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ON TRANSFORMATIONS OF UNTYPED FUNCTIONAL PROGRAMS
AND THEIR PROCEDURAL SEMANTICS
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In this paper the notion of transformation of untyped functional programs that
preserves the main semantics of programs is presented. A transformation,
representing programs by two equations, such that procedural semantics of
programs that use interpretation algorithms based on substitution and normal form
reduction remain the same, is introduced. It is proved also that there is no
transformation, which represents programs with one equation, such that the
procedural semantics of programs remain unchanged for all interpretation algo-
rithms that are based on two operations: a substitution and a one-step f-reduction.
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1. Introduction. In the present paper the fixed-point (main) semantics of
untyped functional programs and procedural semantics that use interpretation
algorithms, on which the interpreters of untyped functional programming systems
are based (or can be based), are considered. These algorithms use two operations:
a substitution and a one-step fS-reduction. The notion of transformation of untyped
functional programs that preserves the main semantics is presented. We introduce
the transformation, which represents programs by two equations, such that
procedural semantics using the interpretation algorithms based on substitution and
normal form reduction remains unchanged. It is proved also that there is no
transformation that represents programs by one equation, such that the procedural
semantics remains unchanged the same for all interpretation algorithms.

2. Definitions Used and Previous Results. Main definitions and notations
used in this paper are borrowed from [1, 2]. Let V' be a countable set of variables.

Definition 2.1. The set of terms A is the least set, satisfying the following
conditions:

1.If x eV ,then xe A ;

2.1f t,,t, e A, then (#t,) e A;

3.If xeV and te A, then (Axt)e A.

Let us give short notations for terms: the term (...(#,)...,), Wwhere
t,eA, i=1..k, k>1,is denoted as f#t,...t, and the term (Ax,(Ax,(...Ax,7)...)),

where t € A, X; € V', is denoted as Axx,...x,,.t,j =1,....m,m>0.
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The notions of free and bound occurrence of a variable in the term and the
notion of a free variable of the term are introduced in the conventional way. The set
of all free variables of the term ¢ is denoted as fi(¢). A term that does not contain

free variables is called closed.
To show mutually different variables of interest x,,x,,...,x,,n>1, of

the term ¢, the notation f[x,x,,....,x,] is used. The notation f¢,t,,...t,] (or
{x, =t,x, =t,,...,x, =t,]) denotes the term, obtained by simultaneous substitu-
tion of the terms ¢,,¢,,...t, for all free occurrences of the variables x,x,,...,x,

respectively, into the term ¢ . The notation z‘(x,.1 ,...,xl.k) 1s used to denote the term ¢

with indication of some k>0 free occurrencies of variables x;,x,,...,x, (from left

to right), x; €{x,,x,,...,x,},j =1,...,k. The term, obtained from a term t<xi1 ,...,xl.k>
J

as a result of simultaneous substitution of terms ¢ ,...,7, for occurrencies of the

L
variables X e Xy is denoted as t<tl.1 - > .

A substitution is said to be admissible, if all free variables of the term being
substituted remain free after substitution. We will consider only admissible substi-
tutions. Terms ¢ and ¢, are said to be congruent (which is denoted as ¢, =¢,), if

one term can be obtained from the other by renaming the bound variables. The
congruent terms are considered to be identical.
The notion of S -reduction is the following:

B={((Axdx])t’, flx=11)| t,t' e A, x eV }.
A one-step f -reduction (— ), S -reduction (—>—> ;) and S -equality (=4)
are defined in the regular manner. In what follows, we will omit symbol £ . The

term (Ax.f[x])t'is called a f -redex (simply redex). A term not containing redexes
is called a f -normal form (simply normal form). We will denote the set of all

normal forms by NF and the set of all closed normal forms by NF°. A term ¢ is
said to have a normal form, if there exists a term ¢’ € NF such that ¢t =¢'. Also the
following notations are introduced:

T'=Axyx, F=Axy.y, I=Axx, where x,yeV;

<t,ent, >=AxXt..1,, Where t, e A,xeV,xe fu(t), i=1,...m, m=21;
U" =Ax,..x,.x;,where x, €V, k# j=x, X,k j=1..m, 1<i<m,m>1;
P" =AxxU",wherexeV, 1<i<m, m21;

Y= /Ih.(/lx.h(xx))(lx.h(xx)) is a fixed-point combinator, where x,h eV .

The following definitions are used from [2].
Definition 2.2. An untyped functional program (simply program) is a system
of equations of the form

Jr=6L s 1]
T =tulfrsees S
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where fieV,i#j=f # [, t[f 1€ A NG L) S0 Fud s 1 =1L m,
m >1.The first equation of the system is considered to be the principal equation of
the program. Let us consder the solution of system (1)

(Tl""sz-m)a (2’)
where 7, =P" (Y(/lx. <t[R"Xyec. P, X],sec0st [ B X,es P, X] >)), i=1,.,m The

term 7, is said to be the principal component of solution (2); it is this term that is
the fixed-point semantics of program (1).

