INDEPENDENT PAIRS IN FREE BURNSIDE GROUPS

A. S. PAHLEVANYAN*

Chair of Algebra and Geometry, YSU

Abstract

In this work we prove that for an arbitrary odd $n \geq 1003$ there exist two words $u(x, y), v(x, y)$, almost every images of which in free Burnside group $B(m, n)$ are independent.

Keywords: free Burnside group, independent element, non-amenable group, monomorphism.

1. Introduction. A free Burnside group $B(m, n)$ is defined as relatively free m-generated group of all groups variety that satisfy the identity $X^{n}=1$. It has the following presentation:

$$
B(m, n)=<a_{1}, \ldots, a_{m} \mid A^{n}=1 \text { forallwords } A=A\left(a_{1}, \ldots, a_{m}\right)>
$$

Subgroups of groups $B(m, n)$ for the case of all odd $n \geq 665$ are studied in [1-6] and for odd $n>10^{80}$ in [7-9].

Definition. Elements u and v of the group $B(m, n)$ are called independent, if they generate a subgroup isomorphic to $B(2, n)$.

In [10] it is proved that for an arbitrary sufficiently large odd number n ($n \geq 1039$) there exist two words $u(x, y), v(x, y)$, such that for some k the elements $u\left(a^{k}, b\right), v\left(a^{k}, b\right)$ are independent, where a, b are any two noncommuting elements of the free Burnside group $B(m, n)$. Such a hypothesis was formulated in 1989 in survey [11]. In this work we lower the bound for those n, for which this hypothesis is true.
2. Theorem. For arbitrary odd n, where $n \geq 1003$, there exist words $u(x, y), v(x, y)$ such that, if a, b are any two elements generating noncyclic subgroup of group $B(m, n)$, then for some p elements $u\left(a^{p}, b\right)$ and $v\left(a^{p}, b\right)$ are independent.

In the proof of Theorem the work [12] is used, where the inequality $n \geq 1003$ first meets in study of periodic groups.

[^0]Words $u(x, y)$ and $v(x, y)$ whose existence is stated in the Theorem are defined in the following way: let $w(x, y) \rightleftharpoons\left[x, y x y^{-1}\right]$ and $W(x, y) \rightleftharpoons$ $\rightleftharpoons\left[w(x, y)^{d}, x w(x, y)^{d} x^{-1}\right]$, where $d=191$. As words $u(x, y)$ and $v(x, y)$ choose words

$$
u(x, y) \rightleftharpoons W(x, y)^{200} w(x, y) W(x, y)^{200} w(x, y)^{2} \ldots W(x, y)^{200} w(x, y)^{n-1} W(x, y)^{200},(1)
$$

$$
v(x, y) \rightleftharpoons W(x, y)^{300} w(x, y) W(x, y)^{300} w(x, y)^{2} \ldots W(x, y)^{300} w(x, y)^{n-1} W(x, y)^{300}
$$

Denoting $u_{k}(x, y)=u\left(x^{2^{k}}, y\right), v_{k}(x, y)=v\left(x^{2^{k}}, y\right)$ and comparing Theorem with the result of paper [8], we obtain

Corollary 1. For arbitrary odd $n \geq 1003$, if a and b are any two noncommuting elements of group $B(m, n)$, then one of the pairs of words $\left\{u_{0}(a, b), v_{0}(a, b)\right\}, \ldots,\left\{u_{9}(a, b), v_{9}(a, b)\right\}$ is independent.

