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1. Introduction. Types are used in programming languages to analyze 

programs without executing them, for purposes such as detecting programming 
errors earlier, for doing optimizations etc. In some programming languages no 
explicit type information is provided by the programmer, hence some system of 
type inference is required to recover the lost information and do compile time type 
checking. One of such type inference systems is the well known Hindley/Milner 
system [2], used in languages such as Haskell, SML, OCaml etc. An important 
property of the type systems is the property of  principal typings [3, 4], which 
allows the compiler to do compositional analysis, i.e. analysis of modules in ab-
sence of information about other modules [3, 4]. Unfortunately the Hindley/Milner 
system doesn't support the property of  principal typings [3]. This paper is the 
continuation of [1], in which we consider the extension of the type inference 
system called System E. In section 2 we prove that the type inference algorithm 
returns the principal typing of a term. 

2. Principal Typing of a Term. 
2.1. Preliminary Definitions and Facts. Before proving that the type 

inference algorithm returns the principal typing of a term let us present some 
definitions and facts. 

Definition 2.1. Let 1 2,Q Q Skeleton . 1Q  and 2Q  are equivalent, written 

1 2Q Q , iff 1 2( ) ( ),term Q =term Q  1 2( ) ( ),typing Q =typing Q  1( )constraint Q =  

1( )=constraint Q . In other words, 1 2Q Q , iff the judgements 

1( ) : ( ) /M Q A     and 2( ) : ( ) /M Q A     are both inferable or not inferable.  
Lemma 2.1. The following skeletons are equivalent: 
1. 1 2 3 1 2 3( ( )) (( ) )Q Q Q Q Q Q     ; 2. 1 2 2 1( ) ( )Q Q Q Q   ;  
3. ( )M Q Q   ;  4. 1 2 1 2( ) ( )e Q Q eQ eQ   ;  5. M Me  ,  

where 1 2 3, ,Q Q Q Skeleton  and M Term  and e ExpansionVariable .  
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Let us consider the judgement ( ) : ( ) /M Q A     that is inferable. In 
many cases we will consider the maximal subtrees of the inference tree of that 
judgement that have root node corresponding to one of the following type inference 
rules: [VAR], [CONST], [OMEGA], [ABS] and [APP].  

Lemma 2.2.  Let ( ) : ( ) /M Q A      be  an  inferable  judgement.  Then 
there exist E-paths 1 , ne , e  , environments 1 , , nA A , 1 , nQ , Q Skeleton , 

1 , n, Type    and 1 , n, Constraint   , 1n  , such that 1 1 n nQ e Q e Q    , 

1 1 n nA=e A e A   , 1 1 n n=e e     , 1 1 n n=e e       and judgements 
( ) : ( ) /i i i iM Q A    , 1, ,i= n , are inferable, and in the last step of inference of 
that judgements one of the following rules is used: [VAR], [CONST], [OMEGA], 
[ABS] and [APP].  

A free occurrence of the subskeleton :x   in skeleton Q  is defined in a 
conventional way, i.e. the occurrence of the subskeleton :x   in skeleton Q  is 
called free, if it doesn’t fall within the scope of a lambda that uses variable x , 
otherwise, the occurrence is called bounded. It is easy to see, that if the skeleton 
Q  is obtained from the skeleton Q  by renaming some term variables, then 
Q Q . Let us introduce the following notations:  

1. We denote by 1 , nQ Q , Q , 0n  , the skeleton Q , in which mutually 
different subskeletons 1 , nQ , Q  are considered.  

2. We denote by 1 1:= , :=n nQ Q Q , Q Q  , 0n  , those skeletons that are 
obtained from the skeleton 1 , nQ Q , Q  through substituting the subskeletons 

1 , nQ , Q  by 1 , nQ , Q   respectively. The substitution mentioned above is called 
canonical, iff all free occurrences of subskeletons in iQ  are also free in 

1 , nQ Q , Q , and all free occurrences of subskeletons in iQ  are also free in 

1 1:= , :=n nQ Q Q , Q Q  , 1, ,i= n . Henceforth only canonical substitutions of 
skeletons will be considered.  

