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Let   be a bounded domain with smooth boundary . 

Consider the first order differential expression     
,nQ R⊂ 2,n ≥ 1Q C∂ ∈

( ( ), ( )) div( ( ) ( )) ( ) ( ),Tu b x u x c x u x d x u x≡ ∇ − +     1
2 ( ),u W Q∈

with coefficients (1) ( )( ) ( ( ),..., ( )),nb x b x b x=  (1) ( )( ) ( ( ),..., ( ))nc x c x c x=  and  that 
are measurable and bounded on each strong inner subdomain of the domain  . 

( )d x
Q

For an arbitrary   define  1
2, (u v W Q∈ )

, (( ( ), ( )) ( ) ( ( ) ( ), ( )) ( ) ( ) ( ))
Q

Tu v b x u x v x c x u x v x d x u x v x d〈 〉 ≡ ∇ + ∇ +∫ x ,  . 1
2 ( )v W Q∈

Assume that the coefficients ( ),b x  ( )c x  and  satisfy the conditions      ( )d x

1( )
( )

b x O
r x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 as ,              ( ) 0r x →

where   is the distance of a point ( )r x Qx∈  from  the boundary Q∂ , 

  2

0
( )tC t dt < ∞∫    with  

( )
( ) sup ( )

r x t
C t c x

≥
= ,      

  3 2

0
( )t D t dt < ∞∫  with 

( )
( ) sup ( )

r x t
D t d x

≥
= .    

In [1] it was shown that T  is a bounded linear operator from   into 

. The aim of this article is to obtain conditions on coefficients 

1
2 ( )W Q

1
2 ( )W Q− ( ), ( )b x c x  
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and , for which T  is a linear compact operator from  into . 
This property has important applications in studying the solvability of the problems 
of mathematical physics, see, for example, [2, 3].      

( )d x 1
2 ( )W Q 1

2 ( )W Q−

We prove the below theorem. 
Theo r em .   Let the below conditions hold 

                                           1( )
( )

b x o
r x

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 as ,                                     (1) ( ) 0r x →

and there exist  monotone functions ( ) 0i tω →  , as , 0t →+ 1,2i = , such that 

                                 
2

1

tC
ω0

( )
( )

t dt
t

, where 
( )

( ) sup ( )
r x t

C t c x
≥

= ,                              (2) < ∞∫

                                 
3 2

0 2

( )
( )

t D t dt
tω

< ∞∫ , where 
( )

( ) sup ( )
r x t

D t d
≥

= x .                           (3) 

Then the operator T  is a compact linear operator from   into . 1
2 ( )W Q 1

2 ( )W Q−

Proof of Theorem.  We shall follow the scheme of proof of the theorem from [1].  
Let 0x Q∈∂  be an arbitrary point of the boundary Q∂  of the domain   

and 
Q

( ', )nx x  be a local coordinate system with the origin  0x  and the   
directed along the inner normal 

axisnx
0( )xν  to Q∂  at the point 0x . Since 1Q C∂ ∈ , there 

exists a positive number   and a function 0 0xr > 0
1 1( n

x C Rϕ )−∈  with properties 

0 (0) 0xϕ = , 0 (0) 0xϕ∇ =  and 0

1( ')
2x xϕ∇ ≤  for all 1' nx R −∈ , 

such that the intersection of the domain Q  with the ball 0
00

( ) 0{ :| | }x
r

xx
U x x x r= − <  of 

radius 0xr  and the centre 0x  has the form  . 

Then  ∂ = . Let 

0 0
00 0

( ) ( )
{( ', ) : ( ')}x x

r r
n n xx x

Q U U x x x xϕ= >∩ ∩

0 0
00 0

( ) ( )
{( ', ) : ( ')}x x

r r
n nx xx x

Q U U x x xϕ=∩ ∩ 0

0 2
x

x

r
l = .  From the cove-

ring 0
0

( ) 0{ ,x
l

x
U x Q}∈∂  of the boundary Q∂  select a finite subcovering , 

. Denote for simplicity   by , 

( )mx
m

l

x
U

1,...,m = p
( )mx

m

l

x
U mU mxr  by ,  mr mxl  by ,  ml mxϕ  by 

mϕ ,  . Set 1,...,m p= 1
1 2 2 min( ,..., )
3 25 ph
⎛ ⎞

= −⎜ ⎟⎜ ⎟
⎝ ⎠

r r . Then each of the curvilinear 

“cylinders “ , {( ', ) :| ' | , ( ') ( ') }ml h
m n m m n mx x x l x x x hϕ ϕ∏ = < < < + , 1,...,m p= , 

is contained in the corresponding ball , and also by  (recall that ( 'mU mU ∩Q )nx x,  
are  the coordinates of a point in a local system of coordinates with origin at mx ). 
Let  be such a positive number that the complement of the domain 

 in Q  is contained in the union of the 

“cylinders” , ,  i.e. . 

