ON COMPACTNESS OF A CLASS OF FIRST ORDER LINEAR DIFFERENTIAL OPERATORS

V. Zh. DUMANYAN*

Chair of Numerical Analysis and Mathematical Modeling, YSU

In the present article a class of first order linear differential operators with unbounded coefficients is investigated. The compactness of operators is proved.

Keywords: bounded differential operator, compact differential operator, first order differential operator.

Let $Q \subset R^{n}, n \geq 2$, be a bounded domain with smooth boundary $\partial Q \in C^{1}$. Consider the first order differential expression

$$
T u \equiv(\bar{b}(x), \nabla u(x))-\operatorname{div}(\bar{c}(x) u(x))+d(x) u(x), \quad u \in \dot{W}_{2}^{1}(Q)
$$

with coefficients $\bar{b}(x)=\left(b^{(1)}(x), \ldots, b^{(n)}(x)\right), \bar{c}(x)=\left(c^{(1)}(x), \ldots, c^{(n)}(x)\right)$ and $d(x)$ that are measurable and bounded on each strong inner subdomain of the domain Q.

For an arbitrary $u, v \in W_{2}^{1}(Q)$ define

$$
\langle T u, v\rangle \equiv \int_{Q}((\bar{b}(x), \nabla u(x)) v(x)+(\bar{c}(x) u(x), \nabla v(x))+d(x) u(x) v(x)) d x, \quad v \in \dot{W}_{2}^{1}(Q)
$$

Assume that the coefficients $\bar{b}(x), \bar{c}(x)$ and $d(x)$ satisfy the conditions

$$
|\bar{b}(x)|=O\left(\frac{1}{r(x)}\right) \text { as } r(x) \rightarrow 0
$$

where $r(x)$ is the distance of a point $x \in Q$ from the boundary ∂Q,

$$
\begin{aligned}
& \int_{0} t C^{2}(t) d t<\infty \quad \text { with } \quad C(t)=\sup _{r(x) \geq t}|\bar{c}(x)| \\
& \int_{0} t^{3} D^{2}(t) d t<\infty \text { with } D(t)=\sup _{r(x) \geq t}|d(x)|
\end{aligned}
$$

In [1] it was shown that T is a bounded linear operator from $W_{2}^{1}(Q)$ into $W_{2}^{-1}(Q)$. The aim of this article is to obtain conditions on coefficients $\bar{b}(x), \bar{c}(x)$

[^0]and $d(x)$, for which T is a linear compact operator from $\stackrel{\circ}{W}_{2}^{1}(Q)$ into ${ }_{W_{2}^{-1}}^{\circ}(Q)$. This property has important applications in studying the solvability of the problems of mathematical physics, see, for example, [2, 3].
We prove the below theorem.
Theorem. Let the below conditions hold
\[

$$
\begin{equation*}
|\bar{b}(x)|=o\left(\frac{1}{r(x)}\right) \text { as } r(x) \rightarrow 0 \tag{1}
\end{equation*}
$$

\]

and there exist monotone functions $\omega_{i}(t) \rightarrow 0$, as $t \rightarrow+0, i=1,2$, such that

$$
\begin{align*}
& \int_{0} \frac{t C^{2}(t)}{\omega_{1}(t)} d t<\infty, \text { where } C(t)=\sup _{r(x) \geq t}|\bar{c}(x)| \tag{2}\\
& \int_{0} \frac{t^{3} D^{2}(t)}{\omega_{2}(t)} d t<\infty, \text { where } D(t)=\sup _{r(x) \geq t}|d(x)| . \tag{3}
\end{align*}
$$

Then the operator T is a compact linear operator from $\dot{W}_{2}^{1}(Q)$ into $\dot{W}_{2}^{-1}(Q)$.
Proof of Theorem. We shall follow the scheme of proof of the theorem from [1].
Let $x^{0} \in \partial Q$ be an arbitrary point of the boundary ∂Q of the domain Q and $\left(x^{\prime}, x_{n}\right)$ be a local coordinate system with the origin x^{0} and the x_{n} axis directed along the inner normal $v\left(x^{0}\right)$ to ∂Q at the point x^{0}. Since $\partial Q \in C^{1}$, there exists a positive number $r_{x^{0}}>0$ and a function $\varphi_{x^{0}} \in C^{1}\left(R^{n-1}\right)$ with properties

