
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2011, № 1, p. 36–43

I n f o r m a t i c s

ON TRANSFORMATIONS OF UNTYPED FUNCTIONAL PROGRAMS
AND THEIR PROCEDURAL SEMANTICS

G. A. GHAZARYAN∗

Chair of System Programming, RAU

In this paper the notion of transformation of untyped functional programs that
preserves the main semantics of programs is presented. A transformation,
representing programs by two equations, such that procedural semantics of
programs that use interpretation algorithms based on substitution and normal form
reduction remain the same, is introduced. It is proved also that there is no
transformation, which represents programs with one equation, such that the
procedural semantics of programs remain unchanged for all interpretation algo-
rithms that are based on two operations: a substitution and a one-step β-reduction.

Keywords: term, equation, procedural semantics, interpretation algorithms.

1. Introduction. In the present paper the fixed-point (main) semantics of
untyped functional programs and procedural semantics that use interpretation
algorithms, on which the interpreters of untyped functional programming systems
are based (or can be based), are considered. These algorithms use two operations:
a substitution and a one-step β-reduction. The notion of transformation of untyped
functional programs that preserves the main semantics is presented. We introduce
the transformation, which represents programs by two equations, such that
procedural semantics using the interpretation algorithms based on substitution and
normal form reduction remains unchanged. It is proved also that there is no
transformation that represents programs by one equation, such that the procedural
semantics remains unchanged the same for all interpretation algorithms.

2. Definitions Used and Previous Results. Main definitions and notations
used in this paper are borrowed from [1, 2]. Let V be a countable set of variables.

Definition 2.1. The set of terms Λ is the least set, satisfying the following
conditions:

1. If Vx∈ , then ; x Λ∈
2. If 1 2,t t Λ∈ , then 1 2()t t Λ∈ ;
3. If x V∈ and t Λ∈ , then ()xtλ Λ∈ .
Let us give short notations for terms: the term , where

, is denoted as and the term
1 2(...()...)kt t t

, 1,..., , 1it i k kΛ∈ = > 1 2... kt t t 1 2(((...)...))mx tx xλ λ λ
V

,
where , is denoted as , jt xΛ∈ ∈ 1 2... . , 1,..., , 0.mx x x t j m mλ = >

∗ E-mail: gghazaryan@hotmail.com

mailto:gghazaryan@hotmail.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

37

The notions of free and bound occurrence of a variable in the term and the
notion of a free variable of the term are introduced in the conventional way. The set
of all free variables of the term t is denoted as ()fv t . A term that does not contain
free variables is called closed.

To show mutually different variables of interest 1 2, ,..., , 1nx x x n ≥ , of
the term t, the notation is used. The notation (or

) denotes the term, obtained by simultaneous substitu-
tion of the terms t t for all free occurrences of the variables

1 2[, ,...,]nt x x x 1 2[, ,...]nt t t t

t
1 1 2 2[: , : ,..., :]n nt x t x t x t= = =

1 2, ,... n 1 2, ,..., nx x x
respectively, into the term t . The notation

1
,...,

ki it x x〈 〉 is used to denote the term

with indication of some free occurrencies of variables

t
0k ≥ 1 2, ,..., nx x x (from left

to right), 1 2{ , ,..., }, 1,..., .
ji nx x x x j k∈ = The term, obtained from a term

1
,...,

ki it x x

as a result of simultaneous substitution of terms for occurrencies of the

variables
1
,...,

ki it t

1
,...,

ki ix , is denoted as
1
,...,

ki it t t . x

A substitution is said to be admissible, if all free variables of the term being
substituted remain free after substitution. We will consider only admissible substi-
tutions. Terms and are said to be congruent (which is denoted as t), if
one term can be obtained from the other by renaming the bound variables. The
congruent terms are considered to be identical.

