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In the present paper the independence number of generalized cycles product is
investigated. A method for constructing the maximal independent set in the
product graph is presented. The method is particularly based on a specific
combinatorial problem, which is also solved in the paper. The main result
generalizes the similar fact known for odd cycles [6].
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Introduction. Investigation of independence number (IN) of graphs product
comes from an information theory problem, examined by Shannon in [1, 2]. A
problem was raised in [3, 4]: to find necessary and sufficient conditions on a finite
graph G for the IN to be multiplicative on the product Gx H for every finite
graph H. The sufficient condition was found by Shannon [1]. Later Rosen-
feld [5] proved that this condition was not necessary and gave the necessary and
sufficient condition, thereby introducing an invariant p — the Rosenfeld number.
In [6] Hales introduced a method of finding the IN of odd cycles product.
Later, in [7] the lower estimate for the IN the generalized cycles product was
obtained. In this paper we give a method to construct the maximal independent set
of generalized cycles product. For other references on the IN, graphs product and
its applications see [3, 8, 9]. In [10] the IN of the of generalized cycles direct
product is found.

Essential Notations. The set of a graph vertices is independent, if no two
vertices in it are adjacent. An independence set containing k vertices is called % -
independent set. Let’s denote by a(G) the number of vertices in the maximal inde-

pendent set of G . A graph is called £ -regular, if the degree of each vertex is & .
We say, that Cf is a generalized cycle, iff it is a 2k -regular graph with »

vertices, which can be ordered on a circumference so that each vertex is adjacent to
its k preceding and succeeding vertices (n>2, 1<k <[(n—1)/2]), where [c] is

the greatest integer less than or equal to ¢.
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The strong product of G, and G, is a graph G with vertices V' (G) and
edges E(G), where V(G)=V(G)xV(G,) and [(u,u,),(v,v,)]€E(G), iff
u,—>v, and u, ->v, (u—>v means either u=v or [u,v] is an edge in the
appropriate graph).

A non-negative real-valued function f on V(G) is called admissible, if for
each clique (the maximal set of pairwise adjacent vertices) C holds ) f(v)<I.

veC

The Rosenfeld number p(G) of G is defined as p(G)=max >  f(v), running

vel (G)
over all admissible functions f [5, 6].

One can deduce p(C¥)=n/(k+1) and a(C*)=[p(CF)]. The following

inequalities are known for arbitrary graphs G and H [5, 6]:
a(G)yxa(H)<a(GxH)<min(p(G)xa(H),a(G)x p(H)). (1)

Hales [6] obtained the following result for the IN of the product of two odd
cycles:

(Chppy X Copyy) = min([p(C,,, ) x A (Cop )]s [(Cyp) X P(Cop D) -

Our result generalizes the equality above for generalized cycles

a(Cyy x C;)=min([p(Cr)xa(C)], [a(Ch)x p(CD) -

Results and Discussions. The main difference between the method we are
going to introduce and the one in [7] is that we’ll make use of the optimization
problem below to achieve the known upper bound (1). Thus, let’s consider the
following optimization problem and denote it by S(m, p,a):

X +X +.tx, Sa,

X +x; o+ x,, 20,

)

X, tx+.+x,, <a,

> x, >max, where p,maeNU{0}; i=1,2,..,m; p<m.If we sum all the
i=1

lines of (2), we’ll have pY x; <ma or Y x; <[ma /p]. We’ll construct a solution
i=1 i=1

with value [ma / p| and satisfying the condition max (x, —x;)<I. In that case,
i,j=1,2...,.m

after denoting t = min x,, we can consider 0—1 optimization problem instead, i.e.

i=1,2,...m
x, €{0,1}, i=12,...m; a < p<m. Obviously, if 7, =m(mod p)=0, the solution
for (2) is: (1,1,...,1,0,0,...,0,1,1,...,1,0,0,...,0,...,1,1,...,1,0,0,...,0) . Thus, let’s consi-
— — —

a a a

P p P
der the case when r,,, # 0 and divide the vector of unknowns in the following way:

(05 X0 X 3 X 15X 5000 X sees Xt 1ty > Xl p11) pi29 75 Xl pp » X! pl 2+ Ko+

P P P Tnp
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D
We assume that: 1. lexi =a; 2. %=X, , ==X, i=12,..,p.
Hence, the vector of unknowns may be rewritten as follows

(xl,xz,...,xp,xl,xz,...,xp,...,xl,xz,...,xp,xp+1,...,xp+, ).
| "

m/pl-l)p>

mp

V4 V4 P Tp
[m/p]
We’ll determine the values of XisXysees Xy, SO that the vector satisfies inequali-
p

ties (2) and the following equalities

p+r,

p mp
dYx,=a, Y x;=[ma/p]-[m/ple. 3)
i=1 i=p+l1
Note that [ma/p]-[m/pla=[m/pla+[r,a/p]l-[m/pla=[r,a/pl<r,,.
P
Since ) x, =a the conditions (2) are equivalent to the following inequalities:
i=1
p+k k
X <Dx;, k=1,..1,,,
i=p+1 i=1
Py, P
< > x, k=0,..7, -1, “4)
i=p+t,, k i=p—k
P+ k13,1
2 x5< > x, k=lL.,p-rn, +1
i=p+1 i=k

