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Let F be a free associative algebra with a unit, containing a countable 

number of free variables 1 2{ , ,...}T t t  over the field K of characteristic zero. Its 
elements (polynomials) are formal K-linear combinations of different associative 
words (monomials) in the alphabet T with the natural operations of multiplication 
that  turn  it  into a linear K-space [1]. 

Definition 1 [2]. The K-linear subspace L F is called a completely 
invariant K-space (F-module, F-bimodule), if L is invariant under all endomor-
phisms of the free algebra  F, i.e. for any End( ), ( )F L L   .  

Note, that T-ideals [1], linear T-spaces [4] of the free algebra F are examples 
of these spaces. 

Definition 2 [2]. The completely invariant subspace L F  is called a k-
quasi finitely generated K-space (F-module, F-bimodule), if there exists a finite set 
of polynomials 1{ ,..., } ,kf f L such that L as the K-space (as F-module, as F-
bimodule) is generated by the set  1,2,..., , ,if i k S   S being the countable 
symmetric group}. 

Definition 3. The K-linear subspace L F  is called a pMqBM space, if 
1 2L L L  , where L1 is a p-quasi finitely generated F-module, L2 is a q-quasi 

finitely generated F-bimodule. 
Let i i

i
h U  be an associative polynomial, where 1 20, [ , ,..., ]i k

i
g V V V    

is the Lie polynomial (Ui, Vj are arbitrary associative monomials in T); L F  is a 
linear space. 

Condition 1. There exists a Lie polynomial g L , and a completely invariant 
bimodule L L  , such that [ , ]g h L  for some associative polynomial  h  as above. 
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Condition 2. If g L  is a Lie polynomial, then there exists a completely 
invariant bimodule L L   and an associative polynomial h as above such that  
 ,g h L . 

Employing the methods from Refs. [1–3, 5], we prove using some 
combinatorial considerations: 

T h eo r e m.   If L is a completely invariant subspace in F over the field K of 
zero characteristic, satisfying the Condition 1, then L is a pM1BM space. 
Conversely, if L is a completely invariant pMqBM subspace in F with Condition 2, 
then L contains a polynomial 1 2[ , ,..., ]mt t t  for some integer 2m  .  

This Theorem is a generalization of some early results [2, 4, 5]. 
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