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In this paper the notion of transformation of untyped functional programs that 
preserves the main semantics of programs is presented. A transformation, 
representing programs by two equations, such that procedural semantics of 
programs that use interpretation algorithms based on substitution and normal form 
reduction remain the same, is introduced. It is proved also that there is no 
transformation, which represents programs with one equation, such that the 
procedural semantics of programs remain unchanged for all interpretation algo-
rithms that are based on two operations: a substitution and a one-step β-reduction. 
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1. Introduction. In the present paper the fixed-point (main) semantics of 
untyped functional programs and procedural semantics that use interpretation 
algorithms, on which the interpreters of untyped functional programming systems 
are based (or can be based), are considered. These algorithms use two operations:  
a substitution and a one-step β-reduction. The notion of transformation of untyped 
functional programs that preserves the main semantics is presented. We introduce 
the transformation, which represents programs by two equations, such that 
procedural semantics using the interpretation algorithms based on substitution and 
normal form reduction remains unchanged. It is proved also that there is no 
transformation that represents programs by one equation, such that the procedural 
semantics remains unchanged the same for all interpretation algorithms. 

2. Definitions Used and Previous Results. Main definitions and notations 
used in this paper are borrowed from [1, 2]. Let V  be a countable set of variables.  

Definition 2.1. The set of terms Λ  is the least set, satisfying the following 
conditions:  

1. If Vx∈ , then ;  x Λ∈
2. If 1 2,t t Λ∈ , then 1 2( )t t Λ∈ ;  
3. If x V∈  and t Λ∈ , then ( )xtλ Λ∈ .  
Let us give short notations for terms: the term , where 

, is denoted as  and the term 
1 2(...( )... )kt t t

, 1,..., , 1it i k kΛ∈ = > 1 2... kt t t 1 2( ( (... )...))mx tx xλ λ λ
V

, 
where , is denoted as , jt xΛ∈ ∈ 1 2... . , 1,..., , 0.mx x x t j m mλ = >  
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The notions of free and bound occurrence of a variable in the term and the 
notion of a free variable of the term are introduced in the conventional way. The set 
of all free variables of the term t  is denoted as ( )fv t . A term that does not contain 
free variables is called closed. 

To show mutually different variables of interest 1 2, ,..., , 1nx x x n ≥ , of         
the term t, the notation  is used. The notation  (or 

) denotes the term, obtained by simultaneous substitu-
tion of the terms t t  for all free occurrences of the variables 

1 2[ , ,..., ]nt x x x 1 2[ , ,... ]nt t t t

t
1 1 2 2[ : , : ,..., : ]n nt x t x t x t= = =

1 2, ,... n 1 2, ,..., nx x x  
respectively, into the term t . The notation 

1
,...,

ki it x x〈 〉  is used to denote the term  

with indication of some  free occurrencies of variables 

t
0k ≥ 1 2, ,..., nx x x  (from left 

to right), 1 2{ , ,..., }, 1,..., .
ji nx x x x j k∈ =  The term, obtained from a term 

1
,...,

ki it x x  

as a result of simultaneous substitution of terms  for occurrencies of the 

variables 
1
,...,

ki it t

1
,...,

ki ix , is denoted as 
1
,...,

ki it t t . x

A substitution is said to be admissible, if all free variables of the term being 
substituted remain free after substitution. We will consider only admissible substi-
tutions. Terms  and  are said to be congruent (which is denoted as t ), if 
one term can be obtained from the other by renaming the bound variables. The 
congruent terms are considered to be identical. 

1t 2t 1 2t≡

The notion of β -reduction is the following: 

( )( ){ . [ ] , [ : ] , , }x t x t t x t t t x Vβ λ Λ′ ′ ′= = ∈ ∈ . 
A one-step β -reduction ( β→ ), β -reduction ( β→→ ) and β -equality ( β= ) 

are defined in the regular manner. In what follows, we will omit symbol β . The 
term '( . [ ])x t x tλ is called a β -redex (simply redex). A term not containing redexes 
is called a  β -normal form (simply normal form). We will denote the set of all 
normal forms by  and the set of all closed normal forms by NF 0NF . A term t  is 
said to have a normal form, if there exists a term t NF′∈  such that . Also the 
following notations are introduced: 