1t 2t 1 2t≡

The notion of β -reduction is the following:

()(){ . [] , [:] , , }x t x t t x t t t x Vβ λ Λ′ ′ ′= = ∈ ∈ .
A one-step β -reduction (β→), β -reduction (β→→) and β -equality (β=)

are defined in the regular manner. In what follows, we will omit symbol β . The
term '(. [])x t x tλ is called a β -redex (simply redex). A term not containing redexes
is called a β -normal form (simply normal form). We will denote the set of all
normal forms by and the set of all closed normal forms by NF 0NF . A term t is
said to have a normal form, if there exists a term t NF′∈ such that . Also the
following notations are introduced:

't t=

. ,T xy xλ≡ . ,F xy yλ≡ . ,I x xλ≡ where , ;x y V∈

1 1,...,m mt t x xt tλ< >≡ , where , , ()i it x V x fv tΛ∈ ∈ ∉ , 1,..., , 1i m m= ≥ ;

1... .m
iU x xλ≡ m ix , where , , , 1,...,i k jx V k j x x k j m∈ ≠ ⇒ ≠ = , 1 ,i m m 1≤ ≤ ≥ ;

.m m
i iΡ x xUλ≡ , where ; , 1 , 1x V i m m∈ ≤ ≤ ≥

()() ()(. . .Y h x h xx x h xxλ λ λ≡) is a fixed-point combinator, where ,x h V∈ .
The following definitions are used from [2].

Definition 2.2. An untyped functional program (simply program) is a system
of equations of the form

1 1 1

1

[,...,]
...
[,...,],

m

m m m

f t f f

f t f f

=

=
 (1)

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

38

1 1 1, , [,...,] , ([,...]) { ,..., }, , 1,..., ,i i j i m i m mf V i j f f t f f fv t f f f f i j mΛ∈ ≠ ⇒ ≠ ∈ ⊆ = where
1.m ≥ The first equation of the sy d to be the principal equation of stem is considere

the program. Let us consder the solution of system (1)
 1(,...,)mτ τ , (2)

where

()()1 1 1. [,...,],..., [,...,] , 1,..., .m m m m m
i i m m mP Y x t P x P x t P x P x i mτ λ≡ < > = The

term 1τ is said to be the principal component of solution (2); it is this term that is
 (1).

3. Let be a program (1) and
the fixed-point semantics of program

P 1τ Definition 2. be the fixed-point sem
g

antics
of pro ram P . The set ()Fix P corresponding to the fixed point semantics of
program P will be defined in the following way:

0
1 0 1 1 0 1 0() {(,..., ,) ... , , , , 0}.k kFix P v v t v v t v v t NF kτ= →→ ∈ ≥

Let us introduce the notion of an interpretation algorithm
...,k

A . Having
received a program P of form (1) and term X on its input, the algorithm A either
terminates with the result 'X NF∈ , where fv 1() { ,..., }mX f f′ ∩ =∅
endlessly

 or works
. The interpretation algorithms use two following type of operations:

a) the substitution of terms 1 1 1[,...,],..., [,...,]m m mt f f t f f for some free
occurrences of variables 1,..., mf f pectivally,

b) a one-step
 res

β -reduction.
 (1) and Definition 2.4. Let P be a progra Am be an interpr

ed al semantics that uses the
etation algorithm.

The set Proc ()A P corresponding to the proc
interp m

ur
retation algorith A will be defined in the following way:

1 0 1 1 1() {(,..., ,) (, [,...,] ...)ProcA k m kP v v t A t f f v v= is determined and equal to 0t ,

where 1 0,..., , 0}.kv v t ∈ ≥
Let ()L X be the ter

P
0 ,NF k

m X , if X NF∈ and 'X be obtained from X by
applying a left one-step reduc W lgtion. e define a orithm N that, by a given term
X , con

A
str normal form, if it exits or functio if not.
lgorithm

ucts its ns endlessly
 N .

