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In the present paper the independence number of generalized cycles product is 

investigated. A method for constructing the maximal independent set in the 
product graph is presented. The method is particularly based on a specific 
combinatorial problem, which is also solved in the paper. The main result 
generalizes the similar fact known for odd cycles [6].  
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Introduction. Investigation of independence number (IN) of graphs product 

comes from an information theory problem, examined by Shannon in [1, 2]. A 
problem was raised in [3, 4]: to find necessary and sufficient conditions on a finite 
graph G  for the IN to be multiplicative on the product G H  for every finite 
graph  .H  The  sufficient  condition  was  found  by  Shannon  [1].  Later Rosen-
feld [5] proved that this condition was not necessary and gave the necessary and 
sufficient  condition,  thereby  introducing  an  invariant  – the Rosenfeld number. 
In  [6]  Hales  introduced  a  method  of  finding  the  IN  of  odd  cycles  product. 
Later, in [7] the lower estimate  for  the  IN  the generalized cycles product was 
obtained. In this paper we give a method to construct the maximal independent set 
of generalized cycles product. For other references on the IN, graphs product and 
its applications see [3, 8, 9]. In [10] the IN of the of generalized cycles direct 
product  is  found.  

Essential Notations. The set of a graph vertices is independent, if no two 
vertices in it are adjacent. An independence set containing k  vertices is called k -
independent set. Let’s denote by ( )G  the number of vertices in the maximal inde-
pendent set of G . A graph is called k -regular, if the degree of each vertex is k .  

We say, that k
nC  is a generalized cycle, iff it is a 2k -regular graph with n  

vertices, which can be ordered on a circumference so that each vertex is adjacent to 
its k  preceding and succeeding vertices ( 2n  , 1 [( 1) / 2]k n   ), where [ ]c  is 
the greatest integer less than or equal to c .  
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The strong product of 1G  and 2G  is a graph G  with vertices ( )V G  and 
edges ( )E G , where 1 2( ) ( ) ( )V G V G V G   and 1 2 1 2[( , ), ( , )] ( )u u v v E G , iff 

1 1u v  and 2 2u v  ( u v  means either u v  or [ , ]u v  is an edge in the 
appropriate graph). 

A non-negative real-valued function f  on ( )V G  is called admissible, if for 
each clique (the maximal set of pairwise adjacent vertices) C  holds ( ) 1

v C
f v


 . 

The Rosenfeld number ( )G  of G  is defined as 
( )

( ) max ( )
f v V G

G f v


  , running 

over all  admissible functions f  [5, 6]. 

One can deduce ( ) / ( 1)k
nC n k    and ( ) [ ( )]k k

n nC C  . The following 
inequalities are known for arbitrary graphs G  and H  [5, 6]: 
                 ( ) ( ) ( ) min( ( ) ( ), ( ) ( ))G H G H G H G H            .  (1) 

Hales [6] obtained the following result for the IN of the product of two odd 
cycles:   

2 1 2 1 2 1 2 1 2 1 2 1( ) min([ ( ) ( )], [ ( ) ( )])n k n k n kC C C C C C             . 
Our result generalizes the equality above for generalized cycles 

( ) min([ ( ) ( )], [ ( ) ( )])p k p k p k
m n m n m nC C C C C C        .  

Results and Discussions. The main difference between the method we are 
going to introduce and the one in [7] is that we’ll make use of the optimization 
problem below to achieve the known upper bound (1). Thus, let’s consider the 
following optimization problem and denote it by ( , , )S m p  : 

                                             

1 2

2 3 1

1 1

... ,
... ,
...

... ,

p

p

m p

x x x
x x x

x x x










   
    


    

    (2)  

1
max

m

i
i

x


 , where , , {0}p m N   ; 1,2,...,i m ; p m . If we sum all the 

lines of (2), we’ll have 
1

m

i
i

p x m


  or  
1

/
m

i
i

x m p


 . We’ll construct a solution 

with value  /m p  and satisfying the condition 
, 1,2...,
max ( ) 1i ji j m

x x


  . In that case, 

after denoting 
1,2,...,
min ii m

t x


 , we can consider 0–1 optimization problem instead, i.e. 

