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In the present paper some properties of one random process arising in many 
limit theorems of risk theory are investigated. Connection formulas with stable 
distributions and with one class of integral transforms are found. The asymptotical 
properties of this law are studied.  
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Introduction. In limit theorems of risk theory in critical situations (see [1])  
the limit law with Laplace–Stieltjes transform (LST) ( )t se   arises, where ( )s    
and ( )s    are solutions of the equation z z s  1, 0s  , with initial 
conditions (0) 0   and (0) 1  , respectively2. It is known that (see [1]) the 
distribution function (DF) ( , )F x t  of random variable (RV) (t)=(t,) with LST 

( )t se   is absolutely continuous and has density 
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*   E-mail: artakm81@mail.ru  
1    Here and later on in  signs  “  ” and “  ” the upper sign is taken in the case of function  , and the bottom 

one in the case of  . 
2    For 2   we have  ( ) 1 4 1 2s s    . For some other values of parameter   the solution ( )z s   may 

be found as well. For example, for ( 1)k k   , 1,2,...,k   and (2 1)k k   , 2,3,...,k   the equation 

z z s   takes the form 1k ky y s   and 2 1k ky y s  . For 1,5   the function ( )s  may be found by 
means of Kardanos formula or program “Mathematika”. For  example, for 1,5   the function ( )s  under 
condition (0) 1   takes the form  

       1 3 1 3
1 1 3 2 3 4 1 3 2 3 43 1 2 1 6 2 18 27 3 3 4 27 2 2 18 27 3 3 4 27s s s s s s s s s s


              . 
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T h eor e m  1 .  Let 0t   and   , so that 1 ( 1)t   . Then 

1lim { ( ) } ( )P t x G x   , where G , 0 1  , is  a  stable DF  with  LST 
1se
 . 

The  proof  follows  from  the  relation  

1

1 1 2 1 1

(1 (1)) (1 (1)), 0, ,

( ) 1 ( 1) (1 (1)), 0, ,

(1 (1)) (1 (1)), , ,

s s s s

s s s

s s s s



  



 

  



 

      
      
      

 

which for the case of function   is presented in [4], and is easily proved for  .  

Lemma 1 1. 
1 1

( )
n nd

k k
k k

t t  
 

  
 
  , 2n  , 1 2, ,..., 0nt t t  , where   1( ) n

i it 
 is 

the sequence of independent RVs, and “
d
 ” is the DFs equality sign.  

T h eor e m  2 2. The function ( ) 0s   has a completely monotone (CM) 
derivative.  I. e. 

( )( 1) ( ( )) 0n ns   , 0s  , 0,1,2,...n   
Proof.  Since the function  ( ) 1 ( )s s   , being a LST of some measure  (see 

[1] and [4], p. 505), then 2( ) ( ) ( )s s s      . Obviously, 1 1( ) ( ( ) 1) 0s s      . 
Since ( )s   and 1s  are CM and 2 ( ) ( ( ))( ( ))s s s     , then, by criterion 2  
from  [4],  p. 507, we conclude that  1( ( ))s    is  CM.  Then  2 ( )s   as  a  product 
of two CM functions is also CM (see [4], p. 507). Therefore, 2( ) ( ( )) ( )s s s       
is  CM.  

Subordination.  
а) From the definition of ( )s  it follows 

1( ) ( ( ))t s t s se e
    . As ( )s  is 

CM, then ( ( ))s s    is also CM. Then ( ( ))t s se   is a LST for DF ( ) ( , )tE x F x t , 

where 
1, ,

( )
0, ,t

x t
E x

x t


  
   and    is  the  convolution  sign.  