't t=

. ,T xy xλ≡  . ,F xy yλ≡  . ,I x xλ≡  where , ;x y V∈  

1 1,..., . ...m mt t x xt tλ< >≡ ,  where , , ( )i it x V x fv tΛ∈ ∈ ∉ , 1,..., , 1i m m= ≥ ; 

1... .m
iU x xλ≡ m ix , where , , , 1,...,i k jx V k j x x k j m∈ ≠ ⇒ ≠ = , 1 ,i m m 1≤ ≤ ≥ ; 

.m m
i iΡ x xUλ≡ , where ; , 1 , 1x V i m m∈ ≤ ≤ ≥

( )( ) ( )(. . .Y h x h xx x h xxλ λ λ≡ )  is a fixed-point combinator, where ,x h V∈ . 
The following definitions are used from [2]. 

Definition 2.2. An untyped functional program (simply program) is a system 
of equations of the form  

1 1 1

1

[ ,..., ]
...
[ ,..., ],

m

m m m

f t f f

f t f f

=

=
                                               (1)                                                     
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1 1 1, , [ ,..., ] , ( [ ,... ]) { ,..., }, , 1,..., ,i i j i m i m mf V i j f f t f f fv t f f f f i j mΛ∈ ≠ ⇒ ≠ ∈ ⊆ =  where 
1.m ≥ The first equation of the sy d to be the principal equation of stem is considere

the program.  Let us consder the solution of system (1) 
                                                          1( ,..., )mτ τ ,                                                     (2)

where 

 

( )( )1 1 1. [ ,..., ],..., [ ,..., ] , 1,..., .m m m m m
i i m m mP Y x t P x P x t P x P x i mτ λ≡ < > =  The 

term 1τ  is said to be the principal component of solution (2); it is this term that is 
 (1). 

3. Let  be a program (1) and 
the fixed-point semantics of program

P 1τ  Definition 2. be the fixed-point sem
g

antics 
of pro ram P . The set ( )Fix P  corresponding to the fixed point semantics of 
program P  will be defined in the following way:  

0
1 0 1 1 0 1 0( ) {( ,..., , ) ... , , , , 0}.k kFix P v v t v v t v v t NF kτ= →→ ∈ ≥  

Let us introduce the notion of an interpretation algorithm 
...,k

A . Having 
received a program P  of form (1) and term X  on its input, the algorithm A  either 
terminates with the result 'X NF∈ , where fv 1( ) { ,..., }mX f f′ ∩ =∅
endlessly

 or works 
. The interpretation algorithms use two following type of operations:  

a) the substitution of terms 1 1 1[ ,..., ],..., [ ,..., ]m m mt f f t f f  for some free 
occurrences of variables 1,..., mf f  pectivally, 

b)  a one-step 
 res  

β -reduction. 
 (1) and Definition 2.4. Let P  be a progra Am  be an interpr

ed al semantics that uses the 
etation algorithm. 

The set Proc ( )A P  corresponding to the proc
interp m

ur
retation algorith  A  will be defined in the following way: 

1 0 1 1 1( ) {( ,..., , ) ( , [ ,..., ] ... )ProcA k m kP v v t A t f f v v= is determined and equal to 0t , 

where  1 0,..., , 0}.kv v t ∈ ≥  
Let ( )L X  be the ter  

P
0 ,NF k

m X , if X NF∈  and 'X  be obtained from X  by 
applying a left one-step reduc  W lgtion. e define a orithm N  that, by a given term 
X , con

A
str normal form, if it exits or functio  if not. 
lgorithm

ucts its ns endlessly
 N .  