{0,1}ix  , 1, 2,...,i m ; p m   . Obviously, if (mod )mpr m p =0, the solution 
for (2) is: (1,1,...,1,0,0,...,0,1,1,...,1,0,0,...,0,...,1,1,...,1,0,0,...,0)

p p p

  
  
  

. Thus, let’s consi-

der the case when 0mpr   and divide the vector of unknowns in the following way:  

1 2 1 2 2 ([ / ] 1) 1 ([ / ] 1) 2 [ / ] [ / ] 1( , ,..., , , ,..., ,..., , ,..., , ,..., ).

mp

p p p p m p p m p p m p p m p p m

p p p r

x x x x x x x x x x x         
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We assume that: 1. 
1

p

i
i

x 


 ;  2. ([ / ] 1)...i i p i m p px x x     ,  1,2,...,i p . 

Hence, the vector of unknowns may be rewritten as follows  
1 2 1 2 1 2 1

[ / ]

( , ,..., , , ,..., ,..., , ,..., , ,..., )
mp

mp

p p p p p r

p p p r

m p

x x x x x x x x x x x    


. 

We’ll determine the values of  1 2, ,...,
mpp rx x x   so that the vector satisfies inequali-

ties (2) and the following equalities  

                                    
1 1

, [ / ] [ / ]
mpp rp

i i
i i p

x    x m p m p  


  
    .   (3) 

Note that [ / ] [ / ] [ / ] [ / ] [ / ] [ / ]mp mp mpm p m p m p r p m p r p r           . 

Since 
1

p

i
i

x 


  the conditions (2) are equivalent to the following inequalities:  

                               

1 1

1

1

, 1,..., ,

, 0,..., 1,

, 1,..., 1.

mp

mp

mp mp

p k k

i i mp
i p i

p r p

i i mp
i p r k i p k

p r k r

i i mp
i p i k

x x k r

x x k r

x x k p r



  



    

  

  


 


   


    


 

 

 

   (4) 

Thus the problem can be formulated as follows: find the 0–1 unknowns 
1 2( , ,..., )

mpp rx x x  , satisfying equalities (3) and inequalities (4). We’ll show that 

there exists a vector, satisfying those conditions. Let r p . For given , N   , 
p  , r  , the 0–1 vector 1 2 1( , ,..., , ..., )p p p rx x x x x   is admissible, iff  

                            
1 1

, ; , .
p p r

i i
i i p

x p   N    x r   N   


  
         (*) 

Consider the following two problems: 
1. Let / /r p  , determine admissible 0–1 vector 

1 2 1( , ,..., , ..., )p p p rx x x x x  , so that  

                                 

1 1

1

1

, 1,..., ,

, 0,..., 1,

, 1,..., 1.

p k k

i i
i p i

p r p

i i
i p r k i p k

p r k r

i i
i p i k

x x k r

x x k r

x x k p r



  



    

  

  


 


   



   


 

 

 

             (**) 

2.  Let / /r p  , determine admissible 0–1 vector 
     1 2 1( , ,..., , ..., )p p p rx x x x x  , so that 
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1 1

1

1

, 1,..., ,

, 0,..., 1,

, 1,..., 1.

p k k

i i
i p i

p r p

i i
i p r k i p k

p r k r

i i
i p i k

x x k r

x x k r

x x k p r



  



    

  

  


 


   



   


 

 

 

           (***) 

We’ll show by induction on r  that both problems have solutions. If 1r  , 
then the statement is true. Indeed, for the first case we have / /r p    , 

0,1  , and any 0–1 vector 1 2 1( , ,..., , )p px x x x  , satisfying equalities (*), is a 
solution for  the  first  problem.  The  second  case  can  be  deduced  analogously.  