It is known, that DF 1
0

( ) ( ) ( , ) ( )t u uU x E x F x u d G ut 





   has a LST 

1( ( ))t s se
   (see [4], p. 508). From the Uniqueness Theorem (see [4]) and from 

1( ) ( ( ))t s t s se e
     we obtain equality 1

0
( , ) ( ) ( , ) ( )u uF x t E x F x u d G ut 






   , 

which due to the relation ( ) ( , ) ( , )uE x F x t F x u t     takes the form 

1
0

( , ) ( , ) ( )
x

uF x t F x u u d G ut 



   , or in terms of densities – 

                                                
1   Proof of Lemma 1is obviously and in case of function  is proofed in [3]. 
2   From Theorem 2 it follows (see [4], p. 516) that  ( , )F x t


 is infinitely divisible, and 

0

( ) ( )sxs e dP x


   , where 

P  is the measure  on  0, . 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2010, № 2, p. 20–28.  
 

22

0

1 1 1( , ) ( , ) , ,
x uf x t f x u u p du

t t    
 

   
 

 . 

b) Since ( )s  is the solution of equation z z s  , then the relation 

( ) ( ) 2 ( )s s s s     , 0s  , holds, whence the formula ( ) ( 2 ( ))s s s     , 

0s  ,  follows.  As  ( )s   is  CM,  then  ( 2 ( ))s s     is  also  CM.  The    

function ( 2 ( ))t s se    is a LST for DF ( ) ( ,2 )tE x F x t . Therefore, DF 

0
( ) ( ) ( ,2 ) ( , )t u uU x E x F x u d F u t



    has a LST ( 2 ( ))t s se     (see [4], p. 508).  

Now  from  ( ) ( 2 ( ))t s t s se e        and  from  the  Uniqueness  Theorem  we 

obtain 
0

( , ) ( ) ( ,2 ) ( , )u uF x t E x F x u d F u t


    , which due to the relation 

( ) ( ,2 ) ( ,2 )uE x F x u F x u u     takes the form 
0

( , ) ( ,2 ) ( , )
x

uF x t F x u u d F u t    , 

or in terms of densities – 
0

( , ) ( ,2 ) ( , )
x

f x t f x u u f u t du    . 

Maximal Likelihood Estimate of Parameter θ = t  for 2  . Let 2   
and 1 2( , ,..., ) 0nX X X X   be a sample from general collection with DF ( , )F x  , 

(0, )    . Let’s consider the likelihood function 
1

( , ) ( , )
n

k
k

L X f X 


  

with 
2( ) 4( , ) e 2x xf x x x   

  , and the likelihood equation  

1

ln ( , )ln ( , ) 1 0
( , )

n
k

k k

f XL X
f X


  



 


  

 
 , 

which takes the form 
1

1 1 1 0
2 2

n

k k
n

X


 

     
 . Denoting 1 1

1
(2 )

n

n k
k

p n X 


  , we 

obtain the equation 2 2 1 0np     , the solution of which is 
  1 1 16 4n np p    . As   1 1 16 4n np p      , then in case of   

for parameter   we have just one estimate   1 1 16 4n np p      . 

Connections  with  Other  Laws. The density  ( , )f x   and  the  DF 

( , )F x    may  be  connected  with  functions  (1 )
,

( , )
( )

2
z szs e z dz

i
  

 
  





    

and  , ,
0

( ) ( )
x

x t dt      ,  0,x  , (0, )  , 1       (see  [5]). Here  

for   any  0     the   contour  ( , )     of  complex  plane  z   is  run  in  direc-
tion of decrease of arg( )z . The contour consists of two rays (see Fig.1) 
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 ( ) ( , ) : arg( ) ,L z z z           and the arc of circle ( , )l     

 : arg( ) ,z z z    , joining the ends ie    of those rays. It is proved in [5], 

that the function , ( )s   is entire and may be expanded into series  

             
1

,
0

1 (1 ( 1) )( ) ( 1) sin (( 1) )
!

k k

k

ks k s
k 

  
   







  
     .      (2) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

It is also known that ,
0

( , ) ( )xE x e d    


   , 

 0,x  , 1    , 1     , where 
the entire functions ( , )E x   of Mittag–Leffler 
type are defined through expansion  

1
0

( , )
( )

k

k

zE z
k 

  









 , 0  ,     . 

