\left(\vec{e}_{1} A_{1} \cap \ldots \cap \vec{e}_{n} A_{n} \vdash \vec{e}_{1} \tau_{1} \cap \ldots \cap \vec{e}_{n} \tau_{n}\right)$ will also be typing of term M^{\prime} (using the rules [E-VAR] and [INT]), which we need to prove. $M \rightarrow_{\beta} M^{\prime} \Rightarrow \exists M_{1}^{\prime} \in$ Term such that $M^{\prime}=\left(M_{1}^{\prime} M_{2}\right)$ and $M_{1} \rightarrow_{\beta} M_{1}^{\prime}$. There are two cases to consider:

3a. In the last step of inference of the judgement $\left(\left(M_{1} M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$ the rule [OMEGA] is used. Then $\left(A_{i} \vdash \tau_{i}\right)=$ $=\left(e n v_{\omega} \vdash \omega\right)$. Because $\left(e n v_{\omega} \vdash \omega\right)$ is a typing of any term, it is also a typing of term M^{\prime}.

3b. In the last step of inference of the judgement $\left(\left(M_{1} M_{2}\right) \triangleright Q_{i}\right):\left(A_{i} \vdash \tau_{i}\right) / \Delta_{i}$ the rule [APP] is used. Then $\exists \tau_{i}^{1}, \tau_{i}^{2} \in$ Type and environments A_{i}^{1}, A_{i}^{2} such that $\left(A_{i}^{1} \vdash \tau_{i}^{1}\right)$ is a typing of term M_{1}, and $\left(A_{i}^{2} \vdash \tau_{i}^{2}\right)$ is a typing of term M_{2} and $A_{i}=A_{i}^{1} \cap A_{i}^{2}, \tau_{i}^{1}=\left(\tau_{i}^{2} \rightarrow \tau_{i}\right)$. By induction hypothesis, $\left(A_{i}^{1} \vdash \tau_{i}^{1}\right)$ is typing of term $M_{1}^{\prime} \Rightarrow\left(A_{i} \vdash \tau_{i}\right)=\left(A_{i}^{1} \cap A_{i}^{2} \vdash \tau_{i}\right)$, is a typing of term $M^{\prime}=\left(M_{1}^{\prime} M_{2}\right)$ (using the rule [APP]).
4. Let $M=\left(M_{1} M_{2}\right)$, where $M_{1}, M_{2} \in$ Term and M_{β} is a subterm of M_{2}.

The proof is similar to the proof of 3rd point.
2.2 Type Inference Algorithm and Principal Typing of Term. In this subsection we will prove that in case of success the type inference algorithm returns the principal typing of term. First of all let us consider terms that are in β-normal form.

Lemma 2.6. Let $M \in$ Term and $M \in \beta-N F$. Then if the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ is inferable, constraint Δ^{\prime} is solved, and the rule [OMEGA] is not used during the inference of that judgement, then:

1. $(A \vdash \tau)=$ Typify (M), i.e. the type inference algorithm succeeds for input M.
2. $\exists E \in$ Expansion, s.t. $A^{\prime}=[E] A$ and $\tau^{\prime}=[E] \tau$.
3. If in the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ one of the rules [VAR], [CONST], [ABS] or [APP] is used, then the expansion E is a subtitution of the following form: $E=\left\{a_{0}:=\tau_{a_{0}}\right\}$ in case of [VAR]; $E=\varepsilon$ in case of [CONST]; $E=\left\{e_{0}:=E_{e_{0}}\right\}$ in case of [ABS]; $E=\left\{a_{0}:=\tau_{a_{0}}, e_{1}:=E_{e_{1}}, e_{2}:=E_{e_{2}}\right\}$ in case of [APP].

Proof. By induction on the form of term M.

1. Let $M=x$, where $x \in$ TermVariable. Then by the type inference algorithm definition, $A=e n v_{\omega}\left[x \rightarrow a_{0}\right]$ and $\tau=a_{0}$, which is the proof of first part of Lemma's statement. There are two cases to consider:

1a. In the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule $[\mathrm{VAR}]$ is used. Then $Q^{\prime}=x^{: \tau^{\prime}}, A^{\prime}=e n v_{\omega}\left[x \rightarrow \tau^{\prime}\right]$ and $\Delta^{\prime}=\omega$. Let $E=\left\{a_{0}:=\tau^{\prime}\right\} \Rightarrow A=[E] A$ and $\tau^{\prime}=[E] \tau$, which we need to prove.