0l h<

0 0{ : ( ) dist( , )lQ x Q r x x Q l= ∈ = ∂ > }

hQ r x x Q l
=

= ∂ ≤ ⊂ ∏∪,ml h
m∏ 1,...,m p= 0 ,

0
1

{ : ( ) dist( , ) } m
p

l l
m

m
Q x= ∈
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Easily verified that for all , ,( ', ) ml h
n mx x x= ∈Π 1,..., ,m p=   

5( ) ( ') ( )
2n mr x x x r xϕ≤ − ≤ . 

We fix an index  ,m 1 m p≤ ≤ , and take a local coordinate system with 
origin at mx .  

Now define mappings  and L 1L−  of the space nR  onto itself by relations 
( ) ( ', ( '))n mL x x x xϕ= − , where ( ', )nx x x=  and 1( ) ( ', ( '))n mL y y y yϕ− = +  with 

. The image of  under the mapping  will be denoted by :  
.  

( ', )ny y y= ,ml h
m∏ L ,ml h

m∏
, ,( )m ml h l h

m mL ∏ =∏
Consider the sequence of operators 

( ( ), ( )) div( ( ) ( )) ( ) ( ),k k k kT u b x u x c x u x d x u x= ∇ − +       1
2 ( ),u W Q∈ 1,2,...k =

1( ), if ( ) ,
( )

10, if ( ) ,
k

b x r x
kb x

r x
k

⎧ >⎪⎪= ⎨
⎪ ≤
⎪⎩

 

1( ), if ( ) ,
( )

10, if ( ) ,
k

c x r x
kc x

r x
k

⎧ >⎪⎪= ⎨
⎪ ≤
⎪⎩

 

1( ), if ( ) ,
( )

10, if ( ) .
k

d x r x
kd x

r x
k

⎧ >⎪⎪= ⎨
⎪ ≤
⎪⎩

 

It can be readily verified that the operator  is a compact linear operator from 

 into . Indeed, let { (  be a bounded set in . Then sets 

kT

1
2 ( )W Q 1

2 ( )W Q− )}w x 1
2 ( )W Q

{( ( ), ( ))}kb x w x∇ , { ( ) ( )}kc x w x  and {  are bounded in  and by 

that are compact in  (see, for example, [4]). Hence, for the proof of the 
theorem it is sufficient to show that 

( ) ( )}kd x w x 2 ( )L Q

1
2 ( )W Q−

0kT T− →  as . k →∞

Without loss of generality we suggest that 
0

1k
l

>  and functions 1( )tω , 

2 ( )tω  are positive. In view of (1) there exists a monotone function ( ) 0tε → , as 

, such that 0t →+
( ( ))( )

( )
r xb x

r x
ε

≤ . For   and   consider 1
2 ( )u W Q∈ 0 ( )C Qη ∞∈

( )
1/

( ) , ( ( ), ( )) ( ) ( ( ) ( ), ( )) ( ) ( ) ( )
k

k
Q

T T u b x u x x c x u x x d x u x x dxη η η− = ∇ + ∇ +∫ η . 

Denote ( ', ( ')) ( )nu y y y u yϕ+ = ,  ( ', ( ')) ( )ny y y yη ϕ η+ = . 
Due to (1), (2) and (3), we have 

1/

1/ 1/

1/

1/2
1 1/2

1

1/2
2 1/2

2

( ( )) ( ) ( )
( ) , ( ( )) ( ) ( ) ( ( )) ( ) ( )

( )

( ) ( )1 1 ( ( )) ( ) ( )
( ) ( ( ))

1 ( ( )) ( ) ( )
( ( ))

k

k k

k

k
Q

Q Q

Q

r x u x x
T T u C r x u x x D r x u x x dx

r x

u x x C r xdx u x x dx
k r x k r x

D r x u x x
k r x

ε η
η η

η
ε ω η

ω

ω η
ω

⎛ ⎞∇
− ≤ + ∇ +⎜ ⎟

⎝ ⎠
∇⎛ ⎞ ⎛ ⎞≤ + ∇ +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

∫

∫ ∫

.dx∫

η ≤

(4) 
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Let us estimate   

1/ 0
1

( ) ( ) ( ) ( )
( ) ( )k lQ Q

u x x u x x
I dx dx ≤

r x r x
η η∇ ∇

= ≤∫ ∫
,1

( ) ( )
( )l hm

m

p

m

u x x
dx

r x
η

= ∏

∇
∑ ∫ . 

In view of the Hardy inequality (see, for example, [5]) for   the 
following estimate holds: 

1,...,m p=

, , , ,

1/2 1/2
2

2
2

( ) ( ) ( ) ( )5 5 ( )
( ) 2 2l h l h l h l hm m m m

m m m mn n

u x x u y y ydx dy u y dy dy
r x y y

η η η

∏ ∏ ∏ ∏

⎛ ⎞ ⎛∇ ∇
⎜ ⎟ ⎜≤ ≤ ∇
⎜ ⎟ ⎜
⎝ ⎠ ⎝

∫ ∫ ∫ ∫
( ) ⎞

⎟ ≤
⎟
⎠

 

1 1
2 2, ,

1/ 2 1/ 2
2

2
2 ( ) ( )
( )5 ( ) const

l h l hm m
m m

W Q W Q
n

yu x dx dy u
y

η η
∏ ∏

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟≤ ∇ ≤
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
∫ ∫ . 