Now  assume  that  the  statement  is  true  for  all  natural  numbers  less 
than r .  Consider  the  first  case  for  r   (the  second  one  can  be  proved 
analogously). Let 1 (mod )r p r , if 1[ / ]p r r   , then 

1

1 2 1 2 1 2 1 2( , ,..., , , ,..., ,..., , ,..., ,1,1,...,1, , ,..., )
p

r r r r
rr r r r

x x x x x x x x x x x x


     vector, where 
1

r

i
i

x 


 , 

satisfies all the conditions except perhaps the first equality in (*). By replacing the 
first zero components 1[ / ]p r r    in the mentioned vector with ones we’ll 
yield the solution. Thus, we can assume that 1[ / ]p r r   . Consider the vector 

1

1

1 2 1 2 1 2 1 2 1 2( , ,..., , , ,..., ,..., , ,..., , , ,..., , , ,..., )
p

r r r r r r r r

r r r rr

x x x x x x x x x x x x x x x  


   

, where 
1

r

i
i

x 


  

and 
1

1
[ / ]

r r

i
i r

x p r 


 
  . For this vector, obviously, equalities (*) are  satisfied.  

Now  let’s  rewrite  inequalities  (**)  for  the  mentioned  vector.  It’s  easy  to  see  
that  the  first  inequality  is  satisfied,  while  the  second  is equivalent  to  the  fol-

lowing two inequalities: 
1

1

r rr

i i
i r k i r r k

x x


    
  , 10,..., 1k r  ; 

1

1

( ) 1

( )

r k r r

i i
i r k i r k r

x x
  

    
  

1

1( ) 1

r rr

i i
i r k r i r

x x


    
  , 1,..., 1k r r  . 

The third one is equivalent to 
1 1 1

r r r k

i i i
i i k i r

x x x


    
    , 11,...,k r . After 

reducing the inequalities we get  

1

1

1 1

1
1 1

1

( ) 1

1
1

, 1,..., ,

, 0,..., 1,

, ,..., 1,

r k k

i i
i r i

r r r

i i
i r r k i r k

r r r k r

i i
i r i r k

x x k r

x x k r

x x k r r
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where 
1

r

i
i

x 


  and 
1

1
[ / ]

r r

i
i r

x p r 


 
  . Since / /r p   and  

1 11
1

1 1 1 1 1

( )( ) ( )[ / ] 1 ,

rp p rp r p rp r pr r r
r r r r r p p r

       
      

       
 

         

we obtained a 2nd type problem for 1r r . The statement is true by induction. Thus, 
we constructed an optimal solution for problem (2). Let mpr  and mp  be acronyms 

for (mod( 1))m p   and ( )p
mC , respectively, then the main theorem can be 

formulated.  
T h eor e m.  If ( ) ( ) ( ) ( )k p k p

n m n mC C C C    , then ( ) [ ( ) ( )]p k k p
m n n mC C C C    .  

Proof.  To  prove  the  Theorem  it’s  enough  to  construct  an  independent 
set in the product graph with the specified cardinality. We’ll construct mpt  , 

nk -independent sets 0 1,..., tS S   in graph k
nC , then decompose each of them into 

1p   parts. Afterwards by constructing mpr  more independent sets in k
nC , we’ll 

get m  independent sets 0 1 1, ,..., mP P P  . Finally, we’ll show that the following 
independent set in the product graph is the required one (vertices of generalized 
cycles are denoted by numbers in the above mentioned cyclical order): 

1

0

m

i
i

S B



  ,  {( , ) / }i iB i v v P  . 

Now, let’s consider the problem ( , 1, )nkS m p   and denote the above 
constructed optimal solution by 

0 1 0 1 0 1 1

1 1 1

[ /( 1)]

( , ,..., , , ,..., ,..., , ,..., , ,..., )
mp

mp

p p p p p r

p p p r

m p

x x x x x x x x x x x 

  



   


. It is clear that 
0

p

nk i
i

x


 . 

Suppose l  is the least non-negative integer, satisfying inequality 
( 1) ( 1) / ( 1)nk mp nkl r k r p    . According to the supposition of the Theorem 

( ) ( ) ( ) ( ),
1 1 1 1

mpk p k pnk
n m mp mp nk mp nk mp nk nk n m

rrn mC C C C
k k p p

                 
   

and,  therefore,  mpl  .  Consider  the  following  nk -independent  sets  in  the 

graph  k
nC  

0 {0,( 1),2( 1),..., ( 1)( 1)}nkS k k k     ,  

1 { ,( 1) ,2( 1) ,...,( 1)( 1) }nk nk nk nk nkS r k r k r k r         ,  

2 { 2 ,( 1) 2 ,2( 1) 2 ,..., ( 1)( 1) 2 }nk nk nk nk nkS r k r k r k r         ,  
… 

