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We study quantum effects of scalar fields in cosmological models of 
Friedman–Robertson–Walker with  a power-low scale factor and spatial 
topology 1( )p qR S . Recurrent formulae are obtained for positive-fre-
quency Wightman function, vacuum expectation values of the field 
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1. Introduction. It is expected that in string theory the most natural topology 
for the universe is that of a flat compact three-manifold [1]. In inflationary scenario 
universes with compact spatial dimensions, under certain conditions, should be 
considered a rule rather than an exception [2]. The models of a compact universe 
with nontrivial topology may play an important role by providing proper initial 
conditions for inflation (on the cosmological consequences of the non-trivial 
topology and observational bounds on the size of compactified dimensions see, for 
example, [3]). The quantum creation of the universe with toroidal spatial topology 
is discussed in [4–8] within the framework of various supergravity theories. 
Vacuum expectation values of the field squared has been considered in the 
previous work [9]. 

The compactification of spatial dimensions leads to the modification of the 
spectrum of vacuum fluctuations and, as a result, to Casimir-type contributions to 
the vacuum expectation values of physical observables (on the topological Casimir 
effect and its role in cosmology see [10] and references therein). The effects of the 
toroidal compactification of spatial dimensions in dS space-time on the properties 
of quantum vacuum for a scalar field with general curvature coupling parameter are 
investigated in [11]. The one-loop quantum effects for a fermionic field on 
background of dS space-time with spatial topology 1( )p qR S  are studied in [12]. 
In the present paper we investigate the effect of the compactification of one of spa-
tial dimensions in the Friedmann–Robertson–Walker (FRW) cosmological models 
with power-law scale factor. For a scalar field with general curvature coupling 
parameter we evaluate the vacuum energy density. 
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In this paper we consider the Wightman function for the background FRW 
space-time with topology 1( )p qR S . We decompose this function in two parts: the 
first one is the corresponding function for the uncompactified FRW space-time, 
and the second one is induced by the compactness of the spatial dimensions. We 
use the Wightman function for the evaluation of the vacuum energy density. As the 
part corresponding to the uncompactified FRW space-time is well-investigated in 
literature, we are mainly concerned with the topological part. The asymptotic 
behavior of the latter is investigated in detail in early and late stages of the 
cosmological evolution.  

2. Wightman Function in FRW Space-time With Compact Spatial 
Dimensions. We consider a quantum scalar field with curvature coupling para-
meter   on background of the ( 1)D  -dimensional FRW space-time. The field 
equation has the form 
                                               2 0l

l m R      ,                                           (1) 

where l  is the covariant derivative operator. The values of the curvature coupling 
parameter 0   and ( 1) 4D D D     correspond to the most important special 
cases of minimally and conformally coupled fields. We will write the corres-
ponding line element in the form most appropriate for cosmological applications: 

                                  2 2 2 2

1
( ) ( ) , ( )

D
i c

i
ds dt a t dz a t t


   .                                (2) 

For the further discussion, in addition to the synchronous time coordinate t  it is 
convenient to introduce the conformal time   in accordance with 
                                   1 (1 ) (1 )(1 ) , (1 )c c ct c a t c         .                       (3) 
Note that 0     for 0 1c  , and 0    for 1c  . In terms of this 
coordinate the line element takes conformally flat form: 

                   2 (1 )2 2 2 2 2 2

1
( ) ( ) , ( ) (1 ) ,

D c ci

i
ds d dz c        



      
           (4) 

and the corresponding Ricci scalar has the form 

                                                   
 2 (1 )

( 1) 2
.

(1 ) c

Dc D c
R

c  

 



                                           (5) 

We will assume that the spatial coordinates lz , 1 1, ,l D D   , are com-
pactified to 1S : 0 l

lz L  , and for the other coordinates we have lz    , 

11, ,l D  . Hence, we consider the spatial topology 1 21( )D DR S . For 1 0D   as a 
special case we obtain the toroidally compactified FRW space-time. The results 
obtained here can be used to describe two types of models. For the first one 4D  , 
and it corresponds to the universe with Kaluza–Klein type single extra dimension. 
For the second model 3D  , and the results given below describe how the 
properties of the universe are changed by one-loop quantum effects, induced by the 
compactness of a single spatial dimension. 

For a scalar field with periodic boundary condition one has 

1 2 2 1 2
( , , ) ( , , )D D D D D    z z L z z , where   , 1

1

1( , , )D
D z z z , 1

2

1( , , )D D
D z z z , 
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2 1 1( , , )D D DL L L . In this paper we are interested in the effects of non-trivial 
topology on the vacuum expectation value (VEV) of the energy density. This VEV 
is obtained from the corresponding Wightman  function  in the  coincidence limit 
of  the arguments. 