Thus,  
                                                  1 1

2 2
1 ( ) ( )const W Q W QI u η≤ ,                                    (5) 

where the constant does not depend on  and u η .                  

Next  
1/ 0

2 1 1/ 2
12

1

( ( )) ( ( ))( ) ( ) ( ) ( )
( ( ))

( ( ))
k lQ Q

C r x C r xI u x x dx u x
r x

r x
η η

ω
ω

x dx= ∇ ≤ ∇ ≤∫ ∫  

,
1/ 2

1 1

( ( )) ( ) ( )
( ( ))l hm

m

p

m

C r x u x x dx
r x

η
ω= ∏

≤ ∇∑ ∫ . 

For  we have  1,...,m = p

1
2, ,

1/ 2
2

2
1/ 2 ( )

11

( ( )) ( ( ))( ) ( ) ( )
( ( ))( ( ))l h l hm m

m m

W Q
C r x C r xu x x dx u x dx

r xr x
η η

ωω∏ ∏

⎛ ⎞
⎜ ⎟∇ ≤
⎜ ⎟
⎝ ⎠

∫ ∫ ≤  

1 1
2 2, ,

1/2 1/2
2 2

22
( ) ( )

0
1 1

2 2
5 5( ) ( ', )

2 2
5 5

n

l h l hm m
m m

n n y

nW Q W Q

n n

C y C y
u y dy y u y d dy

y y
η τ

ω ω∏ ∏

⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟ ⎜ ⎟≤ ≤ ∇
⎜ ⎟ ⎜ ⎟⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

∫ ∫ ∫ τ η ≤

1
2

1/ 2
2

2
( )

0 ' 0
1

2
5 ' ( ', )

2
5

m

nh h

n n W Q
y l

n

C y
dy y dy d u y

y
τ τ η

ω <

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≤ ∇
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ ∫ ∫ ≤  

1/ 2

1 1
2 2

2

( ) ( )
0

1

2
52

2
5

nh

n n W Q W Q

n

C y
y dy u

y
η

ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≤
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ . 

Thus, we get  
                                                 1 1

2 2
2 ( ) ( )const W Q W QI u η≤ ,                                     (6) 

where the constant does not depend on  and u η .                  
Similarly we obtain 
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1/ ,0
3 1/2 1/2 1/2

12 2 2

( ( )) ( ( )) ( ( ))( ) ( ) ( ) ( ) ( ) ( ) .
( ( )) ( ( )) ( ( ))k l l hm

m

p

mQ Q

D r x D r x D r xI u x x dx u x x dx u x
r x r x r x

η η
ω ω ω= ∏

= ≤ ≤∑∫ ∫ ∫ x dxη

p

 

Finally, for  we get 1,...,m =

, ,
1 / 2

1/ 22
2

2
( ( )) 5( ) ( ) ( ) ( )

2( ( ))
5

l h l hm m
m m

n

n

D y
D r x u x x dx u y y dy

r x y
η η

ω ω∏ ∏

⎛ ⎞
⎜ ⎟
⎝ ⎠≤ ≤
⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫  

, ,

1/ 2
2 1/ 2

2
2 2

2

2

2
( )5 ( )

2
5

l h l hm m
m m

n

n
n

n

D y
yy u y dy dy

yy

η

ω∏ ∏

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠⎜ ⎟ ⎜ ⎟≤ ≤

⎜ ⎟⎜ ⎟⎛ ⎞ ⎝ ⎠⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

∫ ∫  

1
2,

1/ 2
2

23
( )

0
2

2
5const ( ', )

2
5

n

l hm
m

n y

n W Q

n

D y
y u y d dy

y
τ τ η

ω∏

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≤ ∇
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ ∫ ≤  

1 1
2 2

1/ 2
2

3
( ) ( )

0
2

2
5const

2
5

nh

n n W Q W Q

n

D y
y dy u

y
η

ω

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎜ ⎟≤
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠

∫ . 

Thus, 
                                                1 1

2 2
3 ( ) ( )const W Q W QI u η≤ ,                                      (7) 

where the constant does not depend on u  and η .  From (4)–(7) we obtain the estimate  

1 1
2 2

1/ 2 1/ 2
1 2 ( ) ( )

1 1 1( ) , constk W Q W QT T u u
k k k

η ε ω ω η⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ≤ + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

, 

where the constant does not depend on  and u η .   

From this it immediately follows that  1/ 2 1/ 2
1 2

1 1constkT T
k k

ε ω ω⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− ≤ + +⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠

1
k

 

and  consequently 0kT T− →  as .  The Theorem is proved. k →∞
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