Input: term X .
Output: term ()N X , if N is determined on X .
If X NF∈ , then X ; else (())N L X .
Let us desc iber the set of interpretation algorithms , in which the

reduct itution operation.
 SNFR

ion to the normal form alternates with the subst
Each algorithm SNF has the following rmR∈ fo :

o) and term
 A

Input: program P f form (1 X , where 1() { ,..., }mfv X f f⊆ .
Output: term (,)S P X , if S is determined on P and X .
1. If ()N X is n ined, then an infinite proc

ot determ ess corresponding to the

endless functioning of on N X takes place; e
0[,...,

lse go to item 2.
2. If ()] \m1N X f NF NF≡ ∈ , then)t f (, ' , where is obtained A P t 't

from t by the simultaneous substitution of the terms 1 1 1[,...,],..., [,...,]m m mt f f t f f
for some free occurrences of the variables 1,..., mf f respectively; else ()N X .

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

39

In wh s at follows, only the algorithm A SNFR∈ satisfying to the following
condition (*) are considered:

if 0\ , ()t f NF NF f fv t〈 〉∈ ∈ and ,t t NFτ τ′ ≡ 〈 〉 ∈ and τ contains only
free o

one
A selectccurrence of a variable, then algorithm s the same free occurrences

of the variables for terms t and 't in step 2.
Algorithm ACT .
Input: program of form (1) and term P X , where 1() { ,..., }mfv X f f .
Output: term (,)

⊆
ACT P X if ACT is determined on P and X .

1() { ,..., }mfv X f f∩ =∅ , then X ; else go to item 2. 1. If X N and F∈
2. If iX X f≡ 〈 , where if is the leftmost o iaccurrence of 〉 var bles

1{ ,..., }mf f in the te ticular occurrenc is onrm e the left of the
T

 t and this par
leftmost redex of the term P t t t , then (,);iAC 〈 〉 else go to 3.

3. If (.)x tX X λ τ≡ , where ,x V∈ ,t τ Λ∈ and (.)x tλ τ is the leftmost redex
 of term X , then [: (,)](,)t x ACT PACT P X τ= .

3. Transformations of Functional Programs and their Procedural
Semantics.

We say that procedural semantics using interpretation algorithm A is
consistent (comple ix⊆te), if P) Proc () ()A P F (() Proc (AFix P P⊆ respectiv)
for an

lowing theorems are used from [2].

ely
y program P .
The fol
T h e o r e m 3 . 1 (on consistency). For any program P and interpretation

algorithm A Proc ()A P F⊆
T h e o r e m 3

()ix P .
 . 2 (on substitutions). Let a program of form (1)

and
P be

0,..., ,v v t NF∈ , where 0k ≥ , then 1 0k 1 0(,..., ,kv v t Fix P n) () 1;∈ ⇔ ∃ ≥

1 1 1[,...,n
m kt f f v 0t f0 where if f] ...v t→→ , 1[,...,]i m ≡ ,

[,s
it f ≥1 1

1 1 1...,] [[,...,],..., [,...,]], 1,s s
m i m m mf t t f f t f f s− −≡ 1,..., .i m=

e set of all unt
e mapping is

 P

1

We will denote th yped functional programs by P.
Definition 3.1. Th P called the transformation of

programs P, if for any program
:T P →

∈ P (()) ().Fix T P Fix P=
T h e o r e m 3 . 3 . There does not exist such a transformation
m

T that for any
progra P, T(P) is composed of one equa n and satisfies thtio e following

ion:
Proc

condit
P T P() Proc (())A A=

for any interpretation algorithm A .
For the proof of Theorem 3.3 we will use Lemma 3.1.
L e m m a 3 . 1 . Let the program be P ,f t= where f, () { }t fv tΛ∈ = .

ite: there exists a
progra ions Lemma 3.1 and

P ≠ ∅ . By Definition 2.4,

Then Proc () =P ∅ .ACT
Proof of Lemma 3.1. Let us suppose the oppos
m P , which satisfies to the condit of the

ProcA ()CT
0

1 2 0Proc () , ,..., , ;ACT kP v v v t NF≠ ∅⇒ ∃ ∈
1 0, ...) , 0kP tv v t k= ≥ . (ACT

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

40

We ill show that algorithm w ACT executes endlessly on the term 1... ktv v .