Definition 2.2. Let Q Q Skeleton  . Then the E-Path of the skeleton Q  in 

Q , written as E-Path  Q Q , is calculated as follows: 

1. If Q=Q , then E-Path   =Q Q  ; 

2. If 1Q=eQ , and Q  is a subskeleton of 1Q , then E-Path  Q Q           

=eE-Path  1Q Q ,  where 1Q Skeleton  and e ExpansionVariable ; 

3. If 1( . )Q= x Q , and Q  is a subskeleton of 1Q , then E-Path  Q Q =       

=E-Path  1Q Q , where 1Q Skeleton  and x TermVariable ; 

4. If  1 2Q= Q Q , and Q  is a subskeleton of 1Q , then E-Path  Q Q =    

=E-Path  1Q Q , where 1 2,Q Q Skeleton ; 

5. If  1 2Q= Q Q , and Q  is a subskeleton of 2Q , then E-Path  Q Q =    
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=E-Path  2Q Q , where 1 2,Q Q Skeleton ; 

6. If  :
1 2( )Q= Q Q  ,  and  Q  is  a  subskeleton  of  1Q ,  then E-Path  Q Q =    

=E-Path  1Q Q , where 1 2,Q Q Skeleton  and Type  ; 

7. If :
1 2( )Q= Q Q  , and  Q   is  a  subskeleton  of  2Q ,  then E-Path  Q Q =    

=E-Path  2Q Q , where 1 2,Q Q Skeleton  and Type  .  
Let us present some simple propositions without proof.  
Proposition 2.1. Let Q Skeleton  and 1 1( ) = n ntype Q e e  

  , 1n  , 
where 1 , n, Type    and 1 , ne , e   are E-Paths. Then 1 , nQ , Q Skeleton   such 
that 1 1 n nQ e Q e Q  

   and ( ) =i itype Q  , 1, ,i= n .  
Proposition 2.2. Let 1 , ,nQ Q , Q Skeleton  0n  , and 

1 , .nQ , Q Skeleton    Then if ( ) ( )i itype Q =type Q  1, ,i= n  , then 

   1 1 1, : , :n n ntype Q Q , Q =type Q Q Q , Q Q    .  

Proposition 2.3. Let :: 1 , nQ x , x Skeleton   and only subskeletons 
:: 1 , nx , x    have free occurrence in Q  and 1 , nQ , Q Skeleton , where 

x TermVariable  and  1 , n, Type   , 0n  . Then if  :: 1
1,..., nterm Q x x M   

and 2( ) =iterm Q M  1, ,i= n  , then  :: 1
1:= , :=n

nterm Q x Q , x Q   

1 2[ := ]M x M .  

Proposition 2.4. Let :Q x Skeleton   and Q Skeleton  and ( )type Q = , 

where Type   and x TermVariable . Then  : :=constraint Q x Q =   

 :=constraint Q x    E-Path  :Q x constraint ( )Q .  

Let us consider the term M  -NF and one step of  -reduction: 
M M  . Now we are going to show that if ( )A   is a typing of term M , then 
it is also a typing of term M  .  

Lemma 2.3. Let :: , n1Q x , x Skeleton   and only subskeletons 

:: 1 , nx , x    have free occurrence in Q  and ie = E-Path  : iQ x  , 1, ,i= n , where 

1 , n, Type    and x TermVariable , 0n  . Then 1 1( )( ) = n nenv Q x e e  
  . 

Proof.  By induction on form of skeleton Q . 

1. Let MQ= , where M Term . We must show that ( )( ) =env Q x  . By the 
rule [OMEGA], ( ) = ( )( ) =env Q env env Q x  . 

2. Let :Q=c  , where c Constant  and Type  . We must show that 
( )( ) =env Q x  . By  the  rule  [CONST], ( ) = ( )( ) =env Q env env Q x  . 
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3. Let :Q=y  , where x y TermVariable   and Type  . We must show 
that ( )( ) =env Q x  . By the rule [VAR], ( ) = [ ] ( )( ) =env Q env y env Q x    . 