To evaluate the Wightman function we employ the mode-sum formula 
                                     *

, , 0 0p qG x x x x x x 


        ,                      (6) 

where  *( ), ( )x x    is a complete set of positive and negative frequency 
solutions to the classical field equation and satisfying the periodicity condition 
along the compactified dimension. The collective index   specifies these 
solutions. For the problem under consideration and in the case of a massless field 
the eigenfunctions have the form [9] 
                                       (2)( ) ( ) ,p p q qi ibx C H k e        k z k z                                   (7) 
with the notations 

1 1 2 1 1 2

2 2
1 1( , , ), ( , , ),D D D D D D Dk k k k k    k k k k , 

12 , 0, 1, 2, , 1, , ,l l l lk n L n l D D        

                                                      1 1,
2 1

cDb
c


 


                                                   (8) 

and the order of the Hankel function (2) ( )H x  is defined by the relation 

                               1 221 ( 1) 4 ( 1) 2 .
2 1

cD Dc D c
c

     


                         (9) 

Note that for a conformally coupled field 1 2  . 
The coefficient C  with 

1 1 1( , , , )D D Dn n  k  is found from the ortho-
normalization condition: 
                        00 * *( ) ( ) ( ) ( ) ,Di g g x x x x d x                               (10) 

where the integration goes over the spatial hypersurface const  , and    is 
understood as the Kronecker delta for discrete indices and as the Dirac delta-
function  for continuous ones. This  leads  to the  result 

                       
*( 1) ( 1) ( ) 2

2
12 1 1

1
, .

2

D c c i

q p Dp p D
q

c e
C V L L

V

  





 

   

  

                   (11) 

Substituting the eigenfunctions (7) with the normalization coefficient (11) 
into the mode-sum  formula  for  the Wightman  function, one finds 

, 1
( )( , )

2

b

p q p p
q

AG x x
V








    

                sign( ) 2 sign( ) 2( ) ( ) ,p q q q

q

i i i i
pe e K k e K k e d   

  


  


 

k z k z

n
k               (12) 

where l l lz z z   , 2 2 2
1 1qp pk k   nk k  and 

                                             
( 1) ( 1)1 1 .
D c cDA c 
                                         (13) 
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In (12) we wrote the Hankel function in terms of the MacDonald function 
( )K z . It can be seen that after the application of the Abel–Plana summation 

formula [10, 13] to the series over 
1 1Dn  , the following recurrence formula is 

obtained: 
                                      , 1, 1 1 ,, , , ,p q p q p p qG x x G x x G x x  

                            (14) 
where the first term on the right is the Wightman functions in the FRW space-time 
with 1p   uncompactified and 1q   toroidally compactified dimensions, and the 
second term is induced by the compactness of the 1pz  -direction and is given by 
the formula 
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             ,K y I y I y I y I y K y dy                         

where 1 2q p DV L L    and the notation 

                                                   22
1

2
2

q

D

l l
l p

n L
 

 nk                                       (16) 

is introduced. Note that in this formula the integration with respect to the angular 
part of pk  can  be done explicitly. 

3. Vacuum Energy Density. Now we turn to the investigation of the VEV 
for the vacuum energy density. Using  the Wightman function we can evaluate  this 
VEV  by making  use of  the formula [14] 

    2
00 0 0 00 0 0 00

10 0 lim ( , ) 0 0 ,
4

l
lx x

T G x x g R   



                 
 (17) 

where ikR  is  the Ricci  tensor for  the FRW space-time with  the 00-component 

 
2

0
0 2 ,

1
DcR

c








 

As in the case of the Wightman function, the renormalized VEV of the energy 
density is presented  as  the sum 
                                      0 0 0

0 0 1 0, 1, 1 ,
,pp q p q p q

T T T 
                                 (18) 

where the part due to the compactness of the 1pz  -direction is given by the 
expressions 
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with  the notation 
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22

4 31 1 1 .
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      (20) 

In (20) we have defined the functions 
                       , , .b bf x x K x K z z K z I z z I z I z

                   (21) 
After the recurring application of formula (18), the vacuum energy density  

in  FRW model with spatial topology  1 qpR S  is presented  in the form 
0 0 0

0 0 0,
,

p q FRW c
T T T   

where 0
0 FRW

T  is the corresponding quantity for uncompactified FRW space-time 

and the part 

                                               0 0
0 1 0 ,1

q

D lc D l ll
T T   

                                      (22) 

is induced by the toroidal compactification of the q -dimensional subspace. 
For a conformally coupled massless scalar field one has 1 2   and 

      1I x I x K x x       . For the function    0F z  we have: 

                                             
 

0 2 3 21
.