Thus the problem can be formulated as follows: find the 0—1 unknowns
(X5 Xy 500X )), satisfying equalities (3) and inequalities (4). We’ll show that

Pty
there exists a vector, satisfying those conditions. Let » < p. For given a,B e N,
a<p, B<r,the0-1 vector (x;,xy,...,X,,X,, .., X,,,) is admissible, iff

p+r
x,=a<p, aeN; > x,=f<r, BeN. *)

i=p+1

e

Consider the following two problems:
1. Let p/r<a/ p,determine admissible 0—1 vector
(%15 X5 5005 X3 X 41000 X, ) 5 SO that

p+k

k
2 x5<yx, k=l

i=p+1 i=1

P
Y ox5< Y x, k=0,..r-l (**)

> x; < x, k=1L.,p—r+l.
i=p+1 i=k

2. Let p/r=a/ p,determine admissible 0—1 vector

(15X 505X s X 4105 X, ) 5 SO that
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p+k k
X2, k=1,..r,

i=p+1 i=1

ptr P

> oxz2 Y x, k=0,.,r-1 ()
i=p+r—k i=p—k
p+r k+r-1

DXz Y X, k=1,..p—r+1.
i=p+1 i=k

We’ll show by induction on 7 that both problems have solutions. If »=1,
then the statement is true. Indeed, for the first case we have f=8/r<a/p,

B =0,1, and any 0-1 vector (xl,xz,...,xp,xp

solution for the first problem. The second case can be deduced analogously.
Now assume that the statement is true for all natural numbers less
than ». Consider the first case for r (the second one can be proved

analogously). Let # = p(modr), if a —B[p/r]=7, then

1), satisfying equalities (*), is a

p
,
(X5 Xy ey X 3 Xy 3 X geeer Xy geey X5 Xpyens X, 5 L, 1,01, X0, X5 ,.00,X, ) VEctor, where le. =0,
r r r V] r

satisfies all the conditions except perhaps the first equality in (*). By replacing the
first zero components o — fS[p/r]—r in the mentioned vector with ones we’ll

yield the solution. Thus, we can assume that o — B[ p/r]<r . Consider the vector

p
.
(X5 X500 X, 5 X152 w05 Xy ety Xy X gty Xy 3 X,y 15 X000 Xy 5 K15 X, X, ) , WheETE dYx=p
- | i1
r r r 7 r !

V+Vl
and Y x,=a—p[p/r]. For this vector, obviously, equalities (*) are satisfied.
i=r+l
Now let’s rewrite inequalities (**) for the mentioned vector. It’s easy to see
that the first inequality is satisfied, while the second is equivalent to the fol-
V+Vl

lowing two inequalities: Z x; < Z X, k=0,..,n-1;

i=r—k i=r+n-k
r—(k—n)-1 r r r+n
x+ > x< > x+ 2 x,k=n,..,r-1.
i=r—k i=r—(k-n) i=r—(k-n) i=r+l
r r r+k
The third one is equivalent to > x, < > x,+ > x;, k=L..,5. After
i=1 i=k+1 i=r+l1

reducing the inequalities we get

r+k k
D2, k=1,..,n,
i=r+l i=1

r+n r

>ox 2 Y x, k=0,.,5-1
i=r+n—k i=r—k
r+n r—(k—-nr)-1

2 Y x, k=n,..r-l

i=r+l i=r—k
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where ix,:ﬂ and Zl x,=a—pP[p/r].Since B/r<a/p and
i=1

i=r+l

P B _%,_
a-plpin @ PG ) em e am W ”):g[l_uj:ﬁzﬁ
p

P
we obtained a 2" type problem for r, <r. The statement is true by induction. Thus,

h h Ul h Ul

we constructed an optimal solution for problem (2). Let r,,, and «,,, be acronyms

for m(mod(p+1)) and a(C?), respectively, then the main theorem can be
formulated.
Theorem. If p(C,)a(Ch)2a(C,)p(Ch). then a(C} xC,)2[a(C,)p(Ch)].-
Proof. To prove the Theorem it’s enough to construct an independent

set in the product graph with the specified cardinality. We’ll construct t=a,,,

a,, -independent sets S,,...,S, , in graph C*, then decompose each of them into
p+1 parts. Afterwards by constructing r,, more independent sets in Cf , we’ll

get m independent sets Fy,F,...,P, . Finally, we’ll show that the following

independent set in the product graph is the required one (vertices of generalized
cycles are denoted by numbers in the above mentioned cyclical order):

m—1
S=UB;, B,={(i,v)/veP}.
i=0

Now, let’s consider the problem S(m,p+1,a,) and denote the above
constructed optimal solution by