{Since }1(...)kfv tv v f= and 0
0t NF∈ , consequently, all free occurences of variable

f will be removed at a cert e algorithm. As n step of th { }()fv t f=ai , then the vari-
able f cannot be removed by replac its free occurences with t . From t a
free oc ble

ing here,
curence of varia f emoved only after the third step of algorithm can be r

ACT . Let us suppose that at the third step the algorithm ACT has selected the redex
(.)x tλ τ . To remove a free occurence of variable f it is required that the following
condition be satisfied: ()f fv τ∈ . As it follows from the third step of the algorithm
ACT , it should calculate (),ACT P τ . It becomes evident that same logical steps
done a r the term 1... ktv v can be repeated for the term

 the
bove fo τ . Hence, the algorithm

ACT executes endlessly contrary t that 1 0(, ...)kACT P tv v t to the fac = .
Lem .1 is proved.
Proof of Theorem 3.3. Let us suppose the opposite: there exists such a

transformation T , which satisfies to the conditions of Theorem 3.3. In what
follows, we refer to this as a main assumption. Let us consider

ma 3

the program P :
1 2 2 1. ()) ,.(. ())(f x x f xx x f xx tλ λ λ= ≡
2 2.f x I tλ= ≡ ,

where 1 2, ,f f x V∈ .
We will show that (, [,ACT P t f1 1 2])f I I≡ . Let us write the steps of the

execution of algorithm on the program P ACT and on the term :
,(. (. ())),x f xx x f xx I

 1 1 2[,]t f f I

2 2())(ACT P λ λ
))[: (,)]),ACT x x ACT P I2 2,(. ())(. (P x f xx x f x(λ λ =

f x

2 2(,(. ())())[:]),ACT P x f xx x x x I. (λ λ =

2 2(,(. ())(. ())),ACT P x f xx x f xxλ λ

2 2(, ()[: (, . ())]),ACT P f xx x ACT P x f xxλ=
ACT P f xx x ACT P x x I x))]),x2(, ()[: (, .(.)(λ λ=

(,)])]),ACT P f xx x ACT P x I P xx:x ACT2(, ()[: (, . [λ= =
ACT P f xx x ACT P x I x xx2(, ()[: (, . [:])]),λ= =

2(, ()[: (, .)]),ACT P f xx x ACT P x Iλ=
2(, ()[: .]),ACT P f xx x x Iλ=
2(, ((.)(.))),ACT P f x I x Iλ λ

(, (.)((.)(.))),ACT P x I x I x Iλ λ λ
, [: , (.) .ACT P I x ACT P x I x Iλ λ=((())]),

(, [: (, [: (, .)])]),ACT P I x ACT P I x ACT P x Iλ= =
, [: , [: .ACT P I x ACT P I x x Iλ= =((])]),
, [: ,ACT P I x ACT P I=(()]),
, [:ACT P I x I=(]),
,ACT P I(),

.I

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

41

Hence, ≠ ∅ .
According to Theorem 3.1 of consistency,)

() Proc () Proc ()ACT ACTI,I P P∈ ⇒
() (I,I Fix P∈ .

It is asy to see that as the term has not a normal form,
hence,

 1 1 2[,]t f f I e
() Proc) Proc) ()A AI,I P P Fix P∉ ⇒ ≠((for a interpretation algorithm ny

.A SNFR ∈
Now, let us suppose ()T P P0= and the program 0P i mposed of the

follow
s co

ing equation: 0 0f t= , where 0 0,f V t∈ ∈
T

Λ .
here are two possible cases:

1) f0 0()fv t∈ 0

se Proc)ACT P =∅(, con , this contradicts our ain assumption.
2) (

– in this case, by Lemma 3.1, . And
becau sequently m

Proc)ACT P =∅(

0 0f fv t∉) – in this case, cording to Theorem 3.2, ac
) ()0 0ProcA P Fix P=(for any interpretation algorithm .A SNFR∈

As we have already shown Proc) ()A P Fix P=(for any interpretation algorithm
A SNF∈ y the definition of transformation T , () ()R and b 0Fix P Fix P= . Therefore,

we obtain that 0Proc) Proc)A AP P≠((for any interpretation algorithm .A SNFR∈
ast result contradicts our main assumption. Hence, such a The l

transf
Theo

troduce some notations .

ormation T does not exist.
rem 3.3 is proved.