2 1
b c D

F z z z
c

  
  

  
                                   (23) 

Using the formula 

                                     22 2
1 2

0
,

2
p

p

f ab
f a z b dz

a


                                (24) 

for the case of a conformally coupled field we find 
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1 0 2 1 2, 11 1
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Formula (25) could also be obtained from the corresponding result in  1D  -dimen-

sional Minkowski space-time with spatial topology  1 qpR S , taking into account 

that  two  problems  are  conformally  related:  
( )0 1 0

1 0 1 0, ,

MD
p pp q p q

T T  
    .  

A similar formula takes  place  for the total  topological  part. 
The general formulas for the topological part in the VEV of the energy 

density are simplified in the asymptotic regions of the parameters. For small values 
of the ratio 1pL   we can see that to the leading order 0

1 0 ,p p q
T  coincides 

with the corresponding result for a conformally coupled massless field given by 
formula (25). Note that in terms of the synchronous time coordinate we have 

1
1 11 c

p pL c L t  
    and, hence, 0 ( 1)

1 0 ,
c D

p p q
T t 

  . Hence, the limit under 

consideration corresponds to the early stages of the cosmological expansion 
( 0t  ) in  the case 1c   and  to the late stages ( t  ) in the case 1c  . 
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For large values of the ratio 1pL   and in the case of real  , using the 
asymptotic formulae for the modified Bessel functions for small values of the 
argument, to the leading order one has 
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From  formula (19) we find 
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In terms of the synchronous time coordinate one has   2 10
1 0 ,

D c
p p q

T t  
  . For 

small values 1pL   and imaginary  , in a similar way as in the previous case, in 
terms of the synchronous time coordinate we find 
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where 0B  and 0  are defined by the relation 

   
 

   10

1

11 2
0 1 2

1 2 2 4 1
2 .

1
q

q

pp iii
p i

n

f nL ki D D
B e

i n




  

 




   

 
 

      


 
n

n
  (29) 

This limit corresponds to the late stages of the cosmological expansion 
 t   in the case 1c   and to the early stages  0t   in the case 1c  . 

4. Conclusion. Compactified spatial dimensions appear in various physical 
models, including Kaluza–Klein type theories, supergravity, string theory and cos-
mology. In this paper we investigate the quantum vacuum effects in FRW space-
time induced by non-trivial topology of spatial dimensions. We consider a scalar 
field with general curvature coupling parameter, satisfying the periodic boundary 
condition along the compactified dimensions. Among the most important charac-
teristics of the vacuum are the VEV of the energy density. Though the corres-
ponding operator is local, due to the global nature of the vacuum this VEV carry an 
important information on the global structure of the background space-time. 

In order to derive formula for the vacuum energy density, we first construct 
the Wightman function. Using of the Abel–Plana summation formula, we have 
extracted from this function the part, corresponding to the Wightman function for 
the uncompactified FRW space-time. As the topological part is finite in the 
coincidence limit, by this way the renormalization procedure is reduced to that for 
the standard FRW case. The latter was already realized in literature [4]. As a result 
the vacuum energy density is decomposed into FRW and topological parts. For 
general values of the curvature coupling parameter the corresponding formula is 
simplified in the asymptotic regions of small and large values of the ratio lL  . In 
the first case the leading term in the energy density is the same as that for a 
conformally coupled field, and the topological part behaves like  1c Dt  . This limit 
corresponds to the early stages of the cosmological expansion in the case 1c   and 
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to the late stages in the case 1c  . For large values of the ratio lL   the behavior 
of the topological part is different for real and pure imaginary values of the 
parameter ν. In the first case this part behaves like   2 1D ct   , whereas in the 
second case the decay has an oscillatory nature    1

1sin 2D ct t    . This limit 
corresponds to the late stages of the cosmological expansion when 1c   and to the 
early stages when 1c  . 
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Ա. Լ. Մխիթարյան 
 

Վակուումային ֆլուկտուացիաները կոմպակտ չափերով կոսմոլոգիական 
մոդելներում  

 
Ուսումնասիրվում են սկալյար դաշտի քվանտային երևույթները 

աստիճանային մասշտաբային ֆակտորով Ֆրիդման–Ռոբերթսոն–Ուոկերի 

կոսմոլոգիական մոդելներում, որոնք ունեն 1( )p qR S  տարածական 

տոպոլոգիա: Ստացված են Վայթմանի դրական հաճախային ֆունկցիայի 
անդրադարձ բանաձևեր դաշտի քառակուսու և էներգիայի միջինների համար: 

 
А. Л. Мхитарян. 

 
Вакуумные флуктуации в космологических моделях  

с компактными измерениями 
 

Исследованы квантовые эффекты скалярного поля в космологических 
моделях Фридмана–Робертсона–Уокера со степенным масштабным фактором 
и с пространственной топологией 1( )p qR S . Получены рекуррентные фор-
мулы для положительно-частотной функции Вайтмана и плотности энергии. 

 
 
 