Let $\phi: B(2, n) \rightarrow B(2, n)$ be a homomorphism of group $B(m, n)$, defined on free generating elements x and y by formulas $\phi(x)=u(x, y), \phi(y)=v(x, y)$. It is clear that homomorphism $\tau: B(2, n) \rightarrow B(2, n), \quad \tau(x)=x^{2^{k}}, \tau(y)=y$ is an automorphism, since it obviously has an inverse. From Theorem immediately follows, that for some k the composition $\tau \circ \phi$ is a monomorphism. Therefore, ϕ is a monomorphism as well. Using these monomorphisms we get, that if $\varphi(x)=a, \varphi(y)=b$, then

$$
\varphi \circ \tau \circ \phi(x)=\varphi(\tau(\phi(x)))=u\left(a^{2^{k}}, b\right), \varphi \circ \tau \circ \phi(y)=\varphi(\tau(\phi(y)))=v\left(a^{2^{k}}, b\right) .
$$

Thus, the following corollary holds.
Corollary 2. There exists a monomorphism $\phi: B(2, n) \rightarrow B(2, n)$, such that for any endomorphism $\varphi: B(2, n) \rightarrow B(2, n)$ with noncyclic image there exists an automorphism $\tau: B(2, n) \rightarrow B(2, n)$, such that $\varphi \circ \tau \circ \phi$ is a monomorphism.

One of classical results of S.I.Adian states, that for any odd $n \geq 665$ and $m>1$ free Burnside groups $B(m, n)$ are non-amenable (see [13]).

From Theorem and Corollary 2 of paper [10] follows
Corollary 3. For arbitrary odd $n \geq 1003$ the group $B(m, n)$ is uniformly nonamenable.

Uniform non-amenable groups $B(m, n)$ and their subgroups are studied in [14-16].

3. Proof of Theorem.

Lemma 1. For arbitrary odd $n \geq 1003$ and any $r, 1 \leq r \leq \frac{(n-1)}{2}$, there exist integers s and $k, 186 \leq s \leq \frac{(n+1)}{2}-148,0 \leq k \leq 9$, such that one of the following congruences $r \cdot 2^{k} \equiv s(\bmod n)$ and $(-r) 2^{k} \equiv s(\bmod n)$ holds.

Let n be $n \geq 1039$. For $186 \leq r \leq \frac{n+1}{2}-148$ one can choose $k=0$, and if $\frac{186}{2^{k}} \leq r \leq \frac{372}{2^{k}}$, where $k=1, \ldots, 8$, then $186 \leq r \cdot 2^{k} \leq 372 \leq \frac{n+1}{2}-148$ (since
$n \geq 1039$). But if $\frac{n+1}{2}-148 \leq r \leq \frac{n-1}{2}$, then $1 \leq n-2 r \leq 295 \leq \frac{n+1}{2}-148$, and one can use the above-mentioned reasoning. Thus, for some $p=2^{k}$, where $0 \leq k \leq 9$, holds $r \cdot 2^{k} \equiv s(\bmod n)$ or $(-r) 2^{k} \equiv s(\bmod n)$, where $186 \leq s \leq \frac{n+1}{2}-148$.

Now let n and s be such that $1003 \leq n \leq 1039,186 \leq s \leq \frac{(n+1)}{2}-148$.
If $186 \leq r \leq 354$, then in order to prove Lemma 1 it is enough to take $k=0$ and $s=r$.

Now let $1 \leq r \leq 185$. Then we can:

1) for $178 \leq r \leq 185$ take $k=2$ and $s=n-2^{k} \cdot r$;
2) for $93 \leq r \leq 177$ take $k=1$ and $s=2^{k} \cdot r$;
3) for $89 \leq r \leq 92$ take $k=3$ and $s=n-2^{k} \cdot r$;
4) for $47 \leq r \leq 88$ take $k=2$ and $s=2^{k} \cdot r$;
5) for $45 \leq r \leq 46$ take $k=4$ and $s=n-2^{k} \cdot r$;
6) for $24 \leq r \leq 44$ take $k=3$ and $s=2^{k} \cdot r$;
7) for $r=23$ take $k=5$ and $s=n-2^{k} \cdot r$;
8) for $12 \leq r \leq 22$ take $k=4$ and $s=2^{k} \cdot r$;
9) for $6 \leq r \leq 11$ take $k=5$ and $s=2^{k} \cdot r$;
10) for $3 \leq r \leq 5$ take $k=6$ and $s=2^{k} \cdot r$;
11) for $r=2$ take $k=7$ and $s=2^{k} \cdot r$;
12) for $r=1$ take $k=8$ and $s=2^{k}$.

