ON SOME SINGULAR INTEGRAL EQUATIONS ON THE SEMI-AXIS

V. V. SIMONYAN*

Chair of Differential Equations and Functional Analysis, YSU

In this paper the non-characteristic singular integral equations on the semiaxis are discussed. The solution of these equations is reduced to the solution of one-dimensional pseudo-differential equations. Some examples of singular equations for which explicit solutions exist are provided.

Keywords: singular equation, pseudo-differential equation, matrix coupling.
$\mathbf{1}^{\mathbf{0}}$. Let $\overline{\mathbb{R}}$ be a two-point compactification of $\mathbb{R}=(-\infty,+\infty)$ and $C(\overline{\mathbb{R}})-$ the Banach algebra of all complex valued continuous function on $\overline{\mathbb{R}}$. What follows, $\rho(z)=z^{\beta} \quad(-1<\beta<1)$ is understood as the branch of this function that is analytical in $\mathbb{C} \backslash(-\infty, 0)$ and assumes positive values on the positive semi-axis $\mathbb{R}_{+}=(0,+\infty)$. Let Σ_{β} be a subalgebra of all linear bounded operators acting from and to the weighted space $L_{2}\left(\mathbb{R}_{+}, \rho\right)$, generated by operators I and $S_{\mathbb{R}_{+}}$, where $S_{\mathbb{R}_{+}}$is a singular integral operator acting along \mathbb{R}_{+}:

$$
\left(S_{\mathbb{R}_{+}} y\right)(x)=\frac{1}{\pi i} \int_{0}^{+\infty} \frac{y(\tau)}{\tau-x} d \tau
$$

Here the integral is perceived in terms of the main value. The notation F means the following Fourier transform:

$$
(F y)(\xi)=\hat{y}(\xi)=\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{i x \xi} y(x) d x \quad\left(y \in L_{2}(\mathbb{R}), \xi \in \mathbb{R}\right)
$$

and γ is the operator continuously reflecting $L_{2}\left(\mathbb{R}_{+}, \rho\right)$ in $L_{2}(\mathbb{R})$ according to formula $(\gamma y)(x)=e^{s x} y\left(e^{\alpha x}\right)$, where $\alpha>0, \sigma=\alpha(\beta+1) / 2$ and $s=\sigma+i \zeta$. It is not difficult to ascertain that the operator $\gamma^{-1} F$ is the Mellin transform.

Below the multiplicative operator by function u is denoted as Λ_{u} (i.e. $\left.\Lambda_{u} y=u y\right)$. For any function $a \in C(\overline{\mathbb{R}})$ the operator $K_{a}=\gamma^{-1} F \Lambda_{a} F^{-1} \gamma$ belongs to algebra Σ_{β} (see, e.g., [1, 2]).

[^0]As is well known, the characteristic equation $\left(\Lambda_{a}+S_{\mathbb{R}_{+}} \Lambda_{b}\right) y=f$ $\left(y, f \in L_{2}\left(\mathbb{R}_{+}, \rho\right)\right)$ admits the explicit solution [3]. The present paper is devoted to the investigation of "difficult" singular integral operators of a type $\widetilde{K}=\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{\psi_{m}}$ $\left(\varphi_{m} \in C(\overline{\mathbb{R}}), \psi_{m} \in L_{\infty}\left(\mathbb{R}_{+}\right)\right)$, acting from $L_{2}\left(\mathbb{R}_{+}, \rho\right)$ to itself.

Let $\mathbb{H}_{r}(\mathbb{R})(r \geq 0)$ be Sobolev-Slobodetski spaces of the generalized functions u, the Fourier transform \hat{u} of which belongs to $L_{2}\left(\mathbb{R},(1+|x|)^{r}\right)$ space. Following [4], the class of locally integrable functions A on \mathbb{R}, complying to condition $|A(\xi)| \leq c(1+|\xi|)^{r}$, is denoted as \mathbb{S}_{r}^{0}.

