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ON THE ANISOTROPIC BOUNDARY VALUE PROBLEM, CONNECTED
WITH HELMHOLTZE-SCHRODINGER EQUATION, UNDER THE
BOUNDARY CONDITIONS OF THE FIRST AND SECOND TYPE

S. A. HOSSEINY MATIKOLATI *

Chair of Differential Equations and Functional Analysis, YSU

In this paper we consider the solvability of the boundary value problem,
connected with the anisotropic Helmholtz-Schrodinger equation, under the
boundary conditions of the first and second type on the line y =0 .
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Introduction. The issue of solvability was considered in [1] for a class of
boundary value problems, coordinated with the anisotropic Helmholtz-Shrodinger
equation in the Sobolev space on the upper and lower half-planes, where the
boundary conditions of the first and second type were fulfilled on y =0 line. In [1]

it was shown that the solvability of this problem is equivalent to that of some
Riemann-Hilbert problem.

Let 2" ={(x,y)eR*:y>0(y<0)} and H"(Q%), H'(2") arc the
corresponding Sobolev spaces (see [2]). Now consider the following anisotropic
Helmholtz-Schrédinger equation

{Au+(k2 +28%sech*(B.y))u=0 in 0, 0
Au+ (k> +2p%sech* (B y)u=0 in Q.
This equation a particular case of equation (1) from [1], where Rek >0,Imk >0.

Note that similar problems in the isotropic case were investigated in [3—6]. We
suppose that the following boundary conditions are fulfilled:

agu(x,+0) + byu(x,—0) = hy(x),
_ in R*
a ou(x,+0) b ou(x,—0) _ i (x) in R,
Oy oy

cout(x,+0) + dyu(x,-0) = p,(x),

ou(x,+0 ou(x,—0 in R™,
G ( )+d1 ( ):P1(x)
oy oy

2
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where hye H*(RY), heH " (R"), p,eH”?(R), peH'"(R), the
coefficients a,, a,, by, b, ¢, ¢,, d,, d, are the complex constants and a,d, =bc, .
Introduce the functions

u (1) = \/_ j [ague(x;+0) + by (x;-0) — hy (x)] e dx,
()= N au(x +0) au(x;—O) h (x)}m x,
> 3)
u, (A)= ﬁ?[%”(ﬁ +0) + dyu(x;—0) — p, (x)]eilxdx,
0
w, () = Ji? T{cl a”(g; 0 4 a“(g; 0_, (x)}ei’l"dx,
0
WA [ FD-B P D-B, ado b s
m(A) = A(/l){ d, ) +bc 2() }+ AL I (A) = py(4), "
KA,  rA)-p r-g1 .
my(A) = ACD) {bocl 2 +ayd, YD) n(A)
and
A A .
a(h)= A(li){ ’ (7()ﬂ)ﬁ (u _(/1)+ho(/1))—bo(W_(/’i)+h1(/1))},
(5)
1 [ F-p : -
R {al 0 (u(ﬂ)+ho<ﬂ))+ao(wu)wu))},
where
L _; ? iAx I _; 9 iAx
ho(l)—m [ hy(x)e™dx, hl(l)—m [ h(x)e™dx,
Bo(d)= ﬁ [ o™ ax,  p(2)= ﬁ [ e
0 0
and

200\ p2 200\ p2
A(/l) =a0b1 ]/ (ﬂ’) IB— +a1b0 7/ (/1) IBJr X
y(4) y(4)
As was noted above, the solvability of the boundary value problem (1)—(2) is
equivalent to the solvability of the Riemann-Hilbert problem (see [1])

u, (4) = L(A)u_(4) + m(4), (6)
where the vector-functions
(DY (D) ()
u, ()= £W+ (/1)} u_(4)= (W_(A)J’ m(A) = [mz (/1)} (7

and the matrix-function
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ady (7 (D)= )+bey (7 (D)~ 5) (audy —byco ) 7(2)
o aby (77 (D)= B2 ) +agh (VD= B2) by (v (D)= B2)+aehy (¥ (D) - ) ®

0

Consider the matrices J, =(

a, b,

G

by¢,

(

(P W-F)+ad (P D-F) |
ab, (72(/1)—ﬂf)+a0bl (72(/1) —,3,2)
p j, i=0,1, generated from the coefficients

of the boundary conditions (2). It is easy to verify that without the loss of the
generality the non-degenerate cases (i.e. A(4)# 0,det(L(1))# 0) are possible only

in the following cases:
1 J, = 11 J 10
o) o)
yo (V1) (0!
“lro) 7 o)
1 0
oacly Y
1
o
|4
9J]:
el

where v #0,1 is a constant.

