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ON BOUNDED OPERATORS IN Z” SPACES
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In the present paper the linear operators that depend on a normal pair of
weight functions {@,w} in the Banach spaces L’(D), where D is the unit disk
in the complex plane, are considered. It is investigated, for which values of p
these operators are bounded.
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Introduction. The paper is devoted to investigation of some linear operators
depending on a normal pair of weight functions in L”(D) spaces. The concept of

a normal pair of weight functions introduced for the first time by Shields and
Williams [1] and was appeared convenient for statement of the estimates of  in-
tegrals and for exposition of projectors in weight spaces. The basic result of paper
is formulated in Theorem 2. The case p =1 is discussed in [1]. Note that the case

of power weight functions is considered in [2] (Chapter 1, § 2, Theorem 1.9).
We use the following notations: D = {z eC: |z| < 1} is the unit disk in the
complex plane C, dA4 is the normalized area measure on D . In terms of real co-

ordinates we have dA(z) = ldx dy = lrdr do, z=x+iy=re"”.
4 /4

We define I”(D,dA) as the set of all functions f that are measurable by
dA in D, for which
» 1/p
171, ={T, U on P 1ddw) | <o, 0<p<oo.
Let the functions ¢(r) and w(r) be positive and continuous on (0,1] with

1
limp(r)=0 and [w(rydr <.
r—> 0

Definition 1. A function @(r) is called normal, if there exist £ >&>0 and
7y <1 such that

o(r) o) A _
Gory N0, dory / (ry<r, r—>1-0). (1)
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Definition 2. The functions {@,y} is called a normal pair, if ¢ is normal
and if for some £ satisfying (1), there exists & > k —1 such that
(M (r)=1-r)*, 0<r<l.
Consider the integral operator

()=, "’(z)"’(w)ﬂ W)dAw). @)

|2+a

We want to establish for which p this operator is bounded.

Auxiliary Lemmas.
Lemma 1. For y>-1 and m >1+y we have

1

1—pr)Y"(1=rY dr<C(1-p)""™, 0<p<l,
[a-p p p
0

where the constant C =C(m,y) does not depend on p. For the proof see [1]

(Chapter 1, § 3).
Lemma 2. Forapositive f>0and ze D

Zf a9 _, 1
o |1—ze ™ [*F (-2 )

For the proof see [3] (Chapter 4, § 6).
Lemma 3. For k-« <£ <1+ ¢ there exist a constant M|, such that
P
) <My
(= w )7 |1 - zw| y(2)(1=|z[")
Proof. According to the definition of a normal pair of functions,
oMy (r)=(~1- r? )* for 0<r<I1 ,and it will be sufficient to show that

P (= WY -z KBRS
Let w=re. As a+1>0, then, due to Lemma 2, there exists a constant C
2z
such that l'a >d0 < ¢ N
o [1—zre™™ |7 A=(z|r))*
Passing to polar coordinates, we receive
o(w) 1t ore(r) F dé
ID B/ p 2+a W)__.[ 2 ﬁ/p.( -0 a+2dr£
(- w?) |1 | A=r)""P 5 |1—zre™ | 3
. Cj o(r) dr<C o(r)
o (=[rY"PA=(zr))* L= A- |z
Divide the last integral into three parts:
j (1) 1 o(r)
o (1=r)"P (=12 G A=r)"P (=] 2] r)*" 4
|z| 1
ﬂ/pgo(r) —dr+ | ﬁ/;p(r) —dr =1, +1,+1,.
B A=r)"(=]z]r) n(1=r)""d=|z]r)



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 2, p. 11-16. 13

Obviously /; is bounded for all z. Therefore, there exists a constant C, such that

I < P(2) (5)

RN CIER L

p(r) 92
(1-r" " (=|z)"