Taking 1  ,    and 1( )s x x     in 
formula  2 , we obtain 

                                                    1 1 1 1
,1( , ) (( ) )f x x x x 

     
   . 

Hence,  from  properties  of     and  from  relation ( ) ( )it it     we 
conclude, that ( ) {Im( ) 0, Re( ) 1, 0 Arg( ) 2 }z it z z z          and 

( ) {Im( ) 0, Re( ) 1, 0 Arg( ) 2 }z it z z z          for   ,0t   (see Fig. 2). 

Then, due to conversion formula (see [4]) ( )1( , ) Re
2

itx itf x e dt



   




   

0
( )1 Re itx ite dt


   



  , by methods from [1] and [3] it is easy to obtain the 

representation ( ) 1

0

1( , ) Re ( 1)
i

xz x zf x e z dz
i

   



  


 

  
 

  . Comparing the latter 
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with (1), we conclude ( ) 11( , ) Re ( 1)
2

i
xz x z

i
f x e z dz

i
   




  


 

 
  

 
  , where 

changing the integration variable 1y x z , we obtain 
1( ) 1 1 1 11( , ) Re ( 1)

2

i
y x x y

i
f x e x y x dy

i
     





    


 

 
  

 
  . 

Let’s consider a closed contour  1 2,R R RC R R C     , where 

 2 Re , 2i
RC z         ,  1 , 2i

RC z Re          , 2 2     , 

and let R  be the part of the curve   (see Fig. 1), bounded by those arcs. As 

 1( ) 1 1 1 1( ) 1y x x yh y e x y x
    

       is analytical inside of  , then, due to 

Cauchy Theorem, we get ( ) 0h y dy


 . Let’s show that 
1 2,

0
R R

R
C C


 . 

Changing the integration variable Reiy   and taking into account that cos 0  , 
we get  

1 1

1 2

21 1 1 1 1 1
( ) cos ( ) cos

1 1
,

1 1 0.
R R

y x x y R x x R

C C

x y x Re dy e Rd
x x

   
   

   
 



  
 

   
    

  
   

Tending R  to infinity, we obtain 

 1( ) 1 1 1 1

( , )

1( , ) Re 1
2

y x x yf x e x y x dy
i

    

  

 


    


    
  

  , 

and comparing the latter representation with , ( )s  , we get 

   1 1 1 1 1
,1 ,1( , ) ( ) ( )f x x x x x x x  

           
    . 

Taking into account the relation  1 1 1 1
,1( , ) ( )f x x x x 

     
   , we 

get 

   11 1 2 1
,1( , ) ( )f x x x x x 

     
  

    . 

Let 1 20      , 10     and 2    . Then (see [5]),  

 1 1
2 1

1 1 1 2
2 1 , 2 1

0 2 1
( , ) , ( ) , , (1 ) .E z E z d z 

   
 

          
 


        (3) 

Let X  and Y  be independent RVs with DFs F  and G , and with LSTs   
and   respectively. It is known that (see [4], p. 521) the LST for the RV XY  is 
given by the Parseval’s  equality 

0 0
( ) ( ) ( ) ( )sx dG x sx dF x 

 

  . 

Therefore,  relation  (3)  is  the  LST  for  the  RV XY ,  where  RVs  X  and 
Y  are independent and have DFs 

1 1, ( )x   and ( )G x  respectively. Here 
1 1 1( 1)

,( ) ( )dG x x d x  
   (i. e. ( )G x  has density 1 1 1( 2) 1

1 , ( )x x  
    ). Or, as 
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   1 1 1
1 1 1

1 1 1
1 ,

0
, zvE z e v dv  

      


   ,  we can consider the relation (3) as the 

LST of RV XY , where RVs X  and Y  have densities  1 1
1 1

1 1
, v 

      and  
1 1

, ( )
     respectively. 
Let’s consider stable den-

sities ( , , )p x    (see [4],  p. 657) 
with characteristic function (CF) 

    exp exp 2 ,g t t i      

where 0 2  , sign( )t  , 
, 0 1,

2 , 1 2.
 