Let $\psi_{0}(x)=\left(1+\left|\alpha^{-1} \ln x\right|\right)^{r}\left(x \in \mathbb{R}_{+}\right)$and functions $\psi_{i} \in L_{\infty}\left(\mathbb{R}_{+}\right) \quad(i=1, \ldots, N)$. Now determine the functions $A_{0}=\psi_{0} \circ l, A_{m}=\left(\psi_{m} \circ l\right) A_{0}(m=1, \ldots, N)$ on \mathbb{R}, where $l(x)=e^{\alpha x} \quad(x \in \mathbb{R})$. It follows from here that $\psi_{0}=A_{0} \circ h$ and $\psi_{m}=\left(A_{m} \circ h\right) \psi_{0}^{-1} \quad(m=1, \ldots, N)$, where $h(x)=\alpha^{-1} \ln x \quad$ when $\quad x \in \mathbb{R}_{+}$. It is obvious that $A_{m} \in \mathbb{S}_{r}^{0}$ for all $m=0, \ldots, N$.

Let us consider a operator $A(x, D)$ with a symbol $A(x, t)=\sum_{m=1}^{N} \varphi_{m}(x) A_{m}(t)$:

$$
A(x, D) u=\int_{-\infty}^{\infty} e^{-i x t} A(x, t) \hat{u}(t) d t .
$$

Since $A(x, D) u=\sum_{m=1}^{N} \Lambda_{\varphi_{m}} A_{m}(D) u$, then for $r \geq 0$ the reflection $A(x, D)$ may be prolonged till the continuous reflection from $\mathbb{H}_{r}(\mathbb{R})$ to $L_{2}(\mathbb{R})$ (see [4]).

Below the solution of "difficult" equation $\widetilde{K} z=g$ is reduced to a pseudodifferential equation $A(x, D) y=f$ for some f. The examples of "difficult" singular integral equations investigated based on this relationship are provided.
2^{0}. Let $X_{i}(i=1, \ldots, 4)$ be linear spaces on the field of complex numbers, $\omega_{1}: X_{1} \rightarrow X_{2}, \omega_{2}: X_{2} \rightarrow X_{1}, \omega_{3}: X_{1} \rightarrow X_{3}, \omega_{4}: X_{4} \rightarrow X_{1}$ are linear reflections and ω_{4} is an invertible reflection. Let us consider the linear reflections

$$
\begin{array}{ll}
T: X_{2} \rightarrow X_{2} \oplus X_{3}, & K: X_{4} \rightarrow X_{1} \oplus X_{3}, \\
A_{12}: X_{1} \oplus X_{3} \rightarrow X_{2} \oplus X_{3}, & A_{21}: X_{2} \rightarrow X_{4}, \\
A_{22}: X_{1} \oplus X_{3} \rightarrow X_{4}, & B_{11}: X_{2} \oplus X_{3} \rightarrow X_{2}, \\
B_{12}: X_{4} \rightarrow X_{2}, & B_{21}: X_{2} \oplus X_{3} \rightarrow X_{1} \oplus X_{3},
\end{array}
$$

determined by equations

$$
T=\left[\begin{array}{c}
I_{X_{2}}+\omega_{1} \omega_{2} \\
\omega_{3} \omega_{2}
\end{array}\right], \quad A_{12}=\left[\begin{array}{cc}
-\omega_{1} & 0 \\
-\omega_{3} & I_{X_{3}}
\end{array}\right],
$$

$$
\begin{gathered}
A_{21}=\left[-\omega_{4}^{-1} \omega_{2}\right], \quad A_{22}=\left[\begin{array}{ll}
\omega_{4}^{-1} & 0
\end{array}\right], \quad B_{11}=\left[\begin{array}{ll}
I_{X_{2}} & 0
\end{array}\right], \quad B_{12}=\left[\omega_{1} \omega_{4}\right], \\
B_{21}=\left[\begin{array}{cc}
\omega_{2} & 0 \\
0 & I_{X_{3}}
\end{array}\right], \quad K=\left[\begin{array}{c}
\omega_{4}+\omega_{2} \omega_{1} \omega_{4} \\
\omega_{3} \omega_{4}
\end{array}\right] .
\end{gathered}
$$

By means of direct calculations it is easy to make sure of the validity of equality

$$
\left[\begin{array}{cc}
T & A_{12} \\
A_{21} & A_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
B_{11} & B_{12} \\
B_{21} & K
\end{array}\right] .
$$

