Physical and Mathematical Sciences

2010, № 2, p. 58–62

Mathematics

INDEPENDENT PAIRS IN FREE BURNSIDE GROUPS

A. S. PAHLEVANYAN*

Chair of Algebra and Geometry, YSU

In this work we prove that for an arbitrary odd $n \ge 1003$ there exist two words u(x,y),v(x,y), almost every images of which in free Burnside group B(m,n) are independent.

Keywords: free Burnside group, independent element, non-amenable group, monomorphism.

1. Introduction. A free Burnside group B(m,n) is defined as relatively free m-generated group of all groups variety that satisfy the identity $X^n = 1$. It has the following presentation:

$$B(m,n) = \langle a_1,...,a_m | A^n = 1 \text{ for all words } A = A(a_1,...,a_m) \rangle$$
.

Subgroups of groups B(m,n) for the case of all odd $n \ge 665$ are studied in [1–6] and for odd $n > 10^{80}$ in [7–9].

Definition. Elements u and v of the group B(m,n) are called independent, if they generate a subgroup isomorphic to B(2,n).

In [10] it is proved that for an arbitrary sufficiently large odd number n ($n \ge 1039$) there exist two words u(x,y),v(x,y), such that for some k the elements $u(a^k,b),v(a^k,b)$ are independent, where a,b are any two noncommuting elements of the free Burnside group B(m,n). Such a hypothesis was formulated in 1989 in survey [11]. In this work we lower the bound for those n, for which this hypothesis is true.

2. Theorem. For arbitrary odd n, where $n \ge 1003$, there exist words u(x,y),v(x,y) such that, if a,b are any two elements generating noncyclic subgroup of group B(m,n), then for some p elements $u(a^p,b)$ and $v(a^p,b)$ are independent.

In the proof of Theorem the work [12] is used, where the inequality $n \ge 1003$ first meets in study of periodic groups.

-

^{*} E-mail: apahlevanyan@ysu.am

Words u(x,y) and v(x,y) whose existence is stated in the Theorem are defined in the following way: let $w(x,y) \rightleftharpoons [x,yxy^{-1}]$ and $W(x,y) \rightleftharpoons [w(x,y)^d,xw(x,y)^dx^{-1}]$, where d=191. As words u(x,y) and v(x,y) choose words $u(x,y) \rightleftharpoons W(x,y)^{200} w(x,y)W(x,y)^{200} w(x,y)^2...W(x,y)^{200} w(x,y)^{n-1}W(x,y)^{200}$, (1) $v(x,y) \rightleftharpoons W(x,y)^{300} w(x,y)W(x,y)^{300} w(x,y)^2...W(x,y)^{300} w(x,y)^{n-1}W(x,y)^{300}$. (2)

Denoting $u_k(x,y) = u(x^{2^k},y)$, $v_k(x,y) = v(x^{2^k},y)$ and comparing Theorem with the result of paper [8], we obtain

Corollary 1. For arbitrary odd $n \ge 1003$, if a and b are any two noncommuting elements of group B(m,n), then one of the pairs of words $\{u_0(a,b),v_0(a,b)\},...,\{u_9(a,b),v_9(a,b)\}$ is independent.

Let $\phi: B(2,n) \to B(2,n)$ be a homomorphism of group B(m,n), defined on free generating elements x and y by formulas $\phi(x) = u(x,y)$, $\phi(y) = v(x,y)$. It is clear that homomorphism $\tau: B(2,n) \to B(2,n)$, $\tau(x) = x^{2^k}$, $\tau(y) = y$ is an automorphism, since it obviously has an inverse. From Theorem immediately follows, that for some k the composition $\tau \circ \phi$ is a monomorphism. Therefore, ϕ is a monomorphism as well. Using these monomorphisms we get, that if $\phi(x) = a, \phi(y) = b$, then

$$\varphi \circ \tau \circ \phi(x) = \varphi(\tau(\phi(x))) = u(a^{2^k}, b), \varphi \circ \tau \circ \phi(y) = \varphi(\tau(\phi(y))) = v(a^{2^k}, b).$$
 Thus, the following corollary holds.

Corollary 2. There exists a monomorphism $\phi: B(2,n) \to B(2,n)$, such that for any endomorphism $\varphi: B(2,n) \to B(2,n)$ with noncyclic image there exists an automorphism $\tau: B(2,n) \to B(2,n)$, such that $\varphi \circ \tau \circ \phi$ is a monomorphism.

One of classical results of S.I.Adian states, that for any odd $n \ge 665$ and m > 1 free Burnside groups B(m,n) are non-amenable (see [13]).

From Theorem and Corollary 2 of paper [10] follows

Corollary 3. For arbitrary odd $n \ge 1003$ the group B(m,n) is uniformly non-amenable.

Uniform non-amenable groups B(m,n) and their subgroups are studied in [14–16].

3. Proof of Theorem.

Lemma 1. For arbitrary odd $n \ge 1003$ and any r, $1 \le r \le \frac{(n-1)}{2}$, there exist integers s and k, $186 \le s \le \frac{(n+1)}{2} - 148$, $0 \le k \le 9$, such that one of the following congruences $r \cdot 2^k \equiv s \pmod{n}$ and $(-r)2^k \equiv s \pmod{n}$ holds.