P
(xo,xl,...,xp 3 X5 X5 ees Xy 5eees X5 X0 X, ,xpﬂ,...,xpwmp). It is clear that «,, = le. .
—— i=0
Tnp

p+l p+l p+l
[m/(p+1)]
Suppose [ is the least non-negative integer, satisfying inequality
(I+Dry 2 (k+Dr,,a, / (p+1). According to the supposition of the Theorem

L m
YUCPY=a L= o, +a 2% >a .0 +a, " =a, - —a(CF CP),
ACe(G) gl P T g T il T (CIPG)

and, therefore, /<a Consider the following «,, -independent sets in the

mp *
graph Cf

Sy =10,(k +1),2(k +1),....,(cx,, —D(k+1)},

S, ={-r,,(k+)-r, 2(k+D)—-r,,..(a, —Dk+1)-r,},

S, ={=2r, . (k+1)-2r,,2(k+1)-2r,,...(at,, —D(k+1)=2r,},

S, ={-Ir,,(k+D)=Ir, ,2(k+1)=1Ir,,...(c,, —D(k+1)=Ir,},
St—l

R

={dr, (k+)—lr, 20+ D) =1Ir ..., ~D)(k+1)—Ir,},
U+ k1) =L+ D)y (ay ~D(k+ 1) = ([ + 1)1}
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Operations here are considered to be done by modulo n. Consider the
elements of sets S;,...,S,_; in the specified order and decompose each of the sets
into p+1 parts (so that cardinality of the i-th set is x;). Thus, we have

constructed sets F,h,....F ., . Now let’s consider the elements of R in the

specified order and separate from them the first 7,, sets with cardinalities

X, 0% x correspondingly. Thus, we get sets By, B,...,P, ;in C* graph.

p+1> 2o ptr,,

Since the vector from x, is an optimal solution, it is easy to check that

| S= e, +len, /(p+DI=[p(Ca(C))].
To finalize the proof of the Theorem, it remains to show that the constructed
set S is an independent set in the product graph. It suffices to show that any
sequential p+1 sets in the cyclic sequence of sets Fy,A,..., P, , are pairwise

disjoint and the union of the p+1 sets is an independent set in Cf .

Let Buodny> Hiviymodmy s+ Fis pymodny D€ SUCh a sequence of sets. If £, and

P, _, aren’t present in the sequence together, then the statement follows from the

construction, otherwise, taking into consideration the fact that the wvector
from x, is a solution of (2), the statement follows from the definition of
number /. Indeed, the last element (in the above mentioned order) of P, | is
—(l+Dry + (k+D)([ayr,, / (p+D]=1) <=(k +1), which is not adjacent to the first
element (in the mentioned order) of £, , that is 0. The Theorem is thus proved.

Corollary. For any generalized cycles C? and Cf holds a(C? ><C,iC )=

k
Proof. Obviously, it’s enough to prove only the first equality, which is a
direct consequence of the Theorem and the fact from [5, 6]:

a(C? x CHy <min(p(C2)x a(C),a(C?)x p(C)). The corollary is thus proved.

— min([p(C})x a(CLI@(CE) x p(CH)), particularly, a(CY x CF) = [m} .
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U. Z. Punujui, U. & Uuplnyui

Cunhwipugqwé ghlyitph nidtn wpnunpuh wiwunipjub pyh dwupt

Unyt wolwnwipmd nuumdbwuhpjws b punhwtpugdws  ghlykph  nidbn
wpuunpuh whjuwpunipiut phdp: Spyws b wpununpuy qpudpnid wdbiudbs
wbwpj pwqunipniip juenighint  Equbwl: Bnwtwlp dwubw-Jnpuytu
hhdtJws E jmpwhwwnniy Yndphtiwwnnp oyupdwjugdwb jutmph Jpw, npp
nytybu mSJws b Unwgdws hhdtwlwb wpyniipp Ykt ghljjiph hwdwp
unwugyws tdwb wpyniuph pinhwtpugnid k [6].

C. A. baoanan, C. E. Mapkocan.

O yncsie HE3aBHCMMOCTH NMPOM3BEAeHHs 0000IEHHBIX IHKJI0B

B nacrosmeit pabote UcCIenyeTcss YMCIO HE3aBUCHMOCTH TPOH3BEISHHUS
0000IIEHHBIX TUKIOB. J[aH MeTon Ui MOCTPOSHUS! HAaUOOJbIIEro He3aBUCHUMOro
MHOXecTBa B rpade mpousBeaeHus. Meros, B YaCTHOCTH, OCHOBaH Ha CrieluQu-
4YecKoil KOMOMHATOpHOU 3agade, KOTopas Toxe pemieHa. [lodydeHHbI pe3yasTaT
siBIIsieTCsl 0000IIeHneM U3BECTHOTO (DaKTa Il HeYETHBIX LIUKJIOB [6].