4. Let :Q=x  , where Type  . We must show that ( )( ) =env Q x  . By the 
rule [VAR], ( ) = [ ] ( )( ) =env Q env x env Q x    . 

5. Let  Q=eQ ,   where   e ExpansionVariable    and   Q Skeleton .  

Assume  that  only  subskeletons  :: 1 , nx , x     have  free  occurrence  in  Q   and 

ie = E-Path  : iQ x  , where 1, ,i= n , n 0 . We must show that ( )( )env Q x =  

1 1 n n=e e  
  .  By  induction  hypothesis,  1 1( )( ) n nenv Q x =e e    

  .  By  
the rule [E-VAR], 1 1( ) ( ) ( )( ) ( )( ) (env Q =eenv Q env Q x =eenv Q x =e e    

  

1 1)n n n ne =e e    
    . 
6.  Let  ( . )Q= y Q  ,   where  y TermVariable    and   Q Skeleton .  

Assume that only subskeletons :: , n1x , x    have free occurrence in Q  and     

ie = E-Path  : iQ x  , where 1, ,i= n , 0n  . We must show that ( )( )env Q x =  

1 1 n n=e e  
  .   By   induction  hypothesis,   1 1( )( ) n nenv Q x =e e    

  .       
By the rule [ABS], ( ) = ( )[ ] ( )( ) = ( )( ) =env Q env Q y env Q x env Q x    
= 1 1 1 1n n n ne e =e e       
     . 

7. Let ( . )Q= y Q  , where Q Skeleton . We must show that ( )( ) =env Q x  . 
By the rule [ABS], ( ) = ( )[ ] ( ( ) =env Q env Q x env Q ) x    . 

8. Let 1 2( )Q= Q Q , where 1 2,Q Q Skeleton . Assume that only sub-
skeletons 1 :: , , mx x     have free occurrence in 1Q  and only subskeletons 1 , k::x , x    

have free occurrence in 2Q , and ie = E-Path  :
1

iQ x   , je = E-Path
:

2
jQ x

  
 
 

, 

where 1, ,i= m , 1, ,j= k  and ,m k 0 . We must show that ( )( )env Q x  1 1e    

1me  
 1 1 k ke e      

  . By induction hypothesis, 1( )( )env Q x  1 1' 'e  
  

1... ' 'me 
 and 2 1 1( )( ) = k kenv Q x e e     

  . By the rule [INT], 1( ) = ( )env Q env Q  

2 1 2 1 1 1 1 1( ) ( )( ) = ( )( ) ( )( ) = .m k kenv Q env Q x env Q x env Q x e e e e                 
    

        9. Let :
1 2( )Q= Q Q  , where 1 2,Q Q Skeleton  and Type  . Assume that only 

subskeletons 1 :: , , mx x     have free occurrence in 1Q , only subskeletons 1 , k::x , x    

have free occurrence in 2Q , ie = E-Path  :
1

iQ x    and je = E-Path :
2

jQ x
  

 
 

, 

where 1, ,i= m , 1, ,j= k  and , 0m k  . We must show that 1 1( )( ) =env Q x e    

1 1 1m k ke e e          
    . By induction hypothesis, 1 1 1 1( )( ) = menv Q x e e     

   
and 2 1 1( )( ) = k kenv Q x e e     

  . By the rule [APP], ( )env Q  1( )env Q   

2( )env Q  1 2 1 1 1 1 1( )( ) = ( )( ) ( )( ) = .m k kenv Q x env Q x env Q x e e e e               
      

Lemma 2.4. Let 1 2,M M Term  and x TermVariable . If ( )A   is a 
typing of term 1 2(( . ) )x M M , then it is also a typing of term 1 2[ := ]M x M . 
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Proof.  Because  ( )A    is  a  typing  of  term  1 2(( . ) )x M M ,  there      
exist Q Skeleton  and Constraint  such that the judgement 

1 2((( . ) ) ) : ( ) /x M M Q A     is inferable, and   is solved. There are three cases 
to consider: 

1. In the last step of inference of the judgement 

1 2((( . ) ) ) : ( ) /x M M Q A     the rule [OMEGA] is used. Then 1 2(( . ) )x M MQ=  , 
( ) = ( )A env    and = . Because ( )env   is a typing of any term, it is 
also a typing of term 1 2[ := ]M x M . 