Input: term X . 
Output: term ( )N X , if  N  is determined on X . 
If X NF∈ , then X ; else ( ( ))N L X . 
Let us desc iber  the set of interpretation algorithms , in which the 

reduct itution operation. 
 SNFR

ion to the normal form alternates with the subst
Each algorithm SNF  has the following rmR∈ fo : 

o ) and term
 A

Input: program P f form (1  X , where 1( ) { ,..., }mfv X f f⊆ . 
Output: term ( , )S P X , if S  is determined on P  and X . 
1. If ( )N X  is n ined, then an infinite proc

 
ot determ ess corresponding to the 

endless functioning of  on N X  takes place; e
0[ ,...,

lse go to item 2.  
2. If ( ) ] \m1N X f NF NF≡ ∈ , then )t f ( , ' , where  is obtained A P t 't

from t  by the simultaneous substitution of the terms 1 1 1[ ,..., ],..., [ ,..., ]m m mt f f t f f  
for some free occurrences of the variables 1,..., mf f  respectively; else ( )N X . 
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In wh s at follows, only the algorithm A SNFR∈  satisfying to the following 
condition (*) are considered: 

if 0\ , ( )t f NF NF f fv t〈 〉∈ ∈  and ,t t NFτ τ′ ≡ 〈 〉 ∈  and τ contains only  
free o  

one
A  selectccurrence of a variable, then algorithm s the same free occurrences 

of the variables for terms t  and  't  in step 2. 
Algorithm ACT . 
Input: program  of form (1) and term P   X , where 1( ) { ,..., }mfv X f f . 
Output: term ( , )

⊆
ACT P X  if  ACT is determined on P  and X .   

1( ) { ,..., }mfv X f f∩ =∅ ,  then X ; else go to item 2.  1. If X N  and F∈
2. If iX X f≡ 〈 , where if  is the leftmost o iaccurrence of 〉 var bles 

1{ ,..., }mf f  in the te ticular occurrenc is onrm e  the left of the 
T

 t  and  this par
leftmost redex of the term P t t t , then ( , );iAC 〈 〉  else go to 3. 

3.  If ( . )x tX X λ τ≡ , where ,x V∈  ,t τ Λ∈  and ( . )x tλ τ  is the leftmost redex 
 of  term X , then [ : ( , )]( , )t x ACT PACT P X τ= . 

3. Transformations of Functional Programs and their Procedural 
Semantics.  

We say that procedural semantics using interpretation algorithm A  is 
consistent (comple ix⊆te),  if P   ) Proc ( ) ( )A P F ( ( ) Proc (AFix P P⊆  respectiv ) 
for an

lowing theorems are used from [2]. 

ely
y program P . 
The fol
T h e o r e m  3 . 1  (on consistency). For any program P  and interpretation 

algorithm A  Proc ( )A P F⊆
T h e o r e m 3

( )ix P . 
 . 2  (on substitutions). Let a program of form (1)          

and 
P  be 

0,..., ,v v t NF∈ , where 0k ≥ , then 1 0k 1 0( ,..., ,kv v t Fix P n) ( ) 1;∈ ⇔ ∃ ≥  

1 1 1[ ,...,n
m kt f f v  0t f0  where if f] ...v t→→ , 1[ ,..., ]i m ≡ ,  

[ ,s
it f ≥1 1

1 1 1..., ] [ [ ,..., ],..., [ ,..., ]], 1,s s
m i m m mf t t f f t f f s− −≡ 1,..., .i m=  

e set of all unt
e mapping is 

 P

1

We will denote th yped functional programs by P. 
Definition 3.1. Th P    called the transformation of 

programs P,  if for any program
:T P →

∈ P  ( ( )) ( ).Fix T P Fix P=  
T h e o r e m  3 . 3 .  There does not exist such a transformation 
m 

T  that for any 
progra P, T(P)  is composed of one equa n and satisfies thtio e following 

ion: 
Proc

condit
P T P( ) Proc ( ( ))A A=  

for any interpretation algorithm A . 
For the proof of Theorem 3.3 we will use Lemma 3.1. 
L e m m a  3 . 1 .  Let the program  be  P ,f t= where f, ( ) { }t fv tΛ∈ = . 

ite:  there  exists  a 
progra ions Lemma 3.1 and 

P ≠ ∅ . By Definition 2.4, 

Then Proc ( ) =P ∅ .ACT  
Proof of Lemma 3.1.  Let  us  suppose  the  oppos
m P , which satisfies to the condit of the 

ProcA ( )CT
0

1 2 0Proc ( ) , ,..., , ;ACT kP v v v t NF≠ ∅⇒ ∃ ∈  
1 0, ... ) , 0kP tv v t k= ≥ . (ACT
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We ill show that algorithm  w ACT  executes endlessly on the term 1... ktv v . 