Based on this equality and results of [5] the following statement is derived.
Assignment 1. If $K^{(-1)}$ is pseudo-inverse of K, then the reflection

$$
T^{(-1)}=B_{11}-B_{12} K^{(-1)} B_{21}
$$

is pseudo-inverse of T. Similarly, if $T^{(-1)}$ is pseudo-inverse of T, then

$$
K^{(-1)}=A_{22}-A_{21} T^{(-1)} A_{12}
$$

is pseudo-inverse of K. Spaces $\operatorname{Ker} T$ and $\operatorname{Ker} K$ are isomorphic. Besides, the following equalities are valid:

$$
\begin{array}{ll}
\operatorname{Ker} T=B_{12} \operatorname{Ker} K, & \operatorname{Ker} K=A_{21} \operatorname{Ker} T, \\
\operatorname{Im} T=B_{21}^{-1} \operatorname{Im} K, & \operatorname{Im} K=A_{12}^{-1} \operatorname{Im} T .
\end{array}
$$

$3^{\mathbf{0}}$. Let $\mathbb{M}_{r}(\mathbb{R})$ be some direct addition to the linear space $\mathbb{H}_{r}(\mathbb{R})$ in $L_{2}(\mathbb{R})$ space, and

$$
\pi_{1}: L_{2}(\mathbb{R}) \rightarrow \mathbb{H}_{r}(\mathbb{R}), \pi_{2}: L_{2}(\mathbb{R}) \rightarrow \mathbb{M}_{r}(\mathbb{R})
$$

are projection operators that are related by the ratio

$$
\pi_{1} y+\pi_{2} y=y, y \in L_{2}(\mathbb{R})
$$

Let us determine a space $W=\left\{f: \psi_{0}^{-1} f \in L_{2}\left(\mathbb{R}_{+}, \rho\right)\right\}$. Then, apply the Assignment 1 for spaces

$$
X_{1}=L_{2}\left(\mathbb{R}_{+}, \rho\right), \quad X_{2}=\mathbb{H}_{r}(\mathbb{R}), \quad X_{3}=\mathbb{M}_{r}(\mathbb{R}), \quad X_{4}=W
$$

and operators

$$
\omega_{1}=\pi_{1} F^{-1} \gamma, \omega_{2}=\sum_{m=1}^{N} K_{\varphi_{m}} \gamma^{-1} F A_{m}(D)-\gamma^{-1} F, \omega_{3}=\pi_{2} F^{-1} \gamma, \omega_{4}=\Lambda_{\psi_{0}^{-1}} .
$$

By using the equality $F^{-1} \gamma K_{\varphi_{m}} \gamma^{-1} F=\Lambda_{\varphi_{m}}(m=1, \ldots, N)$ it is easy to ascertain that the operator T acting from $\mathbb{H}_{r}(\mathbb{R})$ to $L_{2}(\mathbb{R})$ coincides with $A(x, D)$.

Lemma 1. Let

$$
f=(\tilde{f}, 0) \in L_{2}\left(\mathbb{R}_{+}, \rho\right) \oplus \mathbb{M}_{r}(\mathbb{R})
$$

The function z is the solution of equation $K z=f$, iff $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$ and $\tilde{K} z=\tilde{f}$.
Proof. Let z be the solution of equation $K z=f$, that is

$$
\begin{equation*}
\omega_{4} z+\omega_{2} \omega_{1} \omega_{4} z=\tilde{f}, \quad \omega_{3} \omega_{4} z=0 \tag{1}
\end{equation*}
$$

First prove that $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$. Really, from the second equation of (1) it follows that $g=F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z \in \mathbb{H}_{r}(\mathbb{R})$. Consequently, $\gamma z=F A_{0}(D) g \in L_{2}(\mathbb{R})$,
that is $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$. Note now that from (1) it also follows that $\pi_{1} F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z=F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z$. From the first equation of (1) it follows that $\tilde{K} z=\tilde{f}$.