 

 
    

 One-

sided densities ( ,1 , 1 )p x   , 
1 2  , are of special interest 
here. 

In Fig. 3 the graphs1 of 
densities ( ,1 , 1 )p x    and 

( ,1)f x  for 1,5; 1,6; 1,7;   
1,8; 2  are presented. In Fig. 4 the 
graphs of density ( ,1)f x  for 
large values of the argument and 
those close to zero in the case of 

1,7   are presented. Oscillation 
in the graphs confirms the need to 
consider the asymptotical beha-
vior of those densities on infinity 
and nearly zero separately. 

Substituting 1k n   in (1) 
and taking into account the 
formula ( ) ( 1)     , we 
obtain  

1
1 1

1 1

1

( 1) ( )( , ) ( 1) sin
!

k k
k

k

t t x kf x t k x
k

 
 

 


 
  




 
  , 0x  , 0 t   . 

Since 0 1 1  , then from [4] (p. 659, Lemma 1), for function   we have 

 ( 1) 1 1( , ) ( ) ( ) , ,f x t t t x p x t x      
     . For function   and 0 x t     

we obtain 1( , ) ( ) ( ( ) ,1 , 1 )f x t t t x p x t x    
     , and for 0 t x     we 

get 1( , ) ( ) ( ( ) ,1 ,3 2)f x t t x t p x x t    
     .  

                                                
1  The graphs are constructed by means of program Matematika, whereas the first 2500 members of corresponding 

series are taken.   

Fig. 3. 
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Due to formula ( ) (1 ) sin       , 0 1  , we obtain 

 1 1( , ) ( 1)f t t x     
   . 

For density 1 ( , )f x t , , 0x t  , with LST 
1tse
  we have (see [4], p. 659, 

Lemma 1) 
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01
2

( 1) 1 1sin , 1 2,
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nn n

n

t t n nx
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and, denoting ( )     for ( )s  and ( ) 0    for 1s  , we obtain 

     

1

0,1
2

( 1) ( ( )) 1 1sin , 1 2,
!( , )

2 exp ( ) 4 , 2,

nn n

n

t t x n nx
x nf x t

t x x t x x






  

  

  

 



     
      
   


 

for densities ( , )f x t  and 1 ( , )f x t . From here we finally get 

1( ( )) ( , ) ( , ( ))t x f x t tf x t x     (for   it holds only in case of x t ).  

Let’s consider the function 1( ) ( ) ( )s b s s s     . As the CF 
( 2 )

2( )
i

t eite e
 





   has density ( , ,2 )p x   , it is easy to see that CF ( )b ite   has 

density   1 1, (( ( )) , ,2 )x p x            . Then since   
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1

0

1 ( 1) ( ( )) 1 ( 1)( , ) sin
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nn n
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 , 

we have ( , ) ( , )tf t x x x t   . 
Taking  into  account  that ( , , ) ( , , )p x p x      ,  from  [4]  (p. 659, 

Lemma 1) we get  
1

1 1
0

( , )1 ( 1) ( ) 1 ( 1), ,2 sin .
!

nn n

n

f xx x n np
n x


 

      
   

 




          
   


  

We formulate the above obtained results in the following lemma. 
Lemma 2. The following relations are true:   

1 1 1( , ) ( ) ( ( ) , , )f x t t t x p x t x       
     , 0x  , 0 t   ; 

1 1 1

1 1 1

11 1

( ) ( ( ) , , ), 0 ,

( , ) ( ) ( ( ) , ,3 2), 0 ,

(( 1) ) , 0;

t t x p x t x x t

f x t t x t p x x t t x

x x t

 

 



 

 

  

    

    




       
       

    

                        (4) 

1 1 1( , ) (( ) , , 2 )f x x p x        
     , 0x  , 0  ; 

( , ) ( , )tf t x x x t   , 1( ( )) ( , ) ( , ( ))t x f x t tf x t x    1. 