{Since }1( ... )kfv tv v f=  and 0
0t NF∈  , consequently, all free occurences of variable

f  will be removed at a cert e algorithm. As n step of th { }( )fv t f=ai , then the vari-
able f  cannot be removed by replac its free occurences with t . From t a 
free oc ble 

ing here, 
curence of varia f  emoved only after the third step of algorithm can be r

ACT . Let us suppose that at the third step the algorithm ACT  has selected the redex 
( . )x tλ τ . To remove a free occurence of variable f  it is required that the following 
condition be satisfied: ( )f fv τ∈ . As it follows from the third step of the algorithm 
ACT , it should calculate  ( ),ACT P τ . It becomes evident that same logical steps 
done a r the term 1... ktv v  can be repeated for the term

 the 
bove fo  τ . Hence, the algorithm 

ACT  executes endlessly contrary t that 1 0( , ... )kACT P tv v t to the fac = .  
Lem .1 is proved. 
Proof of Theorem 3.3. Let us suppose the opposite: there exists such a 

transformation T , which satisfies to the conditions of Theorem 3.3. In what 
follows, we refer to this as a main assumption. Let us consider 

ma 3

the program P : 
1 2 2 1. ( )) ,.( . ( ))(f x x f xx x f xx tλ λ λ= ≡                     
2 2.f x I tλ= ≡ , 

where 1 2, ,f f x V∈ . 
We will show that ( , [ ,ACT P t f1 1 2 ] )f I I≡ . Let us write the steps of the 

execution of algorithm  on the program P ACT  and on the term : 
,( . ( . ( )) ),x f xx x f xx I

 1 1 2[ , ]t f f I

2 2( ))(ACT P λ λ                                      
))[ : ( , )]),ACT x x ACT P I2 2,( . ( ))( . (P x f xx x f x( λ λ =  

f x
     

2 2( ,( . ( ))( ))[ : ]),ACT P x f xx x x x I. (λ λ =         

2 2( ,( . ( ))( . ( ))),ACT P x f xx x f xxλ λ              

2 2( , ( )[ : ( , . ( ))]),ACT P f xx x ACT P x f xxλ=          
ACT P f xx x ACT P x x I x ))]),x2( , ( )[ : ( , .( . )(λ λ=                   

( , )])]),ACT P f xx x ACT P x I P xx:x ACT2( , ( )[ : ( , . [λ= =                   
ACT P f xx x ACT P x I x xx2( , ( )[ : ( , . [ : ])]),λ= =                                              

2( , ( )[ : ( , . )]),ACT P f xx x ACT P x Iλ=                                                                            
2( , ( )[ : . ]),ACT P f xx x x Iλ=  
2( , (( . )( . ))),ACT P f x I x Iλ λ  

( , ( . )(( . )( . ))),ACT P x I x I x Iλ λ λ  
, [ : , ( . ) .ACT P I x ACT P x I x Iλ λ=( ( ( ))]),  

( , [ : ( , [ : ( , . )])]),ACT P I x ACT P I x ACT P x Iλ= =  
, [ : , [ : .ACT P I x ACT P I x x Iλ= =( ( ])]),  
, [ : ,ACT P I x ACT P I=( ( )]),  
, [ :ACT P I x I=( ]),  
,ACT P I( ),  

.I  
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Hence, ≠ ∅ . 
According to Theorem 3.1 of consistency, )

( ) Proc ( ) Proc ( )ACT ACTI,I P P∈ ⇒
( ) (I,I Fix P∈ . 