From the definition of normal function (1) we have

1y <r<|z|. Therefore,

; :\j.l o(r) Ij_\ o(r)(1- r)k—(ﬁ'/p) o< o(z) \ZI(l_r)k—(ﬁ’/p)dr

s (l—r)ﬁ/"(l—IZIF)”’+1 n A=) =12 N™ " (=] 2" =]z )™
14

As k—a<ﬁ<1+5, then k—£<a and —1<5—£<k——, that is
p p p p

—l<k- s < a, and taking into account Lemma 1 we have
p

2l (1 — ;\k=(B/p) L1 _ \k=(B/p)
4= —dr < d=r) —dr < G, l/ —
o A=1z]r)* o (=lz]r)* (1= | z )/
for some constant C,. Therefore,
p(x) FA=n"  e2) G o(2)
(=) 5 A=z (=] 2" A=zt T T =] 2 )P
o) __9(2)
- (=|z)°
/ _j o(r) f o)1=
S PP R P
|2 |2
pz) tA=n T p(z) tA=n T
(=12 G (A=lz)"" " (A=]z)"p (=] z[r)*"
B B B

We have also k—a <—<1+¢, therefore, e——>-1 and e¢—-a<k—-a<—, ie.
p p p

.(6)

>

Now we shall pass to /5. As for |z|<r<1,then

a+l>l+¢ s . Again using Lemma 1 we get
P

1 (1 _ r)g—(ﬂ/P) 1
r < s
o (=] z| )= (F]) i

whence we have

o(z) HA=r) I o) p(2) ,

I a+1 5 (Blp)y+a — 76 2N\(B/p)+a ( )
(A=lz)* o (A=|z|r) (=[z]) =]z
with some constants Cy and C;. Combining the obtained results (3)—(7), we get
the constant M|, such that
p(w) o(z) 1
—dA(w) <M — =M
b 3PP = el "= [zPYPP T @)= 2 PP

3
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for k—a<£<1+g.

p
The Lemma is proved.
Lemma 4. Let —¢< s <a+1-k . There exists a constant M, such that
q
1
Jy—— 2O )< m, .
(A=[ 2?7 [1-zw| p(w)(A=[w[")

Proof. For 0<r<1 we have o(r)y(r)=(1 —7? )*. Therefore, it is neces-
sary to prove that
(1_ z 2\a—(B/p) 1
D Caue < m, T
p(w)(1=[w[)

P p(2)|1-zin]

for any constant M, . Let z=re”. Then

1_ 2Na—(f1p) 1 1 1— 2Na—(B/p) 2n de
e R e I ot
¢(Z)|1—Zw| ) @(r) o [1—wre” |
and, due to Lemma 2, there exists a constant K, such that
1 _2\a—~(B/p) 2% 1 _2\a—(B/p) 2%
ljr(l r) d@ﬂ i _ljr(l r) d¢9'€ _dr <
Ty o(r) o [1=wre” | Ty o(r) o [1—wre™ "
1 _2\a=(B/p) 1 _\a=(B/p)
SKl (1 a ) 2\a+l drSKZJ- (1 r) ar
o p(MA=(w[r)?) o p(r)1=|w|r)

(we have replaced (1-r%) by (1-r) and (1-(w]|r)?) by (1—|w|r), therefore,
the value of K, was replaced by some other value of K, ). Dividing the last inte-

gral into three parts, we obtain
1 (1 _ r)fl—(ﬂ/P) . ) (1 _ r)fl—(ﬁ/P)

J

V= r+
o o(r)(1=|w|r)*! o @(r)(1=|w|r)*
Wi (1 _ r)a—(ﬁ/P) 1 (1 _ r)a—(ﬂ/p)

+.[ a+l r+
» r)(A=|w|r) w @)1= w[r)
Integral J, is bounded for all w, therefore, there is K such that
J; < s NI
pw)(1-|wl")

dr=J,+J,+J;.

a+l

®)

(1-r)° < (1= w])
o(r) p(w)