2. In the last step of inference of the judgement 

1 2((( . ) ) ) : ( ) /x M M Q A     rule [APP] is used. Then :
1 2( )Q= Q Q   and the 

judgements 1 1 1 1 1(( . ) ) : ( ) /x M Q A     and 2 2 2( ) : (M Q A  2 2) /   are infe-
rable, and 1 2A=A A  and 1 2=   , and 1 2 1 2( ( ))=          (1). Becau-
se   is solved, (1) 1 2( )=     (2), and constraints 1 2,   are solved. (2)  in 
the last step of inference of the judgement 1 1 1 1 1(( . ) ) : ( ) /x M Q A     the rule 
[ABS] is used. Hence, 1 ( . )Q = x Q   and the judgement 1( ) : ( ) /M Q A       is 
inferable, and 1 [ ]A =A x    and 1 2( ) ( ( )= A x     )  , and 1=    (3). 
(3) 2 ( )=A x   and =   , and constraint   is solved (4). Assume that only 
subskeletons 1 :: , , nx x    , 0n  , have free occurrence in Q . By Lemma 2.3, 

1 1( ) = n nA x e e    
   (5), where ie = E-Path  : iQ x   , 1, ,i= n . (4),(5)  

 2 1 1=e     n ne  
  (6). By Proposition 2.1 and (6), 2 1 1 n nQ e Q e Q   

   and 
( ) =i itype Q   , 1, ,i= n  (7). Let us consider the following skeleton: 

1 ::
1= := , :=n

nQ Q x Q , x Q     . Now we will calculate ( ) ( )term Q ,env Q ,   

( )type Q  and ( )constraint Q . 

2a. (1), (3)  1 ::( ) = , nterm Q term Q x , x      and 2 2( ) =term Q M . 

(7) 2 1 1( ) = (term Q term e Q 


2) = ( ) = = ( ) =n n ne Q term Q term Q M  
  . Hence 

by Proposition 2.3, 1 2( ) = [ := ]term Q M x M  (8). 
2b. Let us show that ( )( ) = ( )env Q y A y  y TermVariable   such that 

y x . By Lemma 2.3, ( )A y  depends on subskeletons of the form :y   that have 
free occurrence in skeleton 2(( . ) )Q= x Q Q  , and their E-Paths in that skeleton and 

( )( )env Q y  depend on subskeletons of the form :y   that have free occurrences in 

skeleton 1 ::
1= := , :=n

nQ Q x Q , x Q      and their E-Paths in that skeleton. Due to 

(7), 1 1(( . )( ))n nQ x Q e Q e Q     
  . Hence, it is easy to see that the both skeletons 

Q  and Q  have the same free occurrences of subskeletons of the form :y   with 
the same E-Path ( )( ) = ( )env Q y A y  (9). Now let us show that ( )( )env Q x   

( )A x . Assume that there is no subskeleton of form :x    that have free occurrence 
in skeleton 2Q , otherwise, we would rename the bound variable x  in skeleton 
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( . )x Q  . Hence, it is easy to see that both skeletons Q  and Q  have no free 
occurrences of subskeletons of form : ( )( ) ( )x env Q x =A x =   (10). (9), (10) 

( ) =env Q A  (11). 