$$
\varphi_{x^{0}}(0)=0, \nabla \varphi_{x^{0}}(0)=0 \text { and }\left|\nabla \varphi_{x^{0}}\left(x^{\prime}\right)\right| \leq \frac{1}{2} \text { for all } x^{\prime} \in R^{n-1}
$$

such that the intersection of the domain Q with the ball $U_{x^{0}}^{\left(r_{x^{0}}\right)}=\left\{x:\left|x-x^{0}\right|<r_{x^{0}}\right\}$ of radius $r_{x^{0}}$ and the centre x^{0} has the form $Q \bigcap U_{x^{0}}^{\left(r_{x^{0}}\right)}=U_{x^{0}}^{\left(r_{x^{0}}\right)} \bigcap\left\{\left(x^{\prime}, x_{n}\right): x_{n}>\varphi_{x^{0}}\left(x^{\prime}\right)\right\}$. Then $\partial Q \bigcap U_{x^{0}}^{\left(r_{x^{0}}\right)}=U_{x^{0^{0}}}^{\left(r_{0^{0}}\right)} \bigcap\left\{\left(x^{\prime}, x_{n}\right): x_{n}=\varphi_{x^{0}}\left(x^{\prime}\right)\right\}$. Let $l_{x_{0}}=\frac{r_{x_{0}}}{\sqrt{2}}$. From the covering $\left\{U_{x^{0}}^{\left(l_{x^{0}}\right)}, x^{0} \in \partial Q\right\}$ of the boundary ∂Q select a finite subcovering $U_{x^{m}}^{\left(l_{l^{m}}\right)}$, $m=1, \ldots, p$. Denote for simplicity $U_{x^{m}}^{\left(l_{x^{m}}\right)}$ by $U_{m}, r_{x^{m}}$ by $r_{m}, l_{x^{m}}$ by $l_{m}, \varphi_{x^{m}}$ by $\varphi_{m}, \quad m=1, \ldots, p$. Set $h=\frac{1}{3}\left(\frac{2}{\sqrt{5}}-\frac{\sqrt{2}}{2}\right) \min \left(r_{1}, \ldots, r_{p}\right)$. Then each of the curvilinear "cylinders" $\prod_{m}^{l_{m}, h}=\left\{\left(x^{\prime}, x_{n}\right):\left|x^{\prime}\right|<l_{m}, \varphi_{m}\left(x^{\prime}\right)<x_{n}<\varphi_{m}\left(x^{\prime}\right)+h\right\}, m=1, \ldots, p$, is contained in the corresponding ball U_{m}, and also by $U_{m} \cap Q$ (recall that (x^{\prime}, x_{n}) are the coordinates of a point in a local system of coordinates with origin at x^{m}). Let $l_{0}<h$ be such a positive number that the complement of the domain $Q_{l_{0}}=\left\{x \in Q: r(x)=\operatorname{dist}(x, \partial Q)>l_{0}\right\} \quad$ in Q is contained in the union of the "cylinders" $\prod_{m}^{l_{m}, h}, m=1, \ldots, p$, i.e. $Q^{l_{0}}=\left\{x \in Q: r(x)=\operatorname{dist}(x, \partial Q) \leq l_{0}\right\} \subset \bigcup_{m=1}^{p} \prod_{m}^{l_{m}, h}$.

Easily verified that for all $x=\left(x^{\prime}, x_{n}\right) \in \prod_{m}^{l_{m}, h}, m=1, \ldots, p$,

$$
r(x) \leq x_{n}-\varphi_{m}\left(x^{\prime}\right) \leq \frac{\sqrt{5}}{2} r(x) .
$$

We fix an index $m, 1 \leq m \leq p$, and take a local coordinate system with origin at x^{m}.

Now define mappings L and L_{-1} of the space R^{n} onto itself by relations $L(x)=\left(x^{\prime}, x_{n}-\varphi_{m}\left(x^{\prime}\right)\right)$, where $x=\left(x^{\prime}, x_{n}\right)$ and $L_{-1}(y)=\left(y^{\prime}, y_{n}+\varphi_{m}\left(y^{\prime}\right)\right)$ with $y=\left(y^{\prime}, y_{n}\right)$. The image of $\prod_{m}^{l_{m}, h}$ under the mapping L will be denoted by $\tilde{\Pi}_{m}^{l_{m}, h}$: $L\left(\tilde{\Pi}_{m}^{l_{m}, h}\right)=\tilde{\Pi}_{m}^{l_{m}, h}$.