From the definition of normal function (1) we have

1y <r <|w|. Therefore,
J _\]V\ (1_r)a*(ﬂ/p) r_\WI (l_r)f(l_r)a*(ﬂ/p)*&‘
2~ a - a
o (1= w| ) ;o= w|r)!
_ & wl 1 _n\a—(B/p)-¢ . e 11 _ . ne—(B/p)-e
(=l A=y Ol =)

pw) o (=[w|r)™ —  pw) o (=w[r)*"
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As —g<£<a+1—k, then a—é—g>a—£—k>—l and a+1>a—£—g+1.
q q q q

1— r)a—(ﬂ/p)—s

- e WS K ——
(=|w[r) (=[wl)
J. < (A=[w]? . K, K, < Ks

1
Using Lemma 1 we obtain j( and, therefore,
0

< — = < )
e (=|w)TIP o) A= W) T p(w)(i= | w)
Y _ k
For estimation of J; we use the inequality a=r) < (U=wD ,if jwlkr<1.
o(r) p(w)
I _\a-(BIp) L — Ve (1 — o\ (B Pk
J3= n ardr= I = Con) a+l
i @) (A= w|r) o e)d=lwlr)
Al A=n)™ (el A
pw) y A=|w[r)* pw) o (=|w[r)*
From —g<£<a+1—k we have a—k—£>—1 and a—k—£+1<a—g—£+1<a+l.
q q q q

1 (1 _ r)a—(ﬂ/p)—k 1
Taking into account Lemma 1 we get J ——dr < Kéw for
o (I=|w|r) (A=fw) 7P
a constant K . Therefore,
(1= W|)k K K L
S < ' Bp) By = 2\Blp
p(w)  (I=|w)) p(w)(1=|wl) pw)(1=|w[")

Combining the obtained inequalities (7)—(10) for J,, J, and J;, we get the con-

v(2) 1
e U= Wy

(10)

stant M, such that ID
(=127 |1 - ziw|

The Lemma is proved.
TheMain Result. The following Schur test is a useful tool for estima-

tion of 7.
Theorem 1 (Schur test). Suppose (X,u) is a measure space, 1< p <o,

1 1 . . .
and —+—=1. For a nonnegative kernel H(x,y) consider the integral operator
P 9

(I)() = [, Hexe ) f () ().
If there exist a positive function # on X and a positive constant C such that
[ H e )h(0)! d p(y) < Ch(x)*
for almost all xe X and
[ H (e, »)h(x)" d pu(x) < Ch(y)”
for almost all y € X, then the operator 7 is bounded on L7 (X, 1) with ||T || <C.
Theorem 2. For p(k—a)<] the integral operator (2) is bounded in 17 (D,dA).
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Proof. According to the Schur test, it would be sufficient to find an ap-
proximation function %, for which the inequalities

[ VPO 444 (w) < Mi(z)"

|1 |2+a
and
[ ‘/’(Z)‘”%) h(z)?dA(z) < Mh(w)?
7| =)
are fulfilled. We find the function %, having A(z) =+/ form. That is,
(=|z )"

we should prove that

p(w) 1
jD(| -z I““dA(W)SMw(z)(l—w)ﬂ/P b

and

w(2) !
ID(l Y7 1=z T Y @

According to Lemmas 3 and 4, the inequalities (11) and (12) are valid under

£<l+g, —e<P cqv1-k. Here M =max{M,,M,}.

p q

the conditions &k —a <

Taking into account that g = Ll we rewrite these conditions as
p-

(k—a)p<B<(+e)p, -eL<p<(@+i-k)-L-
p-1 p—1
It is only necessary to establish, at what values of p the intersection of intervals
((k=a)p, (+o)p), |-, (@+1-)-L-
p—1 p—1

is nonempty. As p >1, hence always —8% <(1+¢&)p . Therefore, it is necessary

to clarify when (a+1- k)L1 >(k—a)p. From this inequality we obtain

p(k—a)<1. That is why for p(k —a) <1 the operator (2) is bounded in 17 (D,dA).
The Theorem is proved.
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