Definition 2.3. Let P be a program (1) and 7, be the fixed-point semantics
of program P. The set Fix(P) corresponding to the fixed point semantics of
program P will be defined in the following way:

Fix(P)= {(vl,...,vk,t0)| Ty VeV == Lgs Viseon Vinly € NFO, k> 0}

Let us introduce the notion of an interpretation algorithm 4. Having
received a program P of form (1) and term X on its input, the algorithm A either
terminates with the result X'e NF, where M(X")N{f,....[,} = or works
endlessly. The interpretation algorithms use two following type of operations:

a) the substitution of terms ¢[f,.... [, ...t [ fi>-s f,,] foOr some free
occurrences of variables f,,..., f,, respectivally,

b) aone-step S -reduction.

Definition 2.4. Let P be a program (1) and A4 be an interpretation algorithm.
The set Proc,(P) corresponding to the procedural semantics that uses the
interpretation algorithm A4 will be defined in the following way:
ProcA(P)={(v1,...,vk,t0)| AP, f1,--s [, 10 v, ) 1s determined and equal to ¢,

where v,,...,v;,1, e NF°, k>0}.
Let L(X) be the term X, if X € NF and X' be obtained from X by

applying a left one-step reduction. We define algorithm N that, by a given term
X , constructs its normal form, if it exits or functions endlessly if not.

Algorithm N .

Input: term X .

Output: term N(X),if N is determined on X .

If X € NF,then X ;else N(L(X)).

Let us describe the set of interpretation algorithms SNFR, in which the
reduction to the normal form alternates with the substitution operation.
Each algorithm 4 € SNFR has the following form:

Input: program P of form (1) and term X, where fW(X) < {f,.... [, }-

Output: term S(P,X), if S is determined on P and X .

1. If N(X) is not determined, then an infinite process corresponding to the
endless functioning of N on X takes place; else go to item 2.

2. If N(X)={[f,,....f,1e NF\NF", then A(P,t'), where ¢' is obtained
from ¢ by the simultaneous substitution of the terms #[f,,..., f,, 1.-..t,,[ f1sees f0]
for some free occurrences of the variables f,..., f,, respectively; else N(X).
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In what follows, only the algorithms 4 € SNFR satisfying to the following
condition (*) are considered:

if t(f)e NF\NF°, f e fu(t) and ¢'=t(r), 7€ NF and 7 contains only one
free occurrence of a variable, then algorithm A4 selects the same free occurrences
of the variables for terms ¢ and ¢' in step 2.

Algorithm ACT .

Input: program P of form (1) and term X, where /(X)) < {f,.... [, }-

Output: term ACT (P, X) if ACT is determined on P and X .

1. If X e NF and f(X)N{f,,....[,,} =, then X ; else go to item 2.

2. If X=X(f;), where f, is the leftmost occurrence of variables
{fi,-..f,,} in the term ¢ and this particular occurrence is on the left of the
leftmost redex of the term ¢, then ACT(P, «(t,)); else go to 3.

3. If X=X ,,,,where xeV, t,reA and (Ax.)r is the leftmost redex

of term X, then ACT(P, X\, _ycr(p.ry) -

3. Transformations of Functional Programs and their Procedural
Semantics.

We say that procedural semantics using interpretation algorithm A4 is
consistent (complete), if Proc,(P)c Fix(P) (Fix(P)c Proc,(P) respectively)
for any program P.

The following theorems are used from [2].

Theorem 3.1 (on consistency). For any program P and interpretation
algorithm A4 Proc ,(P) < Fix(P).

Theorem 3.2 (on substitutions). Let P be a program of form (1)

and  v,..., V.1, e NF, where k>0, then (Vseens Vs ty) € Fix(P) & 3dn 21,
8 fseens fo 0oV, =>—> 1y, where t°[ f,,.... £, 1= 5,

] Srseeor o 2L L fyaeees g Joeost” [ frseeos fuJ] s 21, i =1y,

We will denote the set of all untyped functional programs by .

Definition 3.1. The mapping T:P—F 1is called the transformation of
programs £, if for any program Pe £ Fix(T(P)) = Fix(P).

Theorem 3.3. There does not exist such a transformation 7 that for any
program P,T(P) is composed of one equation and satisfies the following
condition:

Proc ,(P) = Proc (T (P))
for any interpretation algorithm 4.

For the proof of Theorem 3.3 we will use Lemma 3.1.

Lemma 3.1. Let the program P be f =t, where te A, fv(t)={f}.
Then Proc -, (P)=O.