Consider the sequence of operators

$$
\begin{gathered}
T_{k} u=\left(\bar{b}_{k}(x), \nabla u(x)\right)-\operatorname{div}\left(\bar{c}_{k}(x) u(x)\right)+d_{k}(x) u(x), \quad u \in W_{2}^{1}(Q), \quad k=1,2, \ldots \\
\bar{b}_{k}(x)=\left\{\begin{array}{l}
\bar{b}(x), \text { if } r(x)>\frac{1}{k}, \\
0, \text { if } r(x) \leq \frac{1}{k},
\end{array} \quad \bar{c}_{k}(x)=\left\{\begin{array}{l}
\bar{c}(x), \text { if } r(x)>\frac{1}{k}, \\
0, \text { if } r(x) \leq \frac{1}{k},
\end{array} \quad d_{k}(x)=\left\{\begin{array}{l}
d(x), \text { if } r(x)>\frac{1}{k}, \\
0, \text { if } r(x) \leq \frac{1}{k} .
\end{array}\right.\right.\right.
\end{gathered}
$$

It can be readily verified that the operator T_{k} is a compact linear operator from $\dot{W}_{2}^{1}(Q)$ into $\dot{W}_{2}^{-1}(Q)$. Indeed, let $\{w(x)\}$ be a bounded set in $\dot{\circ}_{2}^{1}(Q)$. Then sets $\left\{\left(\bar{b}_{k}(x), \nabla w(x)\right)\right\},\left\{\bar{c}_{k}(x) w(x)\right\}$ and $\left\{d_{k}(x) w(x)\right\}$ are bounded in $L_{2}(Q)$ and by that are compact in $W_{2}^{-1}(Q)$ (see, for example, [4]). Hence, for the proof of the theorem it is sufficient to show that $\left\|T-T_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$.

Without loss of generality we suggest that $k>\frac{1}{l_{0}}$ and functions $\omega_{1}(t)$, $\omega_{2}(t)$ are positive. In view of (1) there exists a monotone function $\varepsilon(t) \rightarrow 0$, as $t \rightarrow+0$, such that $|\bar{b}(x)| \leq \frac{\varepsilon(r(x))}{r(x)}$. For $u \in \dot{W_{2}^{1}}(Q)$ and $\eta \in C_{0}^{\infty}(Q)$ consider

$$
\left\langle\left(T-T_{k}\right) u, \eta\right\rangle=\int_{Q^{1 / k}}((\bar{b}(x), \nabla u(x)) \eta(x)+(\bar{c}(x) u(x), \nabla \eta(x))+d(x) u(x) \eta(x)) d x .
$$

Denote $u\left(y^{\prime}, y_{n}+\varphi\left(y^{\prime}\right)\right)=\tilde{u}(y), \quad \eta\left(y^{\prime}, y_{n}+\varphi\left(y^{\prime}\right)\right)=\tilde{\eta}(y)$.
Due to (1), (2) and (3), we have

$$
\begin{align*}
& \left|\left\langle\left(T-T_{k}\right) u, \eta\right\rangle\right| \leq \int_{Q^{\prime / k}}\left(\frac{\varepsilon(r(x))|\nabla u(x)||\eta(x)|}{r(x)}+C(r(x))|u(x)||\nabla \eta(x)|+D(r(x))|u(x)||\eta(x)|\right) d x \leq \\
& \leq \varepsilon\left(\frac{1}{k}\right) \int_{Q^{1 / k}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} d x+\omega_{1}^{1 / 2}\left(\frac{1}{k}\right) \int_{Q^{\prime / k}} \frac{C(r(x))}{Q_{1}^{1 / 2}(r(x))}|u(x)||\nabla \eta(x)| d x+ \tag{4}\\
& \left.+\omega_{2}^{1 / 2}\left(\frac{1}{k}\right) \int_{Q^{1 / k}} \frac{D(r(x))}{\omega_{2}^{1 / 2}(r(x))}|u(x)| \eta(x) \right\rvert\, d x .
\end{align*}
$$

Let us estimate

$$
I_{1}=\int_{Q^{1 / k}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} d x \leq \int_{Q^{t_{0}}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} d x \leq \sum_{m=1}^{p} \int_{\prod_{m}^{m, n}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} d x
$$