Let us in and notations to be used below
[]nWe will denote the term ...

n

t F F T by t , where , 0.t nΛ∈ ≥

m (1) be givenLet the program P of for t Λ∈ , 1() { ,..., }mfv t f f⊆ and . We use
the notation t to denote the term obtained from t by simultaneous substitution of terms

j[1]
2 , 1,...,f j m= , for all free occurences of the variables j

− f , 1,...,j m= , respectively.
Algorithm C.

1. If m

Input: terms 1,.. , 1.mt t m ≥
Output: term 1(,...,).mC t t

1

.,

, then 1. ;x xt Iλ else 1 2. (,...,x xt C t tλ).m =
Algorithm Converter.

m of form (1).
am r P

 PInput: progra
Output: progr te ().Conver
1. Return the following program:

 1 1 2 2

2 2 1[] (,...,).m

f f T[] ,f t′=

2f t f C t t

≡

′ ≡
 (3)

 For any program of form (1) ()
=

 P (())Fix Converter P Fix P= . T h e o r e m 3 . 4 .
For the proof of Theorem 3.4 the Proposition 3.1 is used.

as a closed normal formProposition 3.1. Term t h ()N t , iff t has a closed
normal form ()N t and () ()N t N t≡ .

o definition of Proof of Theorem 3.4. It is easy t see that the , , 1,...,n
it i m=

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

42

which ollowing way:

,] ,...,], , 1,...,m mf t t s i m= .

1. 1(,...,) , 1,...,i
m iC t t t i m− → = ;

2.

 is given in the Theorem 3.2, can be also intoduced in the f
0

1[,...,]i m it f f f≡ ,
1

1[,... [1s s
i it f t −≡ ≥1

Now suppose that ()Converter P is the program (3).
By definition of ()Converter P , it is easy to see that:

[1] →
[1]

1 m i

Now let us show) ((
(,...,) , 1,...,

i
C t t t i m

−
→→ = .

 that))Fix(P Fix Converter P= . For this reason,
accord 3.2, it is sufficient to show that for any and for any

0.., ,kv t NF∈ 0→→ .
ng the method of m we will prove that

ing to Theorem 1n ≥
terms 1,.v ⇔0 , 1

1 1 0 1 1... ...n n
k kt v v t t v v t+′ →→

Usi athematical induction
1

1 1 , 1nt n→ ≥ .

Basis: Let us show that

nt +′ →
2 1

1 1t t′ →→ .
[0]2 [0]

1 1 2 2 1[] (,...,)mt t t t T C t t′ ′ ′ ′≡ ≡ ≡ and 1 1(,...,)mC t t t→→ , then Since
2 1

1 1t t′ →→ .

Induction hypothesis: Let and 2n ≥ 1
1 1

n nt t −′ →→ .

on step: We will show that 1
1 1

n nt t+′Inducti →→ .
1By definition of and 21

nt , 1
1 1 1[,...,]n n

mt t t t−≡ 1 1 []n nt t t+′ ′ ′≡ . From the induction

hypot 1hesis it follows 1 1t tn n−′ →→ f (fv t. I)n−1
1 =∅ , then it becomes evident that

1
1 1t→ . n nt +′ →

, 1,...,jf j = ,m is th free occurrLet us assume that the k ence of the variables

1{ ,..., }mf f in the term 1 ,j1
nt − : 1

1 1nt f k− < > ≥ .