Proof of Lemma 3.1. Let us suppose the opposite: there exists a
program P, which satisfies to the conditions of the Lemma 3.1 and

Proc ., (P) # @ . By Definition 2.4, Proc ,.,(P) # @ = 3v,,v,,...,v,,t, € NF’;
ACT(P,tv,..v,) =t,, k>0.
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We will show that algorithm ACT executes endlessly on the term #v,...v, .
Since fu(tvy...v,) = { f } and ¢, € NI 0, consequently, all free occurences of variable
f will be removed at a certain step of the algorithm. As fi(¢) = { f } , then the vari-
able f cannot be removed by replacing its free occurences with 7. From there, a
free occurence of variable f can be removed only after the third step of algorithm

ACT . Let us suppose that at the third step the algorithm ACT has selected the redex
(Ax.t)r. To remove a free occurence of variable f it is required that the following

condition be satisfied: f € fi(r). As it follows from the third step of the algorithm
ACT , it should calculate ACT(P,r) . It becomes evident that the same logical steps
done above for the term #v,...v, can be repeated for the term 7. Hence, the algorithm
ACT executes endlessly contrary to the fact that ACT(P,tv,...v,) =1,.

Lemma 3.1 is proved.

Proof of Theorem 3.3. Let us suppose the opposite: there exists such a
transformation 7 , which satisfies to the conditions of Theorem 3.3. In what
follows, we refer to this as a main assumption. Let us consider the program P :

i = Ax.(Ax. [, (xx))(Ax. £, (xx)) =1,

fh=AxI=t,,
where f, f,,xeV .

We will show that ACT(P,t[f,,f,]1])=1. Let us write the steps of the
execution of algorithm ACT on the program P and on the term [ f,, f, ]/ :
ACT (P, (Ax.f, (xx))(Ax. f5 (xx))]),

ACT (P, (Ax.f, (xx))(Ax.f5 (xx))[x = ACT (P, I)]),
ACT (P,(Ax.f, (xx))(Ax. f, (xx))[x = 1]),

ACT (P,(Ax. f; (xx))(Ax. f; (xx))),
ACT (P, f,(xx)[x = ACT (P, Ax.f,(xx))]),

ACT (P, f, (xx)[x = ACT (P, Ax.(Ax.I)(xx))]),
ACT (P, f,(xx)[x = ACT (P, AxI[x = ACT (P, xx)])]),
ACT (P, f, (xx)[x = ACT (P, Ax.I[x = xx])]),
ACT (P, f, (xx)[x = ACT (P, Ax.1)]),
ACT (P, f, (xx)[x = Ax.1]),

ACT (P, f,(Ax1)(Ax.1))),

ACT (P,(Ax.D)(Ax.1)(Ax.1))),

ACT(P,I[x = ACT (P,(Ax.1)(Ax.D))]),
ACT(P,I[x = ACT (P,I[x = ACT(P,Ax.D)])]),
ACT(P,I[x:=ACT(P,I[x = Ax.I))]),
ACT(P,I[x=ACT(P,I))),

ACT(P,I[x =1]),

ACT(P,I),

I
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Hence, (1,1) € Proc ;7 (P) = Proc ;. (P) = D .

According to Theorem 3.1 of consistency, (1,1) € Fix(P).

It is easy to see that as the term ¢#[f,,f,]/ has not a normal form,
hence, (/1) ¢ Proc ,(P)= Proc ,(P)# Fix(P) for any interpretation algorithm
A e SNFR.

Now, let us suppose T(P)=F, and the program F, is composed of the
following equation: f, = f,, where f, e V,t, € A.

There are two possible cases:

1) f,€fv(t,) — in this case, by Lemma 3.1, Proc,.(F)=%<. And
because Proc ., (P)=(, consequently, this contradicts our main assumption.

2) foefv(t,) — in this case, according to Theorem 3.2,
Proc ,(F)) = Fix(F,) for any interpretation algorithm A e SNFR.

As we have already shown Proc , (P) = Fix(P) for any interpretation algorithm
A e SNFR and by the definition of transformation 7', Fix(P)= Fix(F,). Therefore,
we obtain that Proc , (F,) # Proc ,(P) for any interpretation algorithm A4 € SNFR.

The last result contradicts our main assumption. Hence, such a
transformation 7 does not exist.

Theorem 3.3 is proved.

Let us introduce some notations and notations to be used below.

We will denote the term ¢ F... FT by 1", where te A, n>0.

[ S—

Let the program P of form (1) be givenand t € A, fv(¢t) = {f,,.... [, }. We use
the notation 7 to denote the term obtained from ¢ by simultaneous substitution of terms
fz[j -1 j=1,...,m, for all free occurences of the variables fj ,Jj =1,...,m, respectively.

Algorithm C.
Input: terms ¢,,...,¢,,,m >1.

Output: term C(¢,...,t,,).
1. If m=1, then Ax.xt,I; else Ax.xt,C(t,,...,t,).