Let n be $n \ge 1039$. For $186 \le r \le \frac{n+1}{2} - 148$ one can choose k = 0, and if $\frac{186}{2^k} \le r \le \frac{372}{2^k}$, where k = 1, ..., 8, then $186 \le r \cdot 2^k \le 372 \le \frac{n+1}{2} - 148$ (since

 $n \ge 1039$). But if $\frac{n+1}{2} - 148 \le r \le \frac{n-1}{2}$, then $1 \le n - 2r \le 295 \le \frac{n+1}{2} - 148$, and one can use the above-mentioned reasoning. Thus, for some $p = 2^k$, where $0 \le k \le 9$, holds $r \cdot 2^k \equiv s \pmod{n}$ or $(-r)2^k \equiv s \pmod{n}$, where $186 \le s \le \frac{n+1}{2} - 148$.

Now let *n* and *s* be such that $1003 \le n \le 1039$, $186 \le s \le \frac{(n+1)}{2} - 148$.

If $186 \le r \le 354$, then in order to prove Lemma 1 it is enough to take k = 0 and s = r.

Now let $1 \le r \le 185$. Then we can:

- 1) for $178 \le r \le 185$ take k = 2 and $s = n 2^k \cdot r$;
- 2) for $93 \le r \le 177$ take k = 1 and $s = 2^k \cdot r$;
- 3) for $89 \le r \le 92$ take k = 3 and $s = n 2^k \cdot r$;
- 4) for $47 \le r \le 88$ take k = 2 and $s = 2^k \cdot r$;
- 5) for $45 \le r \le 46$ take k = 4 and $s = n 2^k \cdot r$;
- 6) for $24 \le r \le 44$ take k = 3 and $s = 2^k \cdot r$;
- 7) for r = 23 take k = 5 and $s = n 2^k \cdot r$;
- 8) for $12 \le r \le 22$ take k = 4 and $s = 2^k \cdot r$;
- 9) for $6 \le r \le 11$ take k = 5 and $s = 2^k \cdot r$;
- 10) for $3 \le r \le 5$ take k = 6 and $s = 2^k \cdot r$:
- 11) for r = 2 take k = 7 and $s = 2^k \cdot r$;
- 12) for r = 1 take k = 8 and $s = 2^k$.

Thus, for any r, $1 \le r \le 354$, there exist k and s, $0 \le k \le 8$, $186 \le s \le \frac{(n+1)}{2} - 148$, such that either $s \equiv r \cdot 2^k \pmod{n}$ or $s \equiv (-r)2^k \pmod{n}$

holds. It remains to consider the case $354 \le r \le \frac{n-1}{2}$. By denoting $r_1 \rightleftharpoons n-2r$ and putting k=1 we get $1 \le r_1 \le 354$, whereas $-2r \equiv r_1 \pmod{n}$. Due to the case considered above, for r_1 there exist k_1 and s_1 , such that either $s_1 \equiv r_1 \cdot 2^{k_1} \pmod{n}$ or $s_1 \equiv (-r_1)2^{k_1} \pmod{n}$ holds, where $0 \le k_1 \le 8$.

Comparing all the cases, we finally conclude that $0 \le k \le 9$. Lemma 1 is proved. The following Lemma is proved in [10].

Lemma 2. (see Lemma 2 [10]). Suppose n is an arbitrary odd number $n \ge 665$. If a and b do not commute in B(m,n) and $a^p \ne 1$, then $w(a^p,b) \ne 1$.

Lemma 3. (compare with Lemma 3 [10]). Suppose n is an arbitrary odd number $n \ge 1003$. If a and b do not commute in B(m,n) and a is a conjugate element to power of some elementary period E of rank γ , then for some $p = 2^k$, $0 \le k \le 9$, the element $w(a^p,b)$ is a conjugate element to some elementary period of rank $\beta \ge \gamma + 1$.

Proof. Suppose that for some word T we have $a = TE^rT^{-1}$ in B(m,n). Replacing, if necessary, E with E^{-1} we can assume that $1 \le r \le \frac{n-1}{2}$. According to Lemma 1, for some $p = 2^k$, where $0 \le k \le 9$, we have $a^p = TE^{rp}T^{-1} = TE^sT^{-1}$ and the inequality $186 \le s \le \frac{n+1}{2} - 148$ holds. Due to Lemma 2.8 [12], we may choose the period E minimized, and due to VI.2.4 and IV.3.12 [1] one can assume that $T^{-1}bT \in \mathcal{M}_{\gamma} \cap \mathcal{A}_{\gamma+1}$. According to Lemma 2, we have $T^{-1}w(a^p,b)T \ne 1$ in the group B(m,n), therefore, $[E^s,T^{-1}bTE^sT^{-1}b^{-1}T]\ne 1$, and due to Lemma 3.2 [12], one can indicate the reduced form A of commutator $[E^s,T^{-1}bTE^sT^{-1}b^{-1}T]$ which, according to Lemma 7.2 [12], is an elementary period of some rank $\beta \ge \gamma + 1$.