1b. In the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule $[\mathrm{E}-\mathrm{VAR}]$ or rule $[\mathrm{INT}]$ is used. By Lemma 2.2, $Q^{\prime} \approx \vec{e}_{1} Q_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} Q_{n}^{\prime}$, $A^{\prime}=\vec{e}_{1} A_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} A_{n}^{\prime}, \quad \tau^{\prime}=\vec{e}_{1} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} \tau_{n}^{\prime} \quad$ and $\quad \Delta^{\prime}=\vec{e}_{1} \Delta_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} \Delta_{n}^{\prime}, \quad$ and the following judgements are inferable: $\left(M \triangleright Q_{i}^{\prime}\right):\left(A_{i}^{\prime} \vdash \tau_{i}^{\prime}\right) / \Delta_{i}^{\prime}, i=1, \ldots, n, n \geq 1$. It is easy to see that the condition of Lemma holds also for the judgements $\left(M \triangleright Q_{i}^{\prime}\right):\left(A_{i}^{\prime} \vdash \tau_{i}^{\prime}\right) / \Delta_{i}^{\prime}, i=1, \ldots, n$. In our case in the last step of inference of the judgements $\left(M \triangleright Q_{i}^{\prime}\right):\left(A_{i}^{\prime} \vdash \tau_{i}^{\prime}\right) / \Delta_{i}^{\prime}, i=1, \ldots, n$, the rule [VAR] is used. Hence, by point $1 \mathrm{a}, \exists E_{1}, \ldots, E_{n} \in$ Expansion, s.t. $A_{i}^{\prime}=\left[E_{i}\right] A_{i}, \tau_{i}^{\prime}=\left[E_{i}\right] \tau_{i}, i=1, \ldots, n(1)$.

Let $E=\vec{e}_{1} E_{1} \cap \ldots \cap \vec{e}_{n} E_{n}$. By (1), $[E] A=\vec{e}_{1}\left[E_{1}\right] A \cap \ldots \cap \vec{e}_{n}\left[E_{n}\right] A=\vec{e}_{1} A_{1}^{\prime} \cap \ldots$ $\cap \vec{e}_{n} A_{n}^{\prime}=A^{\prime}$ and $[E] \tau=\vec{e}_{1}\left[E_{1}\right] \tau \cap \ldots \cap \vec{e}_{n}\left[E_{n}\right] \tau=\vec{e}_{1} \tau_{1}^{\prime} \cap \ldots \cap \vec{e}_{n} \tau_{n}^{\prime}=\tau^{\prime}$, which we need to prove.
2. Let $M=c$, where $c \in$ Constant. Then by the type inference algorithm definition [1], $A=e n v_{\omega}$ and $\tau=\Sigma(c)$, which is the proof of first part of Lemma's statement. There are two cases to consider:

2a. In the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule [CONST] is used. Then $Q^{\prime}=x^{: \Sigma(c)}, A^{\prime}=e n v_{\omega}, \tau^{\prime}=\Sigma(c)$ and $\Delta^{\prime}=\omega$. Let $E=\varepsilon \Rightarrow A^{\prime}=[E] A$ and $\tau^{\prime}=[E] \tau$, which is to be proved.

2b. In the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule [E-VAR] or the rule [INT] is used. The proof is similar to the proof of point 1 b .
3. Let $M=\left(\lambda x . M_{1}\right)$, where $x \in$ TermVariable and $M_{1} \in$ Term. Let $P_{1}=\operatorname{initial}\left(M_{1}\right)$ and $P=\operatorname{initial}(M)=\left(\lambda x . e_{0} P_{1}\right) \Rightarrow \operatorname{constraint}(P)=e_{0} \operatorname{constraint}\left(P_{1}\right)$. Hence, by definition of the unification algorithm [1] and unification rules unify ${ }_{\beta}$,
unify $_{x}$, unify $_{c}[1], \sigma=\operatorname{Unify}($ constraint $(P)) \Leftrightarrow \sigma_{1}=\operatorname{Unify}$ (constraint $\left.\left(P_{1}\right)\right)$, where $\sigma=e_{0} / \sigma_{1}$ (2). Due to (2), due to the definition of the type inference algorithm [1] and definitions of algorithms env and type [1], $(A \vdash \tau)=T y p i f y(M) \Leftrightarrow\left(A_{1} \vdash \tau_{1}\right)=$ $=$ Typify $\left(M_{1}\right)$, where $A=e_{0} A_{1}[x \rightarrow \omega]$ and $\tau=\left(e_{0} A_{1}(x) \rightarrow e_{0} \tau_{1}\right)$ (3). There are two cases to consider:

3a. In the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule $[\mathrm{ABS}]$ is used. Then $Q^{\prime}=\left(\lambda x . Q_{1}^{\prime}\right), A^{\prime}=A_{1}^{\prime}[x \rightarrow \omega], \tau^{\prime}=\left(A_{1}^{\prime}(x) \rightarrow \tau_{1}^{\prime}\right)$ and the judgement $\left(M_{1} \triangleright Q_{1}^{\prime}\right):\left(A_{1}^{\prime} \vdash \tau_{1}^{\prime}\right) / \Delta_{1}^{\prime}$ is inferable (4). It is easy to see that the condition of Lemma holds also for the judgement $\left(M_{1} \triangleright Q_{1}^{\prime}\right):\left(A_{1}^{\prime} \vdash \tau_{1}^{\prime}\right) / \Delta_{1}^{\prime}$. Hence, by the induction hypothesis, Typify $\left(M_{1}\right)$ succeeds and $\exists E_{1} \in$ Expansion, s.t. $A_{1}^{\prime}=\left[E_{1}\right] A_{1}$ and $\tau_{1}^{\prime}=\left[E_{1}\right] \tau_{1}(5)$. By (3) and (5), the first part of Lemma's statement is proved. Let $E=\left\{e_{0}:=E_{1}\right\}$. By (3), (4) and (5), $[E] A=\left[\left\{e_{0}:=E_{1}\right\}\right] e_{0} A_{1}[x \rightarrow \omega]=\left[E_{1}\right]$, $A_{1}[x \rightarrow \omega]=A_{1}^{\prime}[x \rightarrow \omega]=A^{\prime}$ and $[E] \tau=\left[\left\{e_{0}:=E_{1}\right\}\right]\left(e_{0} A_{1}(x) \rightarrow e_{0} \tau_{1}\right)=\left(\left[E_{1}\right] A_{1}(x) \rightarrow\left[E_{1}\right] \tau_{1}\right)=$ $=\left(A_{1}^{\prime}(x) \rightarrow \tau_{1}^{\prime}\right)=\tau^{\prime}$, which is to be proved.

3b. In the last step of the inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ the rule [E-VAR] or the rule [INT] is used. The proof is similiar to the proof of point 1 b .
4. Let $M=\left(M_{1} M_{2}\right)$. We will not present the proof of this case.

Lemma 2.7. Let $M \in$ Term and $M \in \beta-N F$. Then if ($A^{\prime} \vdash \tau^{\prime}$) is a typing of term M and $(A \vdash \tau)=T y p i f y(M)$, then:

1. $\exists E \in$ Expansion, s.t. $A^{\prime}=[E] A$ and $\tau^{\prime}=[E] \tau$.
2. If in the last step of inference of the judgement $\left(M \triangleright Q^{\prime}\right):\left(A^{\prime} \vdash \tau^{\prime}\right) / \Delta^{\prime}$ one of the rules [VAR], [CONST], [ABS] or [APP] is used, then $E=\omega$ or E is a subtitution of the following form: $E=\left\{a_{0}:=\tau_{a_{0}}\right\}$ in case of [VAR]; $E=\varepsilon$ in case of [CONST]; $E=\left\{e_{0}:=E_{e_{0}}\right\}$ in case of [ABS]; $E=\left\{a_{0}:=\tau_{a_{0}}, e_{1}:=E_{e_{1}}, e_{2}:=E_{e_{2}}\right\}$ in case of [APP].

Proof. The proof is very similiar to the proof of Lemma 2.6.
Now let us present the main theorem on the principal typing of a term.
Theorem 2.1. Let $M \in$ Term and $M \in$ Term, s.t. $M \rightarrow_{\beta} M^{\prime}$ and $M^{\prime} \in \beta-N F$.

1. If there exists a typing of term M^{\prime} such that during the inference of the corresponding judgement the rule [OMEGA] is not used, then Typify (M) succeeds.
2. If $(A \vdash \tau)=T y p i f y(M)$, then $(A \vdash \tau)$ is the principal typing of term M.

Proof. Let $\Delta=$ constraint $($ initial $(M))$ and $\Delta^{\prime}=\operatorname{constraint~}\left(\right.$ initial $\left.\left(M^{\prime}\right)\right)$. By Lemma 2.12 of $[1]$, Unify $(\Delta)=\left[\operatorname{Unify}\left(\Delta^{\prime}\right)\right] \sigma$, where $\sigma=\left[\sigma_{m}\right] \ldots\left[\sigma_{2}\right] \sigma_{1}$ (1), and substitutions $\sigma_{1}, \ldots, \sigma_{m}, m \geq 0$, are created by the rule unify ${ }_{\beta}$ during the work of the unification algorithm for input Δ. Hence, by definition of the type inference algorithm, both Typify (M) and Typify $\left(M^{\prime}\right)$ are simultaneously executed or fail.