In view of the Hardy inequality (see, for example, [5]) for $m=1, \ldots, p$ the following estimate holds:

$$
\begin{gathered}
\int_{\Pi_{m}^{l_{m}, h}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} d x \leq \sqrt{\frac{5}{2}} \int_{\tilde{\Pi}_{m}^{l_{m}^{m}, h}} \frac{|\nabla \tilde{u}(y)||\tilde{\eta}(y)|}{y_{n}} d y \leq \sqrt{\frac{5}{2}}\left(\int_{\tilde{\Pi}_{m}^{m, h}}|\nabla \tilde{u}(y)|^{2} d y\right)^{1 / 2}\left(\int_{\tilde{\Pi}_{m}^{l, h}} \frac{\tilde{\eta}^{2}(y)}{y_{n}^{2}} d y\right)^{1 / 2} \leq \\
\quad \leq \sqrt{5}\left(\int_{\Pi_{m}^{l_{m}, h}}|\nabla u(x)|^{2} d x\right)^{1 / 2}\left(\int_{\tilde{\Pi}_{m}^{l_{m}, h}} \frac{\tilde{\eta}^{2}(y)}{y_{n}^{2}} d y\right)^{1 / 2} \leq \operatorname{const}\|u\|_{W_{2}^{1}(Q)}^{\circ}\|\eta\|_{W_{2}^{1}(Q)}^{\circ} .
\end{gathered}
$$

Thus,

$$
\begin{equation*}
I_{1} \leq \mathrm{const}\|u\|_{W_{2}^{1}(Q)}^{\circ}\|\eta\|_{W_{2}^{1}(Q)}^{\circ}, \tag{5}
\end{equation*}
$$

where the constant does not depend on u and η.

$$
\begin{gathered}
\text { Next } I_{2}=\int_{Q^{1 / k}} \frac{C(r(x))}{\omega_{1}^{\frac{1}{2}}(r(x))}|u(x)||\nabla \eta(x)| d x \leq \int_{Q^{L_{0}}} \frac{C(r(x))}{\omega_{1}^{1 / 2}(r(x))}|u(x)||\nabla \eta(x)| d x \leq \\
\quad \leq \sum_{m=1}^{p} \int_{\Pi_{m}^{l_{m}, h}} \frac{C(r(x))}{\omega_{1}^{1 / 2}(r(x))}|u(x)||\nabla \eta(x)| d x .
\end{gathered}
$$

For $m=1, \ldots, p$ we have

$$
\begin{aligned}
& \int_{\Pi_{m}^{m, n}} \frac{C(r(x))}{\omega_{1}^{1 / 2}(r(x))}\left|u(x)\left\|\nabla \eta(x) \left\lvert\, d x \leq\left(\int_{\Pi_{m}^{m, n}} \frac{C^{2}(r(x))}{\omega_{1}(r(x))} u^{2}(x) d x\right)^{1 / 2}\right.\right\| \eta \|_{W_{2}^{1}(Q)} \leq\right. \\
& \leq\left(\int_{\tilde{\Pi}_{m}^{l_{m}, h}} \frac{C^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{1}\left(\frac{2}{\sqrt{5}} y_{n}\right)} \tilde{u}^{2}(y) d y\right)^{1 / 2}\|\eta\|_{W_{2}^{1}(Q)} \leq\left(\int_{\tilde{\Pi}_{m}^{\prime m, h}} \frac{C^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{1}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n} \int_{0}^{y_{n}}\left|\nabla \tilde{u}\left(y^{\prime}, \tau\right)\right|^{2} d \tau d y\right)^{1 / 2}\|\eta\|_{W_{2}^{1}(Q)} \leq \\
& \leq\left(\int_{0}^{h} d y_{n} \frac{C^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{1}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n} \int_{\left|y^{\prime}\right|<l_{m}} d y^{\prime} \int_{0}^{h} d \tau\left|\nabla \tilde{u}\left(y^{\prime}, \tau\right)\right|^{2}\right)^{1 / 2}\|\eta\|_{W_{2}^{1}(Q)} \leq \\
& \leq \sqrt{2}\left(\int_{0}^{h} \frac{C^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{1}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n} d y_{n}\right)^{1 / 2}\|u\|_{W_{2}^{1}(Q)}^{\circ}\|\eta\|_{W_{2}^{1}(Q)}^{\circ} .
\end{aligned}
$$

