PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences

2011, № 2, p. 17–21

Mathematics

ON COMPACTNESS OF A CLASS OF FIRST ORDER LINEAR DIFFERENTIAL OPERATORS

V. Zh. DUMANYAN*

Chair of Numerical Analysis and Mathematical Modeling, YSU

In the present article a class of first order linear differential operators with unbounded coefficients is investigated. The compactness of operators is proved.

Keywords: bounded differential operator, compact differential operator, first order differential operator.

Let $Q \subset \mathbb{R}^n$, $n \ge 2$, be a bounded domain with smooth boundary $\partial Q \in \mathbb{C}^1$. Consider the first order differential expression

$$Tu \equiv (\overline{b}(x), \nabla u(x)) - \operatorname{div}(\overline{c}(x)u(x)) + d(x)u(x), \quad u \in W_2^1(Q),$$

with coefficients $\overline{b}(x) = (b^{(1)}(x), \dots, b^{(n)}(x))$, $\overline{c}(x) = (c^{(1)}(x), \dots, c^{(n)}(x))$ and d(x) that are measurable and bounded on each strong inner subdomain of the domain Q.

For an arbitrary $u, v \in W_2^1(Q)$ define

$$\langle Tu,v\rangle \equiv \int_{Q} ((\overline{b}(x),\nabla u(x))v(x) + (\overline{c}(x)u(x),\nabla v(x)) + d(x)u(x)v(x))dx, \quad v \in W_2^1(Q).$$

Assume that the coefficients $\overline{b}(x)$, $\overline{c}(x)$ and d(x) satisfy the conditions

$$\left| \overline{b}(x) \right| = O\left(\frac{1}{r(x)}\right)$$
 as $r(x) \to 0$

where r(x) is the distance of a point $x \in Q$ from the boundary ∂Q ,

$$\int_{0}^{\infty} tC^{2}(t)dt < \infty \quad \text{with} \quad C(t) = \sup_{r(x) \ge t} \left| \overline{c}(x) \right|,$$
$$\int_{0}^{\infty} t^{3}D^{2}(t)dt < \infty \quad \text{with} \quad D(t) = \sup_{r(x) \ge t} \left| d(x) \right|.$$

In [1] it was shown that T is a bounded linear operator from $W_2^1(Q)$ into $\overset{\circ}{W_2^{-1}(Q)}$. The aim of this article is to obtain conditions on coefficients $\overline{b}(x), \overline{c}(x)$

^{*} E-mail: <u>duman@ysu.am</u>

and d(x), for which T is a linear compact operator from $W_2^1(Q)$ into $W_2^{-1}(Q)$. This property has important applications in studying the solvability of the problems of mathematical physics, see, for example, [2, 3]. We prove the below theorem.

Theorem. Let the below conditions hold

$$\left|\overline{b}(x)\right| = o\left(\frac{1}{r(x)}\right) \text{ as } r(x) \to 0,$$
 (1)

and there exist monotone functions $\omega_i(t) \to 0$, as $t \to +0$, i = 1, 2, such that

$$\int_{0}^{t} \frac{tC^{2}(t)}{\omega_{1}(t)} dt < \infty, \text{ where } C(t) = \sup_{r(x) \ge t} \left| \overline{c}(x) \right|, \tag{2}$$

$$\int_{0}^{t} \frac{t^{3} D^{2}(t)}{\omega_{2}(t)} dt < \infty, \text{ where } D(t) = \sup_{r(x) \ge t} \left| d(x) \right|.$$
(3)

Then the operator T is a compact linear operator from $W_2^1(Q)$ into $W_2^{-1}(Q)$.

Proof of Theorem. We shall follow the scheme of proof of the theorem from [1].

Let $x^0 \in \partial Q$ be an arbitrary point of the boundary ∂Q of the domain Qand (x', x_n) be a local coordinate system with the origin x^0 and the x_n axis directed along the inner normal $v(x^0)$ to ∂Q at the point x^0 . Since $\partial Q \in C^1$, there exists a positive number $r_{x^0} > 0$ and a function $\varphi_{x^0} \in C^1(\mathbb{R}^{n-1})$ with properties

$$\varphi_{x^0}(0) = 0$$
, $\nabla \varphi_{x^0}(0) = 0$ and $\left| \nabla \varphi_{x^0}(x') \right| \le \frac{1}{2}$ for all $x' \in \mathbb{R}^{n-1}$.

such that the intersection of the domain Q with the ball $U_{x^0}^{(r_{x^0})} = \{x : | x - x^0 | < r_{x^0}\}$ of radius r_{x^0} and the centre x^0 has the form $Q \cap U_{x^0}^{(r_{x^0})} = U_{x^0}^{(r_{x^0})} \cap \{(x', x_n) : x_n > \varphi_{x^0}(x')\}$. Then $\partial Q \cap U_{x^0}^{(r_{x^0})} = U_{x^0}^{(r_{x^0})} \cap \{(x', x_n) : x_n = \varphi_{x^0}(x')\}$. Let $l_{x_0} = \frac{r_{x_0}}{\sqrt{2}}$. From the covering $\{U_{x^0}^{(l_{x^0})}, x^0 \in \partial Q\}$ of the boundary ∂Q select a finite subcovering $U_{x^m}^{(l_{x^m})}$, m = 1, ..., p. Denote for simplicity $U_{x^m}^{(l_{x^m})}$ by U_m , r_{x^m} by r_m , l_{x^m} by l_m , φ_{x^m} by φ_m , m = 1, ..., p. Set $h = \frac{1}{3} \left(\frac{2}{\sqrt{5}} - \frac{\sqrt{2}}{2} \right) \min(r_1, ..., r_p)$. Then each of the curvilinear "cylinders" $\prod_{m=1}^{l_m,h} = \{(x', x_n) : |x'| < l_m, \varphi_m(x') < x_n < \varphi_m(x') + h\}$, m = 1, ..., p, is contained in the corresponding ball U_m , and also by $U_m \cap Q$ (recall that (x', x_n) are the coordinates of a point in a local