Thus, for any $r, 1 \leq r \leq 354$, there exist k and $s, 0 \leq k \leq 8$, $186 \leq s \leq \frac{(n+1)}{2}-148$, such that either $s \equiv r \cdot 2^{k}(\bmod n)$ or $s \equiv(-r) 2^{k}(\bmod n)$ holds. It remains to consider the case $354 \leq r \leq \frac{n-1}{2}$. By denoting $r_{1} \rightleftharpoons n-2 r$ and putting $k=1$ we get $1 \leq r_{1} \leq 354$, whereas $-2 r \equiv r_{1}(\bmod n)$. Due to the case considered above, for r_{1} there exist k_{1} and s_{1}, such that either $s_{1} \equiv r_{1} \cdot 2^{k_{1}}(\bmod n)$ or $s_{1} \equiv\left(-r_{1}\right) 2^{k_{1}}(\bmod n)$ holds, where $0 \leq k_{1} \leq 8$.

Comparing all the cases, we finally conclude that $0 \leq k \leq 9$. Lemma 1 is proved. The following Lemma is proved in [10].

Lemma 2. (see Lemma 2 [10]). Suppose n is an arbitrary odd number $n \geq 665$. If a and b do not commute in $B(m, n)$ and $a^{p} \neq 1$, then $w\left(a^{p}, b\right) \neq 1$.

Lemma 3. (compare with Lemma 3 [10]). Suppose n is an arbitrary odd number $n \geq 1003$. If a and b do not commute in $B(m, n)$ and a is a conjugate element to power of some elementary period E of rank γ, then for some $p=2^{k}$, $0 \leq k \leq 9$, the element $w\left(a^{p}, b\right)$ is a conjugate element to some elementary period of rank $\beta \geq \gamma+1$.

Proof. Suppose that for some word T we have $a=T E^{r} T^{-1}$ in $B(m, n)$. Replacing, if necessary, E with E^{-1} we can assume that $1 \leq r \leq \frac{n-1}{2}$. According to Lemma 1, for some $p=2^{k}$, where $0 \leq k \leq 9$, we have $a^{p}=T E^{r p} T^{-1}=T E^{s} T^{-1}$ and the inequality $186 \leq s \leq \frac{n+1}{2}-148$ holds. Due to Lemma 2.8 [12], we may choose the period E minimized, and due to VI.2.4 and IV.3.12 [1] one can assume that $T^{-1} b T \in \mathcal{M}_{\gamma} \cap \mathcal{A}_{\gamma+1}$. According to Lemma 2, we have $T^{-1} w\left(a^{p}, b\right) T \neq 1$ in the group $B(m, n)$, therefore, $\left[E^{s}, T^{-1} b T E^{s} T^{-1} b^{-1} T\right] \neq 1$, and due to Lemma 3.2 [12], one can indicate the reduced form A of commutator $\left[E^{s}, T^{-1} b T E^{s} T^{-1} b^{-1} T\right.$] which, according to Lemma 7.2 [12], is an elementary period of some rank $\beta \geq \gamma+1$.

The following two Lemmas are proved in [10].
Lemma 4. (see Lemma 4[10]). Suppose n is arbitrary odd number $n \geq 1003$. Assume that a and b do not commute in $B(m, n)$, element a is a conjugate element to power of some elementary period E of rank γ, and for some p the element $w\left(a^{p}, b\right)$ is a conjugate element to some elementary period of rank $\beta \geq \gamma+1$. Then $W\left(a^{p}, b\right) \neq 1$ in $B(m, n)$.