Asymptotical  expansions  for  ( , )f t x   can  directly  be  obtained  from 
Lemma 2 and from the corresponding expansions of densities ( , , )p x    (see [6]). 

Let 
2

2 2 1 22
( ) (1 ) 1 (1 )

2 (2 )!

n
n n n

n n
B

a a
n n

            be polynomials of 

degree 2 1n   with absolute term equal to zero ( nB  are Bernoulli numbers) and 
1

1 2

1
1 2

2 ... , 0 1

!( , ,..., ) ...
!... ! 1! !

n

n j

kk
n

n n
k k nk n k n

yynC y y y
k k n    

      
   

  be Bell polynomials.  

Denote:  

1 2( ) (1! ,2! ,..., ! ) !n n nb C a a n a n  ,     2 1 2
1( , ) ( ( ) ( )) n

n n n nd d a b      
   , 

1 2( , ) (1! ,2! ,..., ! ) !n n n nq q C d d n d n    (polynomials of degree 2( 1)n   by   
and 2n  by  ). Let ( 1)( , ) (1 )( )x x           and 1( ) (1 )v       . 

T h eor e m  3 2. For ( , )f t x  the following expansions are true: 

1. 
2 1

1 1 12

1
( , ) ~ e ( ) 1 ( )( )

2
n

n
n

f x t t t x Q


  
   



 
    




   
 

 , when 
1

0x
t x






, 

where 1 1 1 (1 )( ( ) , ) ( 1) ( ( ) )x t x x t x              , (1 ) ( ( 1))v       . 

                                                
1   The latter relation for   is true only for x t .  
2  From Theorem 3 the asymptotical expansions follow for ( , )f t x  for cases when t const  and 0x  , 

t const  and x  , x const  and t  , x t  , 0x t   itc.  
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2. 
2 1

1 1 12

1
( , ) ~ e ( ) 1 ( )( )

2
n

n
n

f x t t t x Q


  
   



 
    




   
 

 , when 

 1 1( ) 0x t x   , where    1 (1 )1 1( ) , ( 1) ( )x t x x t x
      
      , 

 1( ) ( 1)v       . 

3. 
1

1
1

( )( , ) ~ sin( (2 ))
( 1)!( )

k

k
k

t k xf x t k
k x t 

    




 



 

 , when 
1

0x
t x






 and 

1 2  . 

4.  
2( ) 4 2

1

1( , ) ~ e 1 (8 ( ) )
2

x t x n
n

n

tf x t Q x x t
x


  




     
  

 , when 
1

0x
t x






 

and 2  . 

Here 
2 21 ( )

2
t

n nQ q t e dt







  , where nq  are the above-defined 

polynomials  of  degree 2n   with  respect  to  .  
T h eor e m  4  (Unimodality). DF ( , )F t x  is unimodal. 
The proof follows from (4).  As  the  density  ( , , 2)p x      is  unimodal  

(see [6]), then  ( , )f t x  is also unimodal  (since x  does not break unimodality)1.  
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Ա. Ռ. Մարտիրոսյան 
Ռիսկերի տեսության մի սահմանային բաշխման հատկությունները 

  
Ուսումնասիրված են ռիսկերի տեսության որոշ սահմանային 

թեորեմներում առաջացող մի պատահական պրոցեսի հատկությունները: Տրված 
են կայուն բաշխումների և ֆունկցիաների մի դասի հետ ունեցած կապերը և 
ուսումնասիրված է այդ բաշխման ասիմպտոտիկ վարքը:  
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