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INDEPENDENT PAIRS IN FREE BURNSIDE GROUPS
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In this work we prove that for an arbitrary odd » >1003 there exist two words
u(x,y),v(x,y), almost every images of which in free Burnside group B(m,n)
are independent.
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1. Introduction. A free Burnside group B(m,n) is defined as relatively free
m -generated group of all groups variety that satisfy the identity X" =1. Tt has
the following presentation:

B(m,n)=<a,...,a, | A" =1 forallwords 4= A(a,,...,a,)>.

Subgroups of groups B(m,n) for the case of all odd n > 665 are studied in
[1-6] and for odd 7 >10* in [7-9].

Definition. Elements u and v of the group B(m,n) are called independent,
if they generate a subgroup isomorphic to B(2,n).

In [10] it is proved that for an arbitrary sufficiently large odd number n
(n>1039) there exist two words u(x,y),v(x,y), such that for some k& the
elements u(a*,b),v(a",b) are independent, where a,b are any two noncommuting
elements of the free Burnside group B(m,n). Such a hypothesis was formulated in

1989 in survey [11]. In this work we lower the bound for those 7, for which this
hypothesis is true.

2. Theorem. For arbitrary odd n, where n>1003, there exist words
u(x,y),v(x,y) such that, if a,b are any two elements generating noncyclic

subgroup of group B(m,n), then for some p elements u(a”,b) and v(a”,b) are

independent.
In the proof of Theorem the work [12] is used, where the inequality
n>1003 first meets in study of periodic groups.
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Words u(x,y) and v(x,y) whose existence is stated in the Theorem are
defined in the following way: let w(x,y)=[x,yxy”'] and W(x,y)=
=[w(x,»)?,xw(x, )" x '], where d =191. As words u(x, y) and v(x, y) choose words

u(x,y) = W,y wix, I (x, ) wix, »)2 . (x, ) wix, )" W (x, )™, (1)
v(x,3) = W (x, ) we, I (x, pY C w(x, p)7 o (x, p) P wix, ») 7 W (x, 1) (2)

Denoting u, (x, y)=u(x2k, ), v (x, y)=v(x2k, y) and comparing Theorem
with the result of paper [8], we obtain

Corollary 1. For arbitrary odd n»>1003, if a and b are any two
noncommuting elements of group B(m,n), then one of the pairs of words
{uy(a,b),vy(a,b)},....{uy(a,b),vy(a,b)} is independent.

Let ¢:B(2,n) —> B(2,n) be a homomorphism of group B(m,n), defined on
free generating elements x and y by formulas ¢(x)=u(x,y), ¢(y)=v(x,y). Itis

clear that homomorphism 7:B(2,n)—> B(2,n), r(x)=x2k , T(y)=y 1is an
automorphism, since it obviously has an inverse. From Theorem immediately
follows, that for some k& the composition 7o¢ is a monomorphism. Therefore, ¢
is a monomorphism as well. Using these monomorphisms we get, that if
o(x)=a,p(y)=0>b, then

90T od(x) = p(r(P(x) =u(a® ,b), 9ot o(») = P(x(P()) = (@ ,b).

Thus, the following corollary holds.

Corollary 2. There exists a monomorphism ¢: B(2,n) — B(2,n), such that
for any endomorphism ¢: B(2,n) — B(2,n) with noncyclic image there exists an
automorphism 7 : B(2,n) > B(2,n), such that ¢ o7 ¢ is a monomorphism.

One of classical results of S.I.Adian states, that for any odd n>665 and
m >1 free Burnside groups B(m,n) are non-amenable (see [13]).

From Theorem and Corollary 2 of paper [10] follows

Corollary 3. For arbitrary odd »n >1003 the group B(m,n) is uniformly non-
amenable.

Uniform non-amenable groups B(m,n) and their subgroups are studied in
[14-16].

3. Proof of Theorem.

Lemma 1. For arbitrary odd »>1003 and any r, 1<r <

(n+1)
2

, there exist

(n-1)
2

integers sand &k, 186<s< —148, 0<k <9, such that one of the following

congruences -2* = s(modn) and (-)2* = s(modn) holds.

Let n be n>1039. For 186< < 1

—148 one can choose k=0, and

186 372 n+l

if 2—ksmz—k, where k=1,....8, then 186£r~2k£372£7—148 (since
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n+l1 n+l1

n>1039). But if

—148£r£n7_1, then 1<n—2r<295<2""_148, and

one can use the above-mentioned reasoning. Thus, for some p=2*, where

0< k<9, holds r-2" = s(modn) or (—)2* =s(modn), where 186 < s < nTH —148.

Now let n and s be such that 1003<7<1039, 186Ss£@—148.