1

D S S N

01 10
D=l 1) =l o)
10 01
N P I P

1

o<
e
(

1

1 0
1

In all cases 1)-10) the matrix-function L(A) can be presented in the form

ar’(MD-x  er(d)
LAY =| 8y (A)-p Sy (D) -p | ©)
0 1

where in the case

Da=6=1, y=p=p,¢=l,
Da=5=1,y=p=pe=-1,
Na=06=1, y=p=p,e=-1,
Ha=5=1, y=p=pF,¢c=1,
Sa=v,5=1, y=p., p=p, &=,

6)a=v,5=v+l,;(zﬂf,pzﬂf+vﬁf,g=1,
7)a:1,5:V+1,;(:,6'_2,p:ﬁ_2+vﬁf,5:—1,
§a=1,6=v, y=p., p=vp, e=-1,
Na=v+l,5=v, y=F +v3, p=vf’, e=—1,
10)a:v+1,6:v,;(:ﬁ_2+vﬂf,p:ﬁ_2,g:—1.

Recall that the generalized factorization of matrix L(A1) in space L°(R) is

the following representation:

(

L(A)=L,(A)

_ A\
A zj 0
A+i

(10)
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where
a) y.1,€Z, L;' e ’(R,p) (i.e. each component of the matrix belongs to

1
VAT +1
continued in the upper half-plane ImA >0 and L™'(A) are analytically continued
in the lower half-plane ImA <0 ;

b) the components of the matrix-function p(1)L:'(4) ( (1)L (A)) belong

to the L*(R)and have analytic continuations in the upper half-plane ImA >0
(respectively the lower half-plane Im A <0).

L*(R,p)), where p(1)= . The matrix-functions L:'(4) are analytically

The factorization is called canonical when y, = y, =0. Let

a[/1+,/k2+§J A1- k2eZ
a

R (4)=

S| A+ [k +2 A K+ 2
o 1)

It is easy to see that the components p(A)L;' (1) belong to L*(R) and p(A)L}' (1)

( p(A)L' (1)) have the analytic continuations in the upper half-plane ImA >0 (the
lower half-plane Im A4 <0).

R.(A)=

(11

Denote by
1 wo+ic ’ d 1 oo-+id r d
r+(/1):_' J' (5) 55 r_(/l)z—. J' (é:) é:’
27i —oo-+ic § -4 27i —oo-+id 5 -1
[0 .2
where r(A)= ENA —k ki <c<d <k .

a[m /kzﬂf][z— k2+pj
a o

Here k. = max —Im‘/k2+l;—lm kz+£ , ki =min Im\/k2+1; Im\/k2+£ .
a o a )

It is evident that 7, (1) belong to the L*(R) and r, (A1) (r (4))have analytic
continuation in the upper (lower) half-plane (see [7]). Since

e art (D) —x _
R+(/?,)R_(/1)—R(/1)——572 D—p’ r(AD+r(A)=r(d) (12)
and
-1 1 1
(1 ri(/l)j :(1 —n_r(/i)} (Ri(/i) o) |z 0’ 13)
0 1 0 1 0 1 0 1

therefore, we have the equality

R.(A) 0) 1 A 1 ADVR(A) 0
P T S b
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The representation (14) is the canonical factorization of the matrix-function L(A4).

Using equalities (13) and (14) we can write the Riemann-Hilbert problem (6)
in the form

1 1
) "Plig- (R e j i+ 2m " Plaw. as)
0 1 0 1
In an expanded form we get the following system:
) e (D)= R (D (D) + - () + 7B Gymy (),

R, (A) R, (4) (16)
w, (1) =w_(A) + my(A).
Hence we have

W+ (ﬂ/) :ﬁzmz (x)eiﬂxdx’ wW_ (//{,) :ﬁ_z m2 (x)eiﬂ.xdx’

u, (/1) = %T m, (x)eiixdx + %T(ml (x) + r, (x)R+ (x)m2 (X))eilxdx,
r-(4) mE@) | @m )

u,(ﬂ)—R (/1)\/— .[ m, (x)e’ dx\/— J.(R (x) R (x) ]e dx.

Using (5) and the following representation

P T {a( IR+ BB iy
e 7(4) (17
s by /D= Ltanh(By) iy (y)} ~
7(A)

we obtain the solution of the boundary value problem (1)—(2).
Theorem. The boundary value problem (1)—(2) has the unique solution,
which is given by the formula (17), where the functions a(A)and b(1) can be

reconstructed by formula (5).
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