2c. (3)  1 ::( ) = , =ntype Q type Q x , x      . By proposition 2.2, (4) and 

(7), ( ) =type Q  ( ) = = ( ) =type Q type Q      (12). 
2d. (1),(3) 2 2( )constraint Q =   and 1( )constraint Q = =   . (7)  

1( )2constraint Q =e constraint


1( ) ( )n nQ e constraint Q  
   (13).  By  Proposi-

tion 2.4, ( ) ( )constraint Q =constraint Q   E-Path  1:
1( )Q x constraint Q    

E-Path  :
1 1( ) ( ) ( )n

nQ x constraint Q =constraint Q e constraint Q    
  ( )n ne constraint Q

  

(14). (13), (14) 1 2( ) =constraint Q    (15).  (8), (11), (12), (15)   

 1 ::
1 2 1 1 2[ := ] := , := : ( ) /n

nM x M Q x Q , x Q A         is inferable, and 

constraints 1 2,   are solved. Hence, ( )A   is typing of term 1 2[ := ]M x M . 
3. In the last step of inference of the judgement 

1 2((( . ) ) ) : ( ) /x M M Q A     the rules [OMEGA] and [APP] is not used. By 
Lemma 2.2, 1 1 n nQ e Q e Q  

  , 1 1 n nA=e A e A 
  , 1 1 n n=e e   

   and 

1 1 n n=e e   
  , and the following judgements are inferable: 

1 2((( . ) ) ) : ( ) /i i ix M M Q A    , 1, ,i= n , 1n  . In our case in the last step of 
inference of the judgements 1 2((( . ) ) ) : ( ) /i i ix M M Q A    , 1, ,i= n , the rule 
[OMEGA]  or  rule  [APP]  is  used   by 1st  and  2nd  points  of  our  proof, 
( )i iA   is typing of term 1 2[ := ]M x M by the rules [INT], [E-VAR], 

1 1 1 1( ) = ( )n n n ne A e A e e A     
       is the typing of term 1 2[ := ]M x M .  

Lemma 2.5. Let ,M M Term  and M M  . If ( )A   is a typing of 
term M , then it is also a typing of term M  . 

Proof.  Let  us  denote  by  M   the  -redex  corresponding  to  the  one 
step  of  beta  reduction M M  . We  will  prove  Lemma  by  induction  on  the 
form  of  term .M  

1. Let .M=M   By Lemma 2.4, ( )A   is typing of term M  . 
2. Let 1( . )M= x M , where 1M Term  and M  is subterm of 1M . ( )A   

is typing of term 1( . )x M Q Skeleton   , s.t. the judgement 

1(( . ) ) : ( ) /x M Q A     is inferable and   is solved. By Lemma 2.2, 

1 1 n nQ e Q e Q  
  , 1 1 n nA=e A e A 

  , 1 1 n n=e e   
   and  1 1 n n=e e    

  , 
and the following judgements are inferable: 1(( . ) ) : ( )i i i ix M Q A /    ,  

1, ,i= n , 1n  . In our case in the last step of inference of the judgements  
1(( . ) ) : ( ) /i i i ix M Q A    , 1, ,i= n , the rule [OMEGA] or rule [ABS] is used. 

Let us show that ( )i iA   is a typing of term M  . In that case 

1 1 1 1( ) = ( )n n n nA e A e A e e     
       will also be typing of term M   
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(using the rules [E-VAR] and [INT]), which we need to prove. 
1M M M Term      such that 1= ( . )M x M   and 1 1M M  . There are two 

cases to consider: 
2a. In the last step of inference of the judgement 

1(( . ) ) : ( )i i i ix M Q A /     the rule [OMEGA] is used. Then ( )i iA    
( )env   . Because ( )env   is a typing of any term, it is also a typing of 

term M  . 
2b. In the last step of inference of the judgement 1(( . ) ) : ( )i i i ix M Q A /     

the rule [ABS] is used. Then i Type    and environment iA  such that ( )i iA    is a 
typing of term 1M , [ ]i iA =A x    and ( ( ) )i i i= A x   . By induction hypothesis, 
( )i iA    is a typing of term 1 ( ) = ( [ ] ( ( ) ))i i i i iM A A x A x          is a typing 
of term M  (using the rule [ABS]). 