It  is asy  to  see  that  as  the  term  has  not  a  normal  form, 
hence, 

  1 1 2[ , ]t f f I e
( ) Proc ) Proc ) ( )A AI,I P P Fix P∉ ⇒ ≠( (  for a  interpretation algorithm ny

.A SNFR   ∈
Now, let us suppose ( )T P P0=  and the program 0P  i mposed of the 

follow
s co

ing equation: 0 0f t= , where 0 0,f V t∈ ∈
T

Λ .  
here are two possible cases: 

1) f0 0( )fv t∈  0

se Proc )ACT P =∅( , con , this contradicts our ain assumption. 
2) (

– in this case, by Lemma 3.1, . And 
becau sequently  m

Proc )ACT P =∅(

0 0f fv t∉ ) – in this case, cording to Theorem 3.2, ac 
) ( )0 0ProcA P Fix P=(   for any interpretation algorithm .A SNFR∈  

As we have already shown Proc ) ( )A P Fix P=(  for any interpretation algorithm 
A SNF∈ y the definition of transformation T , ( ) ( )R  and b 0Fix P Fix P= . Therefore, 

we obtain that 0Proc ) Proc )A AP P≠( (  for any interpretation algorithm .A SNFR∈  
ast result contradicts our main assumption. Hence, such a The l

transf   
Theo

troduce some notations . 

ormation T  does not exist.
rem 3.3 is proved. 

Let us in  and notations to be used below
[ ]nWe will denote the term ...

n

t F F T  by t , where , 0.t nΛ∈ ≥  

m (1) be givenLet the program P  of for t Λ∈ , 1( ) { ,..., }mfv t f f⊆ and . We use 
the notation t  to denote the term obtained from t  by simultaneous substitution of terms 

j[ 1]
2 , 1,...,f j m= , for all free occurences of the variables j

− f , 1,...,j m= ,  respectively. 
Algorithm C. 

1. If m

Input: terms 1,.. , 1.mt t m ≥  
Output: term 1( ,..., ).mC t t  

1

.,

,  then 1. ;x xt Iλ  else 1 2. ( ,...,x xt C t tλ ).m  =
Algorithm Converter. 

m of form (1). 
am r P  

 

            

 PInput: progra
Output: progr te ( ).Conver
1. Return the following program: 

 1 1 2 2

2 2 1[ ] ( ,..., ).m

f f T[ ] ,f t′=
                                      

2f t f C t t

≡

′ ≡
                                      (3)                                          

 For any program  of form (1) ( )
=

 P ( ( ))Fix Converter P Fix P= . T h e o r e m  3 . 4 .
For the proof of Theorem 3.4 the Proposition 3.1 is used. 

as a closed normal formProposition 3.1. Term t  h  ( )N t , iff  t  has a closed 
normal form ( )N t  and ( ) ( )N t N t≡ . 

o definition of Proof of Theorem 3.4. It is easy t see that the , , 1,...,n
it i m=
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which ollowing way: 

, ] ,..., ], , 1,...,m mf t t s i m= . 

1. 1( ,..., ) , 1,...,i
m iC t t t i m− → = ; 

2. 

 is given in the Theorem 3.2, can be also intoduced in the f
0

1[ ,..., ]i m it f f f≡ ,  
1

1[ ,... [ 1s s
i it f t −≡ ≥1

Now suppose that ( )Converter P  is the program (3). 
By definition of ( )Converter P , it is easy to see that: 

[ 1] →
[ 1]

1 m i

Now let us show ) ( (
( ,..., ) , 1,...,

i
C t t t i m

−
→→ = . 

 that ))Fix(P Fix Converter P= . For this reason, 
accord 3.2, it is sufficient to show that for any  and for any 

0.., ,kv t NF∈ 0→→ . 
ng the method of m we will prove that 

ing to Theorem  1n ≥
terms 1,.v ⇔0 , 1

1 1 0 1 1... ...n n
k kt v v t t v v t+′ →→

Usi athematical induction 
1

1 1 , 1nt n→ ≥ . 

Basis: Let us show that 

nt +′ →
2 1

1 1t t′ →→ . 
[0]2 [0]

1 1 2 2 1[ ] ( ,..., )mt t t t T C t t′ ′ ′ ′≡ ≡ ≡  and 1 1( ,..., )mC t t t→→ , then Since 
2 1

1 1t t′ →→ . 

Induction hypothesis: Let  and  2n ≥ 1
1 1

n nt t −′ →→ . 

on step: We will show that 1
1 1

n nt t+′Inducti →→ . 
1By definition of  and 21

nt , 1
1 1 1[ ,..., ]n n

mt t t t−≡ 1 1 [ ]n nt t t+′ ′ ′≡ . From the induction 

hypot 1hesis it follows 1 1t tn n−′ →→ f (fv t. I )n−1
1 =∅ , then it becomes evident that 

1
1 1t→ . n nt +′ →

, 1,...,jf j = ,m  is th free occurrLet us assume that the k ence of the variables 

1{ ,..., }mf f  in the term 1 ,j1
nt − : 1

1 1nt f k− < > ≥ . 