{ ,( 1) ,2( 1) ,..., ( 1)( 1) }l nk nk nk nk nkS lr k lr k lr k lr         ,  
… 

1 { ,( 1) ,2( 1) ,..., ( 1)( 1) }t nk nk nk nk nkS lr k lr k lr k lr          ,  
{ ( 1) ,( 1) ( 1) ,..., ( 1)( 1) ( 1) }nk nk nk nkR l r k l r k l r          .  
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Operations here are considered to be done by modulo n . Consider the 
elements of sets 0 1,..., tS S   in the specified order and decompose each of the sets 
into 1p   parts (so that cardinality of the i -th set is ix ). Thus, we have 
constructed sets 0 1 ( 1) 1, ,..., p tP P P   . Now let’s consider the elements of R  in the 
specified order and separate from them the first mpr  sets with cardinalities 

1 2, ,...,
mpp p p rx x x    correspondingly. Thus, we get sets 0 1 1, ,..., mP P P  in k

nC  graph. 

Since the vector from ix  is an optimal solution, it is easy to check that  
| | [ / ( 1)] [ ( ) ( )]p k

nk mp nk mp m nS r p C C        . 
To finalize the proof of the Theorem, it remains to show that the constructed 

set S  is an independent set in the product graph. It suffices to show that any 
sequential 1p   sets in the cyclic sequence of sets 0 1 1, ,..., mP P P   are pairwise 
disjoint and the union of the 1p   sets is an independent set in k

nC .  
Let (mod ) ( 1)(mod ) ( )(mod ), ,...,i n i n i p nP P P   be such a sequence of sets. If 0P  and 

1mP   aren’t present in the sequence together, then the statement follows from the 
construction,  otherwise,  taking  into  consideration  the  fact  that  the  vector  
from ix  is a solution of  (2),  the  statement  follows  from  the  definition  of  
number l .  Indeed, the last element (in the above mentioned order) of 1mP   is 

( 1) ( 1)([ / ( 1)] 1) ( 1)nk nk mpl r k r p k         , which is not adjacent to the first 
element (in the mentioned order) of 0P , that is 0. The Theorem is thus proved. 

Corollary. For any  generalized cycles p
mC  and k

nC  holds ( )p k
m nC C    

min([ ( ) ( )],[ ( ) ( )])p k p k
m n m nC C C C      , particularly, [ / ]( )k k

n n
n k nC C

k
      

.  

Proof. Obviously, it’s enough  to prove only the first equality, which is a 
direct consequence of the Theorem and the fact from [5, 6]:  

( ) min( ( ) ( ), ( ) ( ))p k p k p k
m n m n m nC C C C C C        . The corollary is thus proved.  
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Ս. Հ. Բադալյան, Ս. Ե. Մարկոսյան 
 

Ընդհանրացված ցիկլերի ուժեղ արտադրյալի անկախության թվի մասին 
 

Սույն աշխատանքում ուսումնասիրված է ընդհանրացված ցիկլերի ուժեղ 
արտադրյալի անկախության թիվը: Տրված է արտադրյալ գրաֆում ամենամեծ 
անկախ բազմությունը կառուցելու եղանակ: Եղանակը մասնա-վորապես 
հիմնված է յուրահատուկ կոմբինատոր օպտիմալացման խնդրի վրա, որը 
նույնպես լուծված է: Ստացված հիմնական արդյունքը կենտ ցիկլերի համար 
ստացված նման արդյունքի ընդհանրացումն է [6]. 
 
 

С. А. Бадалян, С. Е. Маркосян. 
 

О числе независимости произведения обобщенных циклов 
 

В настоящей работе исследуется число независимости произведения 
обобщенных циклов. Дан метод для построения наибольшего независимого 
множества в графе произведения. Метод, в частности, основан на специфи-
ческой комбинаторной задаче, которая тоже решена. Полученный результат 
является обобщением известного факта для нечетных циклов [6]. 
 