3. Let 1 2( )M= M M , where 1 2,M M Term  and M  is a subterm of 1M . 
( )A   is typing of term 1 2( )M M Q Skeleton  , s.t. the judgement 

1 2(( ) ) : ( ) /M M Q A     is inferable and   is solved. By Lemma 2.2, 

1 1 n nQ e Q e Q  
  , 1 1 n nA=e A e A 

  , 1 1 n n=e e   
   and 1 1e   


n ne 
 , 

and the following judgements are inferable: 1 2(( ) ) : ( ) /i i i iM M Q A    , 
1, ,i= n , 1n  . In our case in the last step of inference of the judgements 

1 2(( ) ) : ( ) /i i i iM M Q A    , 1, ,i= n , the rule [OMEGA] or rule [APP] is used. 
Let us show that ( )i iA   is a typing of term M  . In that case 

1 1 1 1( ) = ( )n n n nA e A e A e e     
       will also be typing of term M   

(using the rules [E-VAR] and [INT]), which we need to prove. 
1M M M Term       such that 1 2= ( )M M M   and 1 1M M  . There are 

two cases to consider: 
3a. In the last step of inference of the judgement 

1 2(( ) ) : ( ) /i i i iM M Q A     the rule [OMEGA] is used. Then ( )i iA    
( )env   . Because ( )env   is a typing of any term, it is also a typing of 

term M  . 
3b. In the last step of inference of the judgement 

1 2(( ) ) : ( ) /i i i iM M Q A     the rule [APP] is used. Then 1 2,i i Type    and 
environments 1 2,i iA A  such that 1 1( )i iA   is a typing of term 1M , and 2 2( )i iA   is 
a typing of term 2M  and 1 2

i i iA =A A , 1 2( )i i i=   . By induction hypothesis,  
1 1( )i iA   is typing of term 1 2

1 ( ) = ( )i i i i iM A A A     , is a typing of term 

1 2= ( )M M M   (using the rule [APP]). 
4. Let 1 2( )M= M M , where 1 2,M M Term  and M  is a subterm of 2M . 

The proof  is similar to the proof of 3rd point. 
2.2  Type Inference Algorithm and Principal Typing of Term. In this  

subsection  we  will  prove  that  in  case  of  success  the  type inference  algorithm 
returns  the  principal  typing  of  term.  First  of  all  let  us  consider  terms  that 
are  in   -normal  form.  
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Lemma 2.6. Let M Term  and M  -NF. Then if the judgement 
( ) : ( ) /M Q A       is inferable, constraint   is solved, and the rule 
[OMEGA] is not used during the inference of that judgement, then: 

1. ( ) = ( )A Typify M , i.e. the type inference algorithm succeeds for input M . 
2. E Expansion  , s.t. = [ ]A E A  and = [ ]E  . 
3. If in the last step of inference of the judgement ( ) : ( ) /M Q A       

one of the rules [VAR], [CONST], [ABS] or [APP] is used, then the expansion E is 
a subtitution of the following form: 0 0

{ : }aE= a   in case of [VAR];  E=  in case 

of [CONST]; 0 0
{ : }eE= e E  in case of [ABS];   

0 1 20 1 2{ : , : , : }a e eE= a e E e E    in 

case of [APP].  
Proof.  By induction on the form of term M . 
1. Let M=x , where x TermVariable . Then by the type inference 

algorithm definition,  0[ ]A=env x a   and 0=a , which is the proof of first part 
of  Lemma's  statement. There are two cases to consider: 

1a. In the  last  step  of  inference  of  the  judgement ( ) : ( ) /M Q A       
the rule [VAR] is used. Then :=Q x   , = [ ]A env x    and = . Let 

0{ : } = [ ]E= a A E A    and = [ ]E  , which we need to prove. 
1b. In the last step of inference of the judgement ( ) : ( ) /M Q A       the 

rule [E-VAR] or rule [INT] is used. By Lemma 2.2, 1 1 n nQ e Q e Q    
  , 

1 1 n nA =e A e A   
  , 1 1 n n=e e     

   and 1 1 n ne e       
  , and the 

following judgements are inferable: ( ) : ( ) /i i i iM Q A      , 1, ,i= n , 1n  . It is 
easy to see that the condition of Lemma holds also for the judgements 
( ) : ( ) /i i i iM Q A      , 1, ,i= n . In our case in the last step of inference of the 
judgements ( ) : ( ) /i i i iM Q A      , 1, ,i= n , the rule [VAR] is used. Hence, by 
point 1a, 1 , nE , E Expansion  , s.t. [ ]i i iA = E A , [ ]i i i= E  , 1, ,i= n  (1).  