Let us consider the kth free occurrence of  in the term 1
1
nt − : 1

1 2
nt f− < >2f . It is 

easy t 1
1
nt − tained from the term jt< >   is obo see that the term 1

1 2
nt t− ′< >   by replacing 

 the subterm
[

1( ,..., )
1]j

mC t t  w
−

ith the term jt . Hence,  1 1
1 2 1
n n

jt t t t− −′< >→→ < > . 
As the last result is true for any kth free occurrence 1, ently, k ≥  consequ

1 1 11
1 2 1 1[ ] [ ,..., ]mt t t t t′ →→n n− − . Since 1 2 1 2[ ] [ ]n nt t t t−′ ′ ′→→ , then 1 1 1[ ,..., ]n n

mt t t t′ ′  

and 
2[ ]t −→→

1 1
1t t→→ 1

n n+′ . Hence, 1 1
n nt t+′ = . 

From here it becomes evident that the term 1 1... kt v v′  has a closed normal 
1n

1n+

form 1 1( ... )k 1 1...N t v v′ , iff t+ he term nt v kv  has a closed normal form 1 1( ...nN )t v v  and 
1

1 1 1( ( ...1 0... ) )n n
k kN t v t v v′ v N t+ ≡ ≡ . 

Hence, from Proposition 3.1 it follows that 0

Theorem 3.4 is proved. 
 1

1 1 0 1 1... ...n n
k kt v v t t v v t+′ →→ ⇔ →→ . 
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Now introduce the notation of 1 0( , )kA P t , which is used below. 
der the kth, k eration of the execution of interpretation Let us consi ≥ , it

algorithm 
1

A  on program  and term . We will assume that algorithm P  0t  A  
calculates ( )N X  in step 1, where the term X  is obtained from  by
execu on algorithm

 0t  1k −  
 Ations of step 1 and step 2 of  interpretati .  If is no

determ ined, otherwise, 
( )N X  t 

ined, then ( , )kA P t  is n1 0 ot determ 1 0( , )
Let the program P  of form (1) is given and , ( ) { ,...t fv t f

( ).kA P t N X≡  

1 , }mfΛ∈ ⊆ .  
Taking into consideration the fact that by condition (*) any interpretation 

algorithm SNFR∈  selects the same free occurrences of variables for terms t  an  dA
t  in step 2 the following proposition can be proved: 

Proposition 3.2. Let the program P  of form (1) be given and ( )C ter P  
be the program  0

1,..., kv v NF∈ . For any ..v

, then 

(3) and , )k
kA P t v  is 

determ )  is determined and 

onver

1k ≥ 1 1 1( , .
ined, iff 1( ( ), ...k Converter P t v v+ ′1 1 1 kA

1
1 1 1 1 1 1( ... ) ( , ... )k k

k kA Conve v v A P t v v+ ′ ≡ . 
T h e o r e m  3 . 5 .  For any program P  of form (1) 

( ),rter P t

=
Proc ( ( ))A Converter P =  

Proc ( )A P for any interpretation algorithm .A SNFR∈  
Proof of Theorem 3.5.  ( )P  is the pro  (
It is easy to s Proc ( )A P

Let gram 3). 
ee, that if kv v t

Converter

1 0( ,..., , )∈  or 1 0( ,..., , )kv v t ∈  
≥Proc ( ( ))A Converter P∈ , then there exists  such that  or 

(kA + y  is a closed norma
form, then 3.2, 1′ ≡  

(kA≡ onverter P

1k 1 1 1 0( , ... )k
kA P t v v t≡

1
1 1 1 0( ), ... )kConverter P t v v t′ ≡  respectivel . Since the term l 

, according to Proposition 1+

 0t

1 1( ( ), ... )k
kA Converter P t v v

1 1 1, ... )kP t v v . Hence, Proc ( Proc ( ).A AC P( )) =  
Theorem 3.5 is proved. 

010 
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