Thus, we get

$$
\begin{equation*}
I_{2} \leq \text { const }\|u\|_{W_{2}^{1}(Q)}^{\circ}\|\eta\|_{W_{2}^{1}(Q)}^{\circ} \tag{6}
\end{equation*}
$$

where the constant does not depend on u and η.
Similarly we obtain
$I_{3}=\int_{Q^{1 / k}} \frac{D(r(x))}{\omega_{2}^{1 / 2}(r(x))}|u(x)|\left\|\eta(x)\left|d x \leq \int_{Q^{0}} \frac{D(r(x))}{\omega_{2}^{1 / 2}(r(x))}\right| u(x)|\| \eta(x)| d x \leq \sum_{m=1}^{p} \int_{\prod_{n}^{m, k}} \frac{D(r(x))}{\omega_{2}^{1 / 2}(r(x))}|u(x)||\eta(x)| d x\right.$.
Finally, for $m=1, \ldots, p$ we get

$$
\begin{aligned}
& \int_{\Pi_{m}^{m}} \frac{D(r(x))}{\omega_{2}}\left|u(x)\left\|\eta(x)\left|d x \leq \int_{\tilde{n}_{m}^{m, n}}^{1 / 2}(r(x)) \quad \frac{D\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{2}^{1 / 2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}\right| \tilde{u}(y)\right\| \tilde{\eta}(y)\right| d y \leq \\
& \leq\left(\int_{\tilde{\Pi}_{m}^{m}, n} \frac{D^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n}^{2} \tilde{u}^{2}(y) d y\right)^{1 / 2}\left(\int_{\tilde{\Pi}_{m}^{m, n}} \frac{\tilde{\eta}^{2}(y)}{y_{n}^{2}} d y\right)^{1 / 2} \leq \\
& \leq \text { const }\left(\int_{\tilde{n}_{m}^{m, n}} \frac{D^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n}^{3} \int_{0}^{y_{n}}\left|\nabla \tilde{u}\left(y^{\prime}, \tau\right)\right|^{2} d \tau d y\right)^{1 / 2}\|\eta\|_{W_{2}^{\prime}(Q)}^{\circ} \leq \\
& \leq \mathrm{const}\left(\int_{0}^{h} \frac{D^{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)}{\omega_{2}\left(\frac{2}{\sqrt{5}} y_{n}\right)} y_{n}^{3} d y_{n}\right)^{1 / 2}\|u\|_{W_{2}^{1}(Q)}^{\circ}\|\eta\|_{W_{2}^{1}(Q)}^{\circ} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
I_{3} \leq \operatorname{const}\|u\|_{W_{2}^{1}(Q)}^{\circ}\|r\|_{W_{2}^{\prime}(Q)}^{\circ}, \tag{7}
\end{equation*}
$$

where the constant does not depend on u and η. From (4)-(7) we obtain the estimate

$$
\left|\left\langle\left(T-T_{k}\right) u, \eta\right\rangle\right| \leq \operatorname{const}\left(\varepsilon\left(\frac{1}{k}\right)+\omega_{1}^{1 / 2}\left(\frac{1}{k}\right)+\omega_{2}^{1 / 2}\left(\frac{1}{k}\right)\right)\|u\|_{W_{2}^{\prime}(Q)}^{\circ}\|\eta\|_{W_{2}^{\prime}(Q)}^{\circ},
$$

where the constant does not depend on u and η.
From this it immediately follows that $\left\|T-T_{k}\right\| \leq \operatorname{const}\left(\varepsilon\left(\frac{1}{k}\right)+\omega_{1}^{1 / 2}\left(\frac{1}{k}\right)+\omega_{2}^{1 / 2}\left(\frac{1}{k}\right)\right)$ and consequently $\left\|T-T_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. The Theorem is proved.

REFERENCES

1. Dumanyan V.Zh. Proceedings of the YSU. Physical and Mathematical Sciences, 2011, № 1, p. 3-6.
2. Ladyzhenskaya O.A., Uraltseva N.N. Linear and Quasilinear Elliptic Equations. Academic Press, 1968.
3. Mikhailov V.P. Partial Differential Equations. $1^{\text {st }}$ ed. M.: Nauka, 1976; English transl. of $1^{\text {st }}$ ed. M.: Mir, 1978.
4. Mikhailov V.P., Gushchin A.K. Advanced Topics of "Equations of Mathematical Physics". Lecture courses of SEC. M., Steklov Mathematical Institute of RAS, 2007.
5. Maz'ya V.G. Sobolev Spaces. L.: Leningrad Univ. Press, 1985 (in Russian); English transl. from the Russian by T.O. Shaposhnikova. Berlin-New York: Springer-Verlag, 1985.

[^0]: * E-mail: duman@ysu.am