Let 1 1 n nE=e E e E 
  . By (1), 1 1 1 1[ ] [ ] [ ]n nE A=e E A e E A=e A  

     

n ne A =A 
  and 1 1[ ] [ ]E =e E 

1 1[ ]n n n ne E =e e =        
    , which we need 

to prove. 
2. Let M=c , where c Constant . Then by the type inference algorithm 

definition [1],  A=env  and ( )= c  , which is the proof of first part of Lemma's 
statement. There are two cases to consider: 

2a. In the last step of inference of the judgement ( ) : ( ) /M Q A       the 
rule [CONST] is used. Then : ( )= cQ x  , =A env , = ( )c   and = . Let 

= [ ]E= A E A   and = [ ]E  , which is to be proved. 
2b. In  the  last  step  of  inference of  the  judgement ( ) : ( ) /M Q A       

the  rule  [E-VAR] or the  rule [INT]  is  used.  The  proof  is  similar  to  the proof 
of point 1b. 

3. Let 1( . )M= x M , where x TermVariable  and 1M Term . Let 

1 1( )P=initial M  and P= 0 1 0 1( ) ( . ) ( ) ( )initial M = x e P constraint P =e constraint P  . 
Hence, by definition of the unification algorithm [1] and unification rules unify , 
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xunify , cunify  [1], 1( ( ))=Unify constraint P =Unify   1( ( ))constraint P , where 

0 1=e /   (2). Due to (2), due to the definition of the type inference algorithm [1] 
and definitions of algorithms env  and type  [1], 1 1( ) = ( ) ( ) =A Typify M A    
= 1( )Typify M , where 0 1[ ]A=e A x   and 0 1 0 1( ( ) )= e A x e   (3). There are two 
cases to consider: 

3a. In the last step of inference of the judgement ( ) : ( ) /M Q A       the 
rule [ABS] is used. Then 1= ( . )Q x Q  , 1= [ ]A A x    , 1 1= ( ( ) )A x     and the 
judgement 1 1 1 1( ) : ( )M Q A     1/  is inferable (4). It is easy to see that the 
condition of Lemma holds also for the judgement 1 1 1 1 1( ) : ( ) /M Q A      . Hence, 
by the induction hypothesis, 1( )Typify M succeeds and 1E Expansion  , s.t. 

1 1 1[ ]A = E A  and 1 1 1[ ]= E   (5). By (3) and (5), the first part of Lemma's statement is 
proved. Let 0 1{ : }E= e E . By (3), (4) and (5), 0 1 0 1 1[ ] [{ : }] [ ] = [ ]E A= e E e A x E  , 

1 1[ ]=A x A  [ ]=x A   and 0 1 0 1 0 1 1 1 1 1[ ] [{ : }]( ( ) ) ([ ] ( ) [ ] )E = e E e A x e = E A x E       

1 1( ( ) ) =A x '    , which is to be proved. 
3b. In the last step of the inference of the judgement ( ) : ( ) /M Q A       

the rule [E-VAR] or the rule [INT] is used. The proof is similiar to the proof of 
point 1b. 

