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In the present article the first order linear differential operators with
unbounded coefficients are investigated. The boundedness of the operators under
consideration was proved.
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Let Qc R", n>2, be a bounded domain with smooth boundary 60 e C".
Consider the first order differential expression

Tu = (b(x), Vu(x)) — div(c(x)u(x)) + d(x)u(x), ue w;; ),

with coefficients b(x) = (5" (x),...,6" (x)), c(x)=(c" (x),....c™ (x)) and d(x) that
are measurable and bounded on each strong inner subdomain of the domain Q.

For an arbitrary u,ve W21 (Q) define
(Tu,v) = [((0(x), Vu(x)v(x) + (c(x)u(x), Vi(x)) + d (x)u(x)v(x))dx
0

The aim of this article is to obtain conditions to be imposed on the
coefficients b(x),c(x) and d(x), for which 7 is a linear bounded operator acting

from W;(Q) into Wz_l(Q). This property has important applications in studying
the problems of mathematical physics (see, for example, [1, 2]).

The following theorem is proved.

Theorem. Let the following conditions hold

[po|=0 L as s >0, (1)
r(x)

where r(x) is the distance of a point x € Q from the boundary 0Q,
[1C*(t)dt <o, where C(t)= sup E(x)‘, )
0

r(x)=t

[£D*(t)dt <o, where D(t)= sup |d(x)|. 3)
0

r(x)=t
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Then the operator 7' is a bounded linear operator from I/I;zl (Q) into W;‘l (0).
Proof of Theorem. Let x° € 0Q be an arbitrary point of the boundary dQ of

the domain @, (x',x,) be a local coordinate system with the origin x” and the

x, axis directed along the inner normal v(x”) to Q at the point x”. Since 6Q € C',

there exists a positive number r, >0 and a function ¢ , € C '(R"™") with properties
1
?,(0)=0, Vg ,(0)=0 and ‘V(pxO (x’)‘ < 5 forall x'e R"",

such that the intersection of the domain O with the ball U)(;*O) ={x: ‘x - xo‘ <r,} of

radius 7, and the centre x° has the fom ONU o) :U;‘O) N{(x'x,) %, >0, (x)} .

X

ro ro ro .
Then 8QﬂUi0* - Uio*' ) N{(x',x,):x, = @.o(x)}. Let [ , =—=. From the covering

2
@)

Uy ,x" €00} of the boundary 6Q select a finite subcovering U)(CI;V”), m=1..p.

Denote for simplicity Uif;’”) byU, ,r.byr, l,byl,, ¢,bye,, m=1.,p.
Now set / = 12 ﬁ min(,...,7,) - Then each of the curvilinear “cylinders
3l 2 g
H,i’l"’h ={(x"x,) :|x'| <l ,p,(x"N<x, <@, (x+h}, m=1,..,p,
as well as in U, NQ (recall that
(x',x,) are the coordinates of a point in a local system of coordinates with origin

is contained in the corresponding ball U

m?

at x™). Let [, <h be a positive number such that the complement of the domain
0, ={xeQ:r(x)=dist(x,00) >/} in Q is contained in the union of the “cylin-

p
ders” TT"" 'm=1,..,p, ie. Q" ={xeQ:r(x)=dist(x,00) <[} c U TI»".
m=1

It is easily verified that for all x=(x",x,) e Hfm hom=1,.,p,

m

r(x)<x,-¢,(x")=< gr(x) .
Now fix some number m, 1<m< p, and take a local coordinate system

with origin at x™ .

We define mappings L and L, of the space R" onto itself using relations
L(x)=(x',x, =@, (x")), where x=(x'x,) and L, ,(»)=0\y,+¢,("),
y=(»',y,). The image of H,fqh under the mapping L will be denoted by 1:1757 s

L(my") =1y .

Now take arbitrary functions ueWzl(Q) and 7e€C;(Q) and make the
notations u(y',y, +@(y"N) =u(y), n(y'y, +e(y")=70y).
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In view of (1), (2) and (3) we have

%
(Tu.m)|<K| de + [ CEO|u@)||V 7(x)|dx + [ D) |u(x)|[n(x)|dx,
0 0 0

r(x

where K is a constant.
Let us estimate

P TS T
A ) B0 r(x) N 9,
2o [Vu@)||neo)|
< LI | L
mz—:lné[’h r(x)
For m=1,...,p the following estimate holds:

_ ~ 1/2 - 1/2
f [Vuellnee)] , _ [5 f Va(y)||[7()| < \E ( [ Vi) dy} [ [ (Zy) 5] <
Hrln'"'h 14 (.X) 21:1,’1"’1 Y 2 f[;,zn,h ﬁrln""h Y,

1/2

1
dx +E||u||@(g) 7l o)

1/2 -3
S\/g[ _[ |Vu(x)|2de [;[;ﬂy—(zy)dy] Sconst"u"njz,(g)||77||V;2|(Q).
" n

Hrlnm h
We used here the Hardy inequality (see, for example, [3]), in virtue of which

) h ~2
| Ui (Zy) =[dy, | ! (yz,yn)SCOnst [ VA dv.
it o i, Y i

(4)

11 = ConSt”””n;; 0) "77”@‘(@ 4

where the constant does not depend on # and 7 . Next,
I = [ Cr(x) [u(x)||Vr(x)|dx < | COr(x)|u)||V7(x)|dx + C(ly) | |u(x)||V 17(x)| dx <
0 ol

9
)4
<Y | Cr)|u(x)||V 7(x)|dx +C(lo)||u||y;21 . ||7;||W°21 o
m=1pyin
For m=1,...,p we have

1/2
J h C(r(x))|u(x)||V n(x)|dx < [ j h C* (r(x))u’ (x)de 7],510) <

n

1/2
2 2
< C2 _— ~2 ol < CZ
<[ I ( ﬁyHJu (y)ay} """Wz@ﬁ[ I (ﬁynJyn (I)

h 2 h
= d C2 1 d ' d V’“ '
<[£ Vo (\EJ’HJJ/” J. yJ T| u(y',7)

b 0

1/2
Vii(y',7) deﬁ’} "77||V;/Z‘(Q) <

1/2
2 o
} ||77"W2‘(Q) <

P 2 1/2 o ]
<2 ({ ¢ (ﬁ & jyndynJ (T
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Thus, we obtain
I, < const ||u||W21 - ||77||W21 0 (5)
where the constant does not depend on u and 7 .
Similarly we obtain
I, = [ D(r(x)|u(x)||n(x)|dx < [ D)) |u(x)|[n(x)| dx + D(ly) | |u(x)||m(x)]dx <
0 Qb

9,

<> [ DO+ ul 0 1l o

m= 11‘1’ h
Finally, for m=1,..., p we have

J Dol s | D[ ﬁynj

H Im s H I »

a(y)||7(»)|dy <
1/2 1/2

2 7 ()
< Dz[ jynu (»)dy =dy | <

1/2

2 Y »
< const IDz[fy,z)vzHV“(y"T)Fdey "’7"@‘(@)3
0

-
Ly

0 2 1/2 o D
< const (Z[ D? (ﬁ Y jyidyn j ”””Wzl ©) ||77||W2' © "
Thus,

I, <const ||u||p;21(Q) "77"V;Z‘(Q) ’ ©

where the constant is independent of # and 77 .
Therefore, in view of (4)-(6) the following estimate holds

|<Tu,77>| <const ||u|| ’

) ||77||V;21 0 where the constant is independent of u and 7.

Since the functions 77(x) from C; (Q) are dense everywhere in WZI(Q) , the proof

of the Theorem immediately follows from the established estimate. The Theorem is
proved.
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