Let $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$ and $\tilde{K} z=\tilde{f}$. From equality $F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z=A_{0}^{-1}(D) F^{-1} \gamma z$ it follows that

$$
\omega_{3} \omega_{4} z=0 .
$$

Since $\tilde{K} z=\tilde{f}$, we have

$$
\begin{aligned}
&\left(\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{\psi_{m}}\right) z=\left(\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{A_{m} \circ h} \Lambda_{\psi_{0}^{-1}}\right) z=\left(\Lambda_{\psi_{0}^{-1}}+\left(\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{A_{m} \circ}-I\right) \Lambda_{\psi_{0}^{-1}}\right) z= \\
&=\left(\Lambda_{\psi_{0}^{-1}}+\left(\sum_{m=1}^{N} K_{\varphi_{m}} \gamma^{-1} F A_{m}(D)-\gamma^{-1} F\right) F^{-1} \gamma \Lambda_{\psi_{0}^{-1}}\right) z= \\
&=\left(\Lambda_{\psi_{0}^{-1}}+\left(\sum_{m=1}^{N} K_{\varphi_{m}} \gamma^{-1} F A_{m}(D)-\gamma^{-1} F\right) \pi_{1} F^{-1} \gamma \Lambda_{\psi_{0}^{-1}}\right) z= \\
&=\left(\omega_{4}+\omega_{2} \omega_{1} \omega_{4}\right) z=\tilde{f} .
\end{aligned}
$$

Thus, the equalities are correct, that is $K z=f$. The proof is completed.
Theorem 1. To ensure that function $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$ satisfies the equation

$$
\begin{equation*}
\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{\psi_{m}} z=g\left(g \in L_{2}\left(\mathbb{R}_{+}, \rho\right)\right) \tag{2}
\end{equation*}
$$

it is necessary and sufficient that function $y=F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z$ satisfy the equation

$$
\begin{equation*}
A(x, D) y=F^{-1} \gamma g\left(F^{-1} \gamma g \in L_{2}(\mathbb{R})\right) . \tag{3}
\end{equation*}
$$

Proof. Let the function $z \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$ be a solution of equation (2). Acting by operator $F^{-1} \gamma$ on both the parts of the equation (2) (it is feasible, since the functions $\psi_{m}(m=1, \ldots, N)$ are bounded), we obtain

$$
\sum_{m=1}^{N} F^{-1} \gamma K_{\varphi_{m}} \Lambda_{A_{m} \circ} \Lambda_{\psi_{0}^{-1}} z=F^{-1} \gamma g .
$$

Taking into account the equalities $\Lambda_{A_{m} \circ h}=\gamma^{-1} F A_{m}(D) F^{-1} \gamma$ and $F^{-1} \gamma K_{\varphi_{m}} \gamma^{-1} F=\Lambda_{\varphi_{m}}(m=1, \ldots, N)$, we find

$$
\sum_{m=1}^{N} \Lambda_{\varphi_{m}} A_{m}(D) y=F^{-1} \gamma g .
$$

Earlier, it has been shown that $y=F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z \in \mathbb{H}_{r}(\mathbb{R})$ (see the proof of Lemma 1). Vice versa, now let the function $y \in \mathbb{H}_{r}(\mathbb{R})$ be the solution of equation (3). Then it is true that $z=\Lambda_{\psi_{0}} \gamma^{-1} F y \in L_{2}\left(\mathbb{R}_{+}, \rho\right)$, the proof of which is provided in Lemma 1. At the insertion of $y=F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z$ into (3), we have

$$
\sum_{m=1}^{N} \Lambda_{\varphi_{m}} A_{m}(D) F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z=F^{-1} \gamma g .
$$

Taking into account the equality $\Lambda_{\varphi_{m}}=F^{-1} \gamma K_{\varphi_{m}} \gamma^{-1} F(m=1, \ldots, N)$, we obtain

$$
\begin{equation*}
\sum_{m=1}^{N} F^{-1} \gamma K_{\varphi_{m}} \gamma^{-1} F A_{m}(D) F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z=F^{-1} \gamma g . \tag{4}
\end{equation*}
$$

Acting by operator $\gamma^{-1} F$ on both the parts of equality (4), we find

$$
\sum_{m=1}^{N} K_{\varphi_{m}} \gamma^{-1} F A_{m}(D) F^{-1} \gamma \Lambda_{\psi_{0}^{-1}} z=g .
$$

By using equality $\gamma^{-1} F A_{m}(D) F^{-1} \gamma=\Lambda_{A_{m} \circ h} \quad(m=1, \ldots, N)$, we find that $\sum_{m=1}^{N} K_{\varphi_{m}} \Lambda_{\psi_{m}} z=g$, i.e. the function z is the solution of equation (2).

