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The bound states of the electron in a quantum ring in the presence of different 
scalar potentials in two regions are considered. It is shown that the difference of 
scalar potentials lifts the degeneracy connected with the sign of orbital angular 
momentum. The same system with a magnetic flux threading the ring is also 
considered. The possibility of observing the oscillations of energy levels 
connected with the difference of scalar potentials and the intensity of the magnetic 
field that are similar to those of the bound states of the electron in a quantum ring 
threaded only by the magnetic flux is shown.  
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1. Introduction. The original Aharonov–Bohm (AB) effect has a purely 

quantum mechanical nature showing the important role of the vector and scalar 
potentials [1]. Although in the original paper by Aharonov and Bohm [1], the 
electric and magnetic AB effects have been discussed, up to now the majority of 
both theoretical and experimental works done dealt with the magnetic AB effect. 
There are only few experimental verifications [2, 3] of the electric AB effect in 
comparison with the magnetic one. The magnetic bound state AB effect in a 
quantum ring was considered in the review article [4], and it was shown that the 
energy levels of charged particle oscillate with magnetic flux , if the 
particle orbits surround an infinitely long solenoid with small radius , where the 
magnetic field 

2
0r BΦ π=

0r
B  is concentrated. The magnetic AB effect in a quantum ring was 

experimentally verified in mesoscopic metal ring [2], carbon nanotubes [5] and 
doped semiconductor InAs/GaAs nanorings [6].  

The aim of the present work is to consider the quantum ring in the presence 
of different scalar potentials in two regions and describe the motion of the electron 
inside the ring as a plane wave. This setting does not fully represent those 
described in the original work by Aharonov and Bohm for general case, because 
for such a ring the electron interacts with the electric field due to the difference of 
the potentials. The development of this work will be considering a wave packet, 
which moves in a quantum ring with time varying scalar potentials in such a way, 
that the interaction with the electric field is considerably small. 
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2. Theory. Consider a quantum ring that is divided into four regions (Fig. 1, a). 
In two regions (II and IV) there are two different scalar potentials  and , which 
create electric fields in two other regions (I and III)  with 

1V 2V
2σ  arc length (each arc 

having the corresponding  central angle 02ϕ ). 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. The electric quantum ring (the electric fields created by the potentials V1 and V2 exist in the 
regions I and  III  with arc length 2σ):  a) without  magnetic flux;  b) with the magnetic flux (magnetic  

field is parallel to Z-direction). 
 

The appropriate electric fields and scalar potentials in the regions I and III are 
described by the following expressions: 
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Using the obtained expressions for scalar potentials for four regions and solving the 
Schrödinger equation in each region (by introducing the dimensionless units 

BR aρ = , 1 1 Rv V E= , 2 2 Rv V E= , RE Eε = , where  and Ba RE  are effective 
Bohr radius and Rydberg energy respectively), we obtain the following expressions 
for the wave function in each region: 
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                          ( ) ( )4 7 2 8 2( ) exp expC i v C i vΨ ϕ ρ ε ϕ ρ ε= − + − ϕ− ,            (6) 

where ( )Ai ϕ  and ( )Bi ϕ  are linearly independent  Airy functions [7].  
In order to find the energy levels of electron in this system, we should 

impose boundary conditions and the condition of the singlevaluedness on these 
wave functions. The corresponding conditions are: 
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Consider now the same problem in the case when the ring is threaded by a 
magnetic flux (Fig. 1, b) having a smaller radius than the ring (the magnetic field  
B is parallel to the Z-direction). We can make gauge transformation in each region 
and map the problem with magnetic flux to the problem without flux 

                                         
0

( ) ( )expflux i ΦΨ ϕ Ψ ϕ ϕ
Φ

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
,             (8) 

where 0 hc eΦ =  is  a magnetic flux quantum. Using Eq. (3)–(6) and (8) it is easy 
to get the expression for wave functions in each region. Using the same conditions 
as in Eq. (7), we will obtain the energy levels of  electron in the ring for this case. 

3. Results and Discussion. In Fig. 2 the dependences of the electron energy 
in the electric quantum ring on the ring radius R  (a) and scalar potential  (b) are 
presented.  