Let us consider the kth free occurrence of in the term 1
1
nt − : 1

1 2
nt f− < >2f . It is

easy t 1
1
nt − tained from the term jt< > is obo see that the term 1

1 2
nt t− ′< > by replacing

 the subterm
[

1(,...,)
1]j

mC t t w
−

ith the term jt . Hence, 1 1
1 2 1
n n

jt t t t− −′< >→→ < > .
As the last result is true for any kth free occurrence 1, ently, k ≥ consequ

1 1 11
1 2 1 1[] [,...,]mt t t t t′ →→n n− − . Since 1 2 1 2[] []n nt t t t−′ ′ ′→→ , then 1 1 1[,...,]n n

mt t t t′ ′

and
2[]t −→→

1 1
1t t→→ 1

n n+′ . Hence, 1 1
n nt t+′ = .

From here it becomes evident that the term 1 1... kt v v′ has a closed normal
1n

1n+

form 1 1(...)k 1 1...N t v v′ , iff t+ he term nt v kv has a closed normal form 1 1(...nN)t v v and
1

1 1 1((...1 0...))n n
k kN t v t v v′ v N t+ ≡ ≡ .

Hence, from Proposition 3.1 it follows that 0

Theorem 3.4 is proved.
 1

1 1 0 1 1... ...n n
k kt v v t t v v t+′ →→ ⇔ →→ .

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, № 1, p. 36–43.

43

Now introduce the notation of 1 0(,)kA P t , which is used below.
der the kth, k eration of the execution of interpretation Let us consi ≥ , it

algorithm
1

A on program and term . We will assume that algorithm P 0t A
calculates ()N X in step 1, where the term X is obtained from by
execu on algorithm

 0t 1k −
 Ations of step 1 and step 2 of interpretati . If is no

determ ined, otherwise,
()N X t

ined, then (,)kA P t is n1 0 ot determ 1 0(,)
Let the program P of form (1) is given and , () { ,...t fv t f

().kA P t N X≡

1 , }mfΛ∈ ⊆ .
Taking into consideration the fact that by condition (*) any interpretation

algorithm SNFR∈ selects the same free occurrences of variables for terms t an dA
t in step 2 the following proposition can be proved:

Proposition 3.2. Let the program P of form (1) be given and ()C ter P
be the program 0

1,..., kv v NF∈ . For any ..v

, then

(3) and ,)k
kA P t v is

determ) is determined and

onver

1k ≥ 1 1 1(, .
ined, iff 1((), ...k Converter P t v v+ ′1 1 1 kA

1
1 1 1 1 1 1(...) (, ...)k k

k kA Conve v v A P t v v+ ′ ≡ .
T h e o r e m 3 . 5 . For any program P of form (1)

(),rter P t

=
Proc (())A Converter P =

Proc ()A P for any interpretation algorithm .A SNFR∈
Proof of Theorem 3.5. ()P is the pro (
It is easy to s Proc ()A P

Let gram 3).
ee, that if kv v t

Converter

1 0(,..., ,)∈ or 1 0(,..., ,)kv v t ∈
≥Proc (())A Converter P∈ , then there exists such that or

(kA + y is a closed norma
form, then 3.2, 1′ ≡

(kA≡ onverter P

1k 1 1 1 0(, ...)k
kA P t v v t≡

1
1 1 1 0(), ...)kConverter P t v v t′ ≡ respectivel . Since the term l

, according to Proposition 1+

 0t

1 1((), ...)k
kA Converter P t v v

1 1 1, ...)kP t v v . Hence, Proc (Proc ().A AC P()) =
Theorem 3.5 is proved.

010

R E F E R E N C E S

P. The Lam

Received 09.11.2

1. Barendregt H. bda Calculus: Its Syntax and Semantics. Amsterdam, New York,

Ox p., 1981.
 Nigiyan S.A., Avetisyan S.A. Programming and Computer Software, 2002, v. 28, № 3,

p. 5–14.

ford: North-Holland Pub. Com
2.