1. Because there exists a typing of term M^{\prime} such that during the inference of the corresponding judgement the rule [OMEGA] is not used, then due to Lemma 2.6, Typify $\left(M^{\prime}\right)$ succeeds \Rightarrow Typify (M) succeeds as well, which is proves the first part of the Theorem.
2. We have that $(A \vdash \tau)=\operatorname{Typify}(M)$. By Lemma 2.6 of [1], each application of the rule unify y_{β} corresponds to one step of β-reduction. Hence, $\exists M_{1}, \ldots, M_{m} \in \operatorname{Term}$, such that $M=M_{0} \rightarrow_{\beta} M_{1} \rightarrow_{\beta} \ldots \rightarrow_{\beta} M_{m}=M^{\prime}, A_{i}=\left[\sigma_{i}\right] A_{i-1}$, $\tau_{i}=\left[\sigma_{i}\right] \tau_{i-1}$, where $A_{j}=\operatorname{env}\left(\operatorname{initial}\left(M_{j}\right)\right)$ and $\tau_{j}=$ type $\left(\right.$ initial $\left.\left(M_{j}\right)\right), i=1, \ldots, m$, $j=0, \ldots, m$ (2). (1),(2) $\rightarrow A_{m}=\operatorname{env}\left(\right.$ initial $\left.\left(M^{\prime}\right)\right)=[\sigma] A_{0}=[\sigma] A$ and $\tau_{m}=$ type(initial $\left.\left(M^{\prime}\right)\right)=[\sigma] \tau_{0}=[\sigma] \tau$ (3). By (1) and (3), $(A \vdash \tau)=$ Typify $(M)=\left(\left[\left[\right.\right.\right.$ Unify $\left.\left.\left(\Delta^{\prime}\right)\right] \sigma\right] A_{0} \vdash$ $\left.\vdash\left[\left[\operatorname{Unify} y\left(\Delta^{\prime}\right)\right] \sigma\right] \tau_{0}\right)=\left(\left[\operatorname{Unfiy}\left(\Delta^{\prime}\right)\right][\sigma] A_{0} \vdash\left[\operatorname{Unfiy}\left(\Delta^{\prime}\right)\right][\sigma] \tau_{0}\right)=\left([\operatorname{Unify}(\Delta)] A_{0} \vdash[\operatorname{Unify}(\Delta)] \tau_{0}\right)=$ $=\left(\left[\operatorname{Unfiy}\left(\Delta^{\prime}\right)\right] A_{m} \vdash\left[\operatorname{Unfiy}\left(\Delta^{\prime}\right)\right] \tau_{m}\right)=\operatorname{Typify}\left(M^{\prime}\right)$ (4). Let $\left(A^{\prime} \vdash \tau^{\prime}\right)$ is a typing of term M. By Lemma 2.5, $\left(A^{\prime} \vdash \tau^{\prime}\right)$ is also a typing of term $M^{\prime} \in \beta-N F$. Hence by (4) and Lemma 2.7, $\exists E \in$ Expansion, s.t. $A^{\prime}=[E] A$ and $\tau^{\prime}=[E] \tau$, which means that Typify (M) is the principal typing of term M.

Remark 2.1. The type inference algorithm returns the principal typing of a term that has a β-normal form, except for the situations, when it is impossible to type a β-normal form of the given term without using the rule [OMEGA]. For terms that do not have a β-normal form the type inference algorithm never returns.

Received 06.04.2009

REFERENCES

1. Arakelyan A.H. Proceedings of the YSU, Phys. Math. Sciences, 2009, № 3, p. 42-51.

Milner R. Journal of Computer and System Sciences, 1978, № 17, p. 348-375.
Wells J.B. In Proc. 29th Int'l Coll. Automata, Languages, and Programming. V. 2380 of LNCS. Springer-Verlag, 2002.
4. Jim T. What are Principal Typings and What are They Good for? In Conf. Rec. POPL '96: 23rd ACM Symp. Princ. of Prog. Langs., 1996.
5. Carlier S., Wells J.B. Type Inference with Expansion Variables and Intersection Types in System E and an Exact Correspondence with β-reduction. In Proc. 6th Int'l Conf. Principles \& Practice Declarative Programming, 2004.
6. Carlier S., Polakow J., Wells J.B., Kfoury A.J. System E: Expansion Variables for Flexible Typing with Linear and Non-linear Types and Intersection Types. In Programming Languages \& Systems, 13th European Symp. Programming. V. 2986 of LNCS. Springer-Verlag, 2004.
7. Barendregt H.P. The Lambda Calculus: Its Syntax and Semantics. Amsterdam, North Holand, 1981.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, № 1, p. 37-46.

U. Z. Unuptij]uí

 hiaqnpưghe

А. Г. Аракелян.

О типовой корректности полиморфных λ-термов. 2

В работе рассматриваются полиморфные λ-термы, в которых отсутствует информация о типах переменных. Цель даной работы - доказать, что представленный в [1] алгоритм типизации выводит самый общий тип таких термов.

[^0]: * E-mail: ara_arakelyan@yahoo.com