Algorithm Converter.
Input: program P of form (1).
Output: program Converter(P).

1. Return the following program:
fi:tll[f2]5f‘2Ta (3)
f2 = té[f2] = C(tla'--5tm)'

Theorem 3.4. Forany program P of form (1) Fix(Converter(P))= Fix(P).

For the proof of Theorem 3.4 the Proposition 3.1 is used.
Proposition 3.1. Term ¢ has a closed normal form N(¢), iff 7 has a closed

normal form N(7) and N(t)=N(7).
Proof of Theorem 3.4. 1t is easy to see that the definition of ¢,i=1,...,m,
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which is given in the Theorem 3.2, can be also intoduced in the following way:
AVESAENE
EL v o 1267t nt, ], 821, i=1,..,m.
Now suppose that Converter(P) is the program (3).
By definition of Converter(P), it is easy to see that:

1. Ctyyent, N >ty i=1,.,m;

—[i-1 —
2. Cltyont, ) T, i=lyum.
Now let us show that Fix(P)= Fix(Converter(P)). For this reason,
according to Theorem 3.2, it is sufficient to show that for any n>1 and for any
rn+l

terms v,,...,v,, t, € NF*, t/""'v..v, > t, & t/v,..v, > 1,.
Using the method of mathematical induction we will prove that

rn+l

4" o>t n>1.
Basis: Let us show that > >— ¢/ .
. — 0] — 10 —
Since #> =4[t}]=t,T =C(t,,....t,,)  and C(t,...t,) —>—>1, then

>t .

n—1

Induction hypothesis: Let n>2 and #" ->— ¢

Induction step: We will show that #""" —— 1 .

By definition of ¢, ¢! =¢"'[t,,...,¢,,] and #"*" =4"[¢;]. From the induction

hypothesis it follows #" ——¢"". If fu(t/"')=@, then it becomes evident that

AR
Let us assume that f;,j=1,...,m, is the k™ free occurrence of the variables

{fisen [} intheterm 7' : 7'< f, >, k21,

Let us consider the k™ free occurrence of f, in the term ¢ : /7' < f, > . It is

easy to see that the term tl”_l< t; > 1is obtained from the term tl’H< t, > by replacing

ey e | B — — _
the subterm C(1,...,7,,)) ~ with the term 7,. Hence, #"'<t; >—>—>1/"'<t, >.

As the last result is true for any k™ free occurrence & >1, consequently,

#1170t 1. Since £"[t;]—>— "' [£], then £"[t}] > 1 [t1,..01,,]
and """ —>—1" . Hence, ¢""' =1t

From here it becomes evident that the term £""'v,...v, has a closed normal
form N(¢"*'v,..v,), iff the term Evl...vk has a closed normal form N (Evl...v) and
N0, = N(Evl...vk) =t,.

Hence, from Proposition 3.1 it follows that #""v,...v, =1, < 1/v..v, >—>1,.

Theorem 3.4 is proved.
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Now introduce the notation of A’ (P, ¢,), which is used below.
Let us consider the ™, k>1, iteration of the execution of interpretation
algorithm A4 on program P and term f,. We will assume that algorithm A4

calculates N(X) in step 1, where the term X 1is obtained from ¢, by k-1
executions of step 1 and step 2 of interpretation algorithm A. If N(X) is not
determined, then Alk (P, t,) is not determined, otherwise, Alk (P,ty)) = N(X).

Let the program P of form (1) is given and ¢ € A, fv(¢) = { f,--.. [, } -

Taking into consideration the fact that by condition (*) any interpretation
algorithm 4 € SNFR selects the same free occurrences of variables for terms ¢ and
t in step 2, then the following proposition can be proved:

Proposition 3.2. Let the program P of form (1) be given and Converter(P)

be the program (3) and v,,..,v, e NF’. For any k>1, A'(P,tyv..v,) is
determined,  iff  A"'(Converter(P),tv,..v,) is  determined  and
A (Converter(P), tv,..v,) = A" (P, tv,..v,) .

Theorem 3.5. For any program P of form (1) Proc ,(Converter(P))=
= Proc ,(P) for any interpretation algorithm 4 € SNFR.

Proof of Theorem 3.5. Let Converter(P) is the program (3).

It is easy to see, that if (v,...,v,,t)€Proc,(P) or (v,..,v,,t)€E
e Proc ,(Converter(P)), then there exists k>1 such that A'(P,tv,..v,)=t, or
A" (Converter(P), t)v,...v,) =t, respectively. Since the term ¢, is a closed normal
form, then, according to Proposition 3.2, A{‘”(Converter(P), Hv..v) =
= Alk (P, t,v,...v;) . Hence, Proc ,(Converter(P)) = Proc ,(P).

Theorem 3.5 is proved.
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