Lemma 5. (see Lemma 5[10]). Suppose n is arbitrary odd number $n \geq 1003$ and a and b are two noncommuting elements of $B(2, n)$. Then for some $p=2^{k}, 0 \leq k \leq 9$, words $u\left(a^{p}, b\right), v\left(a^{p}, b\right)$ freely generate a free Burnside subgroup of group $B(2, n)$, where words $u(x, y)$ and $v(x, y)$ are defined by equalities (1) and (2).

Lemma 6. Suppose n is arbitrary odd number $n \geq 1003, a$ and b are two noncommuting elements of group $B(2, n)$. Then for some $p=2^{k}$ with $0 \leq k \leq 9$, words $u\left(a^{p}, b\right)$ and $v\left(a^{p}, b\right)$ are independent, where words $u(x, y)$ and $v(x, y)$ are defined by relations (1) and (2).

Proof. It is necessary to repeat the proof of Lemma 5 [10], changing the reference to Lemma 3 of [10] by reference to Lemma 3 of the current work.

Proof of Theorem. From Theorem VI.3.7 [1] by S.I.Adian immediately follows, that for arbitrary odd $n>665$ and finite m the group $B(m, n)$ can be isomorphically embedded into group $B(2, n)$. Therefore, it is enough to prove the Theorem for the case $m=2$. But in this case the validity of Theorem follows from Lemma 6.

Received 18.02.2010

REFERENCES

1. Adian S.I. The Burnside Problem and Identities in Groups. Ergeb. Math. Grenzgeb., 95. Berlin-Heidelberg-New York: Springer-Verlag, 1979.
2. Adian S.I. Trudy Mat. Inst. Steklova, 1971, v. 112, p. 61-69 (in Russian).

Shirvanian V.L. Izvestia AN SSSR. Matematica, 1976, v. 10, № 1, p. 181-199 (in Russian).
Adian S.I. Izvestia AN SSSR. Matematica, 1982, v. 19, № 2, p. 215-229 (in Russian).
Atabekian V.S. Izvestia AN SSSR. Matematica, 2009, v. 73, № 5, p. 861-892 (in Russian).
Atabekian V.S. Prikladnaya Matematica, 2009, v. 15, № 1, p. 3-21(in Russian).
Olshanskii A.Yu. Groups, Rings, Lie and Hopf Algebras. Kluwer AP, 2003, p. 179-187.
Ivanov S.V. Illinois J. Math., 2003, v. 47, № 1-2, p. 299-304.
Sonkin D. Comm. Algebra, 2003, v. 31, № 10, p. 4687-4695.
10. Atabekian V.S. Mat. Zametki, 2009, v. 86, № 4, p. 457-462 (in Russian).
11. Ivanov S.V., Ol'shanskii A.Yu. St. Andrews, 1989, v. 2. London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 1991, v. 160, p. 258-308.
12. Adyan S.I., Lysenok I.G. Izvestia AN SSSR. Matematica, 1992, v. 39, № 2, p. 905-957 (in Russian).
13. Adian S.I. Izvestia AN SSSR. Matematica, 1983, v. 21, № 3, p. 425-434 (in Russian).
14. Arzhantseva G.N., Burillo J., Lustig M., Reeves L., Short H., Ventura E. Adv. Math., 2005, v. 197, № 2, p. 499-522.
15. Osin D.V. Arch. Math. (Basel), 2008, v. 88, № 5, p. 403-412.
16. Atabekian V.S. Mat. Zametki, 2009, v. 85, № 4, p. 496-502 (in Russian).

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2010, № 2, p. 58-62.
U. U. ФUZL๒Ч.UЪ3Uし

А. С. ПАЙЛЕВАНЯН

НЕЗАВИСИМЫЕ ПАРЫ В СВОБОДНЫХ БЕРНСАЙДОВЫХ ГРУППАХ

В работе доказывается, что для произвольного нечетного $n \geq 1003$ существуют два слова $u(x, y), v(x, y)$, почти все образы в свободной бернсайдовой группе $B(m, n)$ которых независимы.

[^0]: *E-mail: apahlevanyan@ysu.am