The following two Lemmas are proved in [10].

Lemma 4. (see Lemma 4[10]). Suppose n is arbitrary odd number $n \ge 1003$. Assume that a and b do not commute in B(m,n), element a is a conjugate element to power of some elementary period E of rank γ , and for some p the element $w(a^p,b)$ is a conjugate element to some elementary period of rank $\beta \ge \gamma + 1$. Then $W(a^p,b) \ne 1$ in B(m,n).

Lemma 5. (see Lemma 5[10]). Suppose n is arbitrary odd number $n \ge 1003$ and a and b are two noncommuting elements of B(2,n). Then for some $p = 2^k$, $0 \le k \le 9$, words $u(a^p,b)$, $v(a^p,b)$ freely generate a free Burnside subgroup of group B(2,n), where words u(x,y) and v(x,y) are defined by equalities (1) and (2).

Lemma 6. Suppose n is arbitrary odd number $n \ge 1003$, a and b are two noncommuting elements of group B(2,n). Then for some $p = 2^k$ with $0 \le k \le 9$, words $u(a^p,b)$ and $v(a^p,b)$ are independent, where words u(x,y) and v(x,y) are defined by relations (1) and (2).

Proof. It is necessary to repeat the proof of Lemma 5 [10], changing the reference to Lemma 3 of [10] by reference to Lemma 3 of the current work.

Proof of Theorem. From Theorem VI.3.7 [1] by S.I.Adian immediately follows, that for arbitrary odd n>665 and finite m the group B(m,n) can be isomorphically embedded into group B(2,n). Therefore, it is enough to prove the Theorem for the case m=2. But in this case the validity of Theorem follows from Lemma 6.

Received 18.02.2010

REFERENCES

- Adian S.I. The Burnside Problem and Identities in Groups. Ergeb. Math. Grenzgeb., 95. Berlin-Heidelberg-New York: Springer-Verlag, 1979.
- 2. Adian S.I. Trudy Mat. Inst. Steklova, 1971, v. 112, p. 61–69 (in Russian).

- 3. Shirvanian V.L. Izvestia AN SSSR. Matematica, 1976, v. 10, № 1, p. 181–199 (in Russian).
- 4. Adian S.I. Izvestia AN SSSR. Matematica, 1982, v. 19, № 2, p. 215–229 (in Russian).
- 5. Atabekian V.S. Izvestia AN SSSR. Matematica, 2009, v. 73, № 5, p. 861–892 (in Russian).
- 6. Atabekian V.S. Prikladnaya Matematica, 2009, v. 15, № 1, p. 3–21(in Russian).
- 7. Olshanskii A.Yu. Groups, Rings, Lie and Hopf Algebras. Kluwer AP, 2003, p. 179–187.
- 8. Ivanov S.V. Illinois J. Math., 2003, v. 47, № 1–2, p. 299–304.
- 9. **Sonkin D.** Comm. Algebra, 2003, v. 31, № 10, p. 4687–4695.
- 10. Atabekian V.S. Mat. Zametki, 2009, v. 86, № 4, p. 457–462 (in Russian).
- 11. **Ivanov S.V., Ol'shanskii A.Yu.** St. Andrews, 1989, v. 2. London Math. Soc. Lecture Note Ser., Cambridge: Cambridge Univ. Press, 1991, v. 160, p. 258–308.
- 12. Adyan S.I., Lysenok I.G. Izvestia AN SSSR. Matematica, 1992, v. 39, № 2, p. 905–957 (in Russian).
- 13. Adian S.I. Izvestia AN SSSR. Matematica, 1983, v. 21, № 3, p. 425-434 (in Russian).
- Arzhantseva G.N., Burillo J., Lustig M., Reeves L., Short H., Ventura E. Adv. Math., 2005, v. 197, № 2, p. 499–522.
- 15. **Osin D.V.** Arch. Math. (Basel), 2008, v. 88, № 5, p. 403–412.
- 16. Atabekian V.S. Mat. Zametki, 2009, v. 85, № 4, p. 496–502 (in Russian).

Ա. Ս. ՓԱՀԼԵՎԱՆՅԱՆ

ԱՆԿԱԽ ԶՈՒՅԳԵՐ ԱԶԱՏ ԲԵՌՆՍԱՅԴՅԱՆ ԽՄԲԵՐՈՒՄ

Աշխատանքում ապացուցվում է, որ կամայական $n \ge 1003$ կենտ թվի համար գոյություն ունեն երկու բառեր՝ u(x,y),v(x,y), այնպիսիք, որ ազատ բեռնսայդյան խմբում նրանց համարյա բոլոր պատկերներն անկախ են։

А. С. ПАЙЛЕВАНЯН

НЕЗАВИСИМЫЕ ПАРЫ В СВОБОДНЫХ БЕРНСАЙДОВЫХ ГРУППАХ

В работе доказывается, что для произвольного нечетного $n \ge 1003$ существуют два слова u(x,y), v(x,y), почти все образы в свободной бернсайдовой группе B(m,n) которых независимы.