4. Let 1 2( )M= M M . We will not present the proof of this case. 
Lemma 2.7. Let M Term  and M  -NF. Then if ( )A    is a typing of 

term M  and ( ) = ( )A Typify M , then: 
1. E Expansion  , s.t. = [ ]A E A  and = [ ]E  . 
2. If in the last step of inference of the judgement ( ) : ( ) /M Q A       

one  of  the  rules  [VAR], [CONST], [ABS] or [APP] is  used, then E=  or E  is 
a subtitution of the following form: 

00{ : }aE= a   in case of [VAR];   E=  in case 
of [CONST]; 

00{ : }eE= e E  in case of [ABS];  
0 1 20 1 2{ : , : , : }a e eE= a e E e E    in 

case of [APP].  
Proof.  The proof is very similiar to the proof of Lemma 2.6. 
Now let us present the main theorem on the principal typing of a term.  
T h eor e m 2 . 1 .  Let M Term  and M Term , s.t. M M  and 

M  -NF.  
1. If there exists a typing of term M   such that during the inference of the 

corresponding judgement the rule [OMEGA] is not used, then ( )Typify M  
succeeds. 

2. If ( ) = ( )A Typify M , then ( )A   is the principal typing of term M .  
Proof. Let ( ))=constraint initial(M  and = ( ))constraint initial(M  . By 

Lemma 2.12 of [1], ( ) = [ ( )]Unify Unify   , where 2 1[ ] [ ]m=     (1), and 
substitutions 1 , m,  , 0m  , are created by the rule unify  during the work of 
the unification algorithm for input  . Hence, by definition of the type inference 
algorithm, both ( )Typify M  and ( )Typify M   are simultaneously executed or fail. 
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1. Because  there  exists  a  typing  of  term M   such  that  during  the 
inference  of  the  corresponding  judgement  the rule [OMEGA]  is  not  used, then 
due  to  Lemma 2.6,  ( )Typify M   succeeds ( )Typify M  succeeds  as  well, which 
is  proves  the  first  part  of  the  Theorem. 

2. We  have  that ( ) = ( )A Typify M .  By  Lemma 2.6  of  [1],  each 
application of the rule unify  corresponds to one step of  -reduction. Hence, 

1 , mM , M Term  , such that 0M=M  1 mM M =M    ,   1i i iA = A  , 

  1i i i=    , where ( ( ))j jA =env initial M  and (j=type initial  ( ))jM , 1, ,i= m , 

0, ,j= m  (2).  (1),(2)    0( ( ))mA =env initial M = A = A   and (m=type initial   

0( )) [ ] [ ]M = =     (3). By (1) and (3), 0( ) = ( ) = ([[ )] ]A Typify M Unify( A    

0[[ )] ] ) =Unify(   0 0 0 0([ ( )][ ] [ ( )][ ] ) = ([ ( )] [ ( )] )Unfiy A Unfiy Unify A Unify         
([ ( )] [ ( )] )m mUnfiy A Unfiy      ( )Typify M   (4). Let ( )A    is a typing of 

term M . By Lemma 2.5, ( )A    is also a typing  of  term M  -NF. Hence by 
(4) and Lemma 2.7,  E Expansion  , s.t. = [ ]A E A  and = [ ]E  , which means 
that ( )Typify M  is the principal typing of term M . 

Remark 2.1. The type inference algorithm returns the principal typing of a 
term that has a  -normal form, except for the situations, when it is impossible to 
type a  -normal form of the given term without using the rule [OMEGA]. For 
terms that do not have a  -normal form the type inference algorithm never 
returns. 
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Ա. Հ. Առաքելյան 
 

Պոլիմորֆ -թերմերի տիպային կոռեկտության մասին: 2 
 
Աշխատանքում դիտարկվում են պոլիմորֆ -թերմերը, որոնցում չկա 
ինֆորմացիա փոփոխականների տիպերի մասին: Աշխատանքի նպատակն է 
ապացուցել, որ [1]-ում ներկայացված փոփոխականների տիպի արտածման 
ալգորիթմը տիպայնացնում է այդպիսի թերմերն ամենաընդհանուր ձևով: 
 

А. Г. Аракелян. 
 

О типовой корректности полиморфных  -термов. 2 
 
В работе рассматриваются полиморфные  -термы, в которых отсутст-

вует информация о типах переменных. Цель даной работы – доказать, что 
представленный в [1] алгоритм типизации выводит самый общий тип таких 
термов. 