The Theorem is proved.
4^{0}. In case of $N=2, \varphi_{1}(x)=1$ and $\varphi_{2}(x)=\left[\operatorname{ch} \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)\right]^{-2}$ we obtain $K_{\varphi_{1}}=I$ and $\left(K_{\varphi_{2}} y\right)(x)=\frac{1}{\pi^{2}} \int_{0}^{+\infty} y(\xi) \frac{\ln \xi-\ln x}{\xi-x} d \xi$.

Now, let us highlight two examples.
Example 1. Let $A_{1}(\xi)=-\xi^{2}-\frac{\pi^{2}}{\alpha^{2}}, A_{2}(\xi)=2 \frac{\pi^{2}}{\alpha^{2}}$ and $r=2$, then we have

$$
\begin{gathered}
A(x, D) y(x)=y^{\prime \prime}(x)+\frac{\pi^{2}}{\alpha^{2}}\left(2\left[\operatorname{ch} \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)\right]^{-2}-1\right) y(x), \\
\widetilde{K} z(x)=\frac{-\left(\alpha^{-1} \ln x\right)^{2}-\pi^{2} / \alpha^{2}}{\left(1+\left|\alpha^{-1} \ln x\right|\right)^{2}} z(x)+\frac{2}{\alpha^{2}} \int_{0}^{+\infty} \frac{z(\xi)}{\left(1+\left|\alpha^{-1} \ln \xi\right|\right)^{2}} \cdot \frac{\ln \xi-\ln x}{\xi-x} d \xi .
\end{gathered}
$$

Taking into account that functions

$$
y_{1}(x)=e^{\frac{\pi}{\alpha} x}\left[1+e^{2 \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)}\right]^{-1}, \quad y_{2}(x)=e^{-\frac{\pi}{\alpha} x}\left[1+e^{-2 \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)}\right]^{-1}
$$

are solutions of equation $A(x, D) y=0$ from class $\mathbb{H}_{2}(\mathbb{R})$, we obtain according to the Assignment 1 that functions $z_{k}(x)=-\omega_{4}^{-1} \omega_{2} y_{k}(x) \quad(k=1,2)$ are the basis of $\operatorname{Ker} \widetilde{K}$.

Example 2. Let $A_{1}(\xi)=-a_{1} \xi+a_{2}, A_{2}(\xi)=b_{1} \xi-b_{2}$ and $r=1$, where $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{C}$, then we find

$$
\begin{aligned}
A(x, D) y(x) & =\left(a_{1}-b_{1}\left[\operatorname{ch} \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)\right]^{-2}\right) y^{\prime}(x)+\left(a_{2}-b_{2}\left[\operatorname{ch} \frac{\pi}{\alpha}\left(x-\xi+i \frac{\alpha \beta}{2}\right)\right]^{-2}\right) y(x), \\
\widetilde{K} z(x) & =\frac{-a_{1} i \alpha^{-1} \ln x+a_{2}}{1+\left|\alpha^{-1} \ln x\right|} z(x)-\frac{1}{\pi^{2}} \int_{0}^{+\infty} \frac{-b_{1} i \alpha^{-1} \ln \xi+b_{2}}{1+\left|\alpha^{-1} \ln \xi\right|} \cdot \frac{\ln \xi-\ln x}{\xi-x} z(\xi) d \xi .
\end{aligned}
$$

Taking into account that the only solution of equation $A(x, D) y(x)=0$ does not belong to class $L_{2}(\mathbb{R})$, we obtain that equation $\widetilde{K} z(x)=0$ does not have any solutions from $L_{2}\left(\mathbb{R}_{+}, \rho\right)$.

REFERENCES

1. Kamalyan A.H., Nersesyan A.B. AN SSSR, Funk. Analiz i Ego Prilozh., 1989, v. 23, № 2, p. 32-39 (in Russian).
2. Roch S., Silbermann B. Algebras of Convolution Operators and their Image in the Calkin Algebra. Berlin, 1990.
3. Gohberg I., Krupnik N. One-Dimensional Linear Singular Integral Equations. V. I, II. Basel-Boston-Berlin, 1992.
4. Eskin G.I. Boundary Problems for Elliptic Pseudo-Differential Equations. M.: Nauka, 1973 (in Russian).
5. Bart H., Gohberg I., Kaashoek M.A. The Coupling Method for Solving Integral Equations. Advances and Applications. Basel: Birkhauser, Verlag, 1984, v. 12, p. 39-73.

[^0]: * E-mail: vahan@simonyans.com