If 186 < r <354, then in order to prove Lemma 1 it is enough to take k=0
and s=7r.
Now let 1 <7 <185 . Then we can:

1) for 178<r<185 take k=2 and s=n-2".r;
2) for 93<r<177take k=1 and s=2"-r;
3) for 89<r<92 take k=3 and s=n—-2".r;
4) for 47<r<88 take k=2 and s=2".r;
5) for 45<r<46 take k=4 and s=n-2"-r;
6) for 24<r<44 take k=3 and s=2%-r;
7) for r=23 take k=5 and s=n-2"-r;

8) for 12<r<22 take k=4 and s=2"-r;
9) for 6<r<I11 take k=5 and s=2".r;

10) for 3<r<5 take k=6 and s=2".r;

11) for r =2 take k=7 and s=2F.r;

12) for » =1 take k=8 and s =2".

Thus, for any r, 1<r<354, there exist kand s, O0<k<8,

186<s s(nTH)—Mf; , such that either s=7-2"(modn) or s=(-r)2"(modn)

holds. It remains to consider the case 354 <r < nT—l By denoting # = n—2r and

putting k=1 we get 1<7 <354, whereas —2r=r7(modn). Due to the case
considered above, for r there exist &, and s, such that either s, =# .2 (modn)

or s, =(-n )2k1 (modn) holds, where 0<k, <8.

Comparing all the cases, we finally conclude that 0<k<9. Lemma 1 is
proved. The following Lemma is proved in [10].
Lemma 2. (see Lemma 2 [10]). Suppose n is an arbitrary odd number

n>665.If a and b do not commute in B(m,n) and a” =1, then w(a”,b)=1.
Lemma 3. (compare with Lemma 3 [10]). Suppose n is an arbitrary odd

number n>1003. If gand b do not commute in B(m,n) and ais a conjugate

element to power of some elementary period E of rank y , then for some p=2*,

0<k<9, the element w(a”,b) is a conjugate element to some elementary period of
rank >y +1.
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Proof. Suppose that for some word T we have a=TE'T™" in B(m,n).
Replacing, if necessary, £ with E~' we can assume that 1<r ﬁnT_l. According
to Lemma 1, for some p=2*, where 0<k <9, we have af =TE?T™' =TE‘T"
and the inequality 186Ss£n7+1—148 holds. Due to Lemma 2.8 [12], we may

choose the period £ minimized, and due to VI.2.4 and IV.3.12 [1] one can assume
that 77'bT eM,NA .. According to Lemma 2, we have T 'w(a”,b)T #1 in the

group B(m,n), therefore, [E*, T 'bTET'b"'T]#1, and due to Lemma 3.2 [12],

one can indicate the reduced form A of commutator [E*, T 'pTE°T'p'T] which,
according to Lemma 7.2 [12], is an elementary period of some rank >y +1.

The following two Lemmas are proved in [10].
Lemma 4. (see Lemma 4[10]). Suppose # is arbitrary odd number n >1003 .
Assume that gand bdo not commute in B(m,n), element a is a conjugate

element to power of some elementary period £ of rank y, and for some p the
element w(a”,b) is a conjugate element to some elementary period of rank
B>y +1. Then W(a”,b)#1 in B(m,n).

Lemma 5. (see Lemma 5[10]). Suppose # is arbitrary odd number n >1003
and « and b are two noncommuting elements of B(2,n). Then for some
p=2F,0<k<9, words u(a”,b), v(a’,b) freely generate a free Burnside sub-
group of group B(2,n), where words u(x,y) and v(x,y) are defined by equalities
(1) and (2).

Lemma 6. Suppose n is arbitrary odd number n>1003, a and b are two
noncommuting elements of group B(2,n). Then for some p=2*with 0<k<9,

words u(a”,b) and v(a”,b) are independent, where words u(x,y) and v(x,y)
are defined by relations (1) and (2).

Proof. 1t is necessary to repeat the proof of Lemma 5 [10], changing the
reference to Lemma 3 of [10] by reference to Lemma 3 of the current work.

Proof of Theorem. From Theorem VI.3.7 [1] by S.I.Adian immediately
follows, that for arbitrary odd n>665 and finite m the group B(m,n) can be
isomorphically embedded into group B(2,n). Therefore, it is enough to prove the

Theorem for the case m =2. But in this case the validity of Theorem follows from
Lemma 6.
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U. U. oUZLEIUL3UL

UL4Uv 2Nh38a6 UQUS RENLUUSTBUL MURGMNRU
Ustnwnwtipnid wmuyugnigynid k, np judwyuljwi # 21003 Jkuwn pdh hwdwp

gnjnipinil nibikl Gpynt punkp' u(x, ¥),v(x, ¥) , wyuyhuhp, np wquwn phpbtuwyyut
hudpnid tpuwig hwdwpju pnnp yunlbpubpt wiuh Eu:

A. C. IAWJIEBAHSIH
HE3ABUCUMBIE [TAPbI B CBOBOJHbBIX BEPHCAMIOBBIX I'PYIIIIAX

B pabore nmokaspBaeTcs, YTO Ui TPOHW3BOIBHOTO HedeTHoro n >1003
CYIIECTBYIOT J[Ba CIIOBa u(x, ¥),v(x, y) , TOYTH Bce 00pa3bl B CBOOOAHOM OepHcaii-

noBoi1 rpymiie B(m,n) KOTOPHIX HE3aBUCHMBI.