2V

  
 
 
 
 
 
 

b  
 a  

 
 
 

 
Fig. 2. The electron energy versus the ring radius (a) and the scalar potential  (b). 2V

 
As is seen in Fig. 2, a, the excited energy levels show the dependence on the 

ring radius that is similar to the 21/ R  dependence for 1D quantum ring and only 
the ground state (1) shows different behavior and does not go to infinity when 

. In order to understand this, let us see that the difference of the scalar 
potentials in quantum ring is somehow similar to the 1D quantum well, which 
besides that also has 

0R →

2π  periodicity because of the quantum ring geometry. When 
 the role of the R →∞ 2π periodicity strongly diminishes and the energy levels 

tend to the levels of the single quantum well. When  the quantum ring 0R →
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structure plays more important role, than the existence of the quantum well in it. 
Because of that, in  limit the dependence of energy levels on ring radius is 
described mainly by 

0R →
21/ R  dependence of 1D quantum ring without any scalar 

potentials. But this is not true for the state with 0l =  angular momentum, because 
this state has zero energy in 1D quantum ring without scalar potentials. Because of 
that the ground state (which is the level with 0l = ) in the presence of scalar 
potentials is mainly influenced by the quantum well energy even for . And 
for this reason the ground state tends to a finite value at . It should be noted 
that due to the quantum ring structure the energy tends to half the quantum well 
depth (rather than the full quantum well depth, which is the case for a single 
quantum well).   

0R →
0R →

As is seen in Fig. 2, b, the difference of scalar potentials lifts the degene-
racy of the levels connected with the sign of orbital angular momentum. This is 
similar to the case of magnetic ring, where the magnetic flux also lifts the 
degeneracy of  l . 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.  3.  The dependence of the energy levels on the difference of scalar potentials for different values  

of the magnetic flux:  a)  F=0.2;  b)  F=0.5. 
 

In Fig. 3 the dependences of the energy levels on scalar potential  for 
different values of the magnetic flux parameter 

2V

0F Φ Φ=  are presented. As is 
seen in Fig. 3, the magnetic flux changes the dependence of the energy levels 
dramatically. When  the energy levels are not degenerate, because of the 
lifting of degeneracy by the magnetic flux. But in Fig. 3, b the degeneracy for 

 is again seen and later the difference of scalar potentials again lifts the 
degeneracy. This is easy to understand from the expression of the energy levels for 
a magnetic ring case [4, 8] 

2 0V =

2 0V =

                                                      
2

2
2 ( )

2fluxE l F
mR

= + .    

for  for the third and fourth energy levels. This is somewhat similar to 

                                  (9) 

As is seen from Eq. (9), the energy levels will be degenerate also for cases 
 and  when . And this is the degeneracy observed in Fig. 3, b 

for  case, and further, as in Fig. 2, the difference between scalar potentials 
again lifts this degeneracy. In Fig. 3, b one may observe also another intersection 

l n= 1l n= − − 0.5F =
2 0V =

2 2.953 RV E=

a b 
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the m  case, where the oscillations of the energy levels on magnetic flux 
are observed, although here the oscillations of the degeneracy of the levels are 
observed and not the oscillations of the dependence on the difference of scalar 

potentials. This is due to the fact that 
the electron interacts with the field 
and the energy of the electron should 
increase as the difference of scalar 
potentials is increased. This again 
gives us the reason to consider the 
electric quantum ring with time 
varying scalar potential, where the 
electron (wave packet) does not 
interact with the field and the normal 
oscillations are to be observed. The 
dependence of energy levels on mag-
netic flux shown in Fig. 4 also 
demonstrates the usual oscillations 

seen in case of magnetic ring.   
4. Conclusion. In this work we have shown that electric AB effect in 

quantu

agnetic ring
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Fig.  4.  The  dependence  of  the  energy  levels  on 
magnetic  flux. 

m ring deserves as much interest as the magnetic AB effect. The difference 
of the scalar potentials lifts the degeneracy of the levels, connected with the sign of 
the angular momentum in similar manner as the magnetic flux in the magnetic ring 
case. The investigation of the electric ring with magnetic flux inside has shown that 
magnetic flux changes the dependences of the energy levels dramatically. 
However, the settings of the ring used in this work do not fully demonstrate the 
features of electric AB effect, because the electron interacts with the field. To have 
the full analog of a magnetic ring for the electric AB effect, it is suggested to 
consider a wave packet with time varying scalar potentials, so as small interaction 
with the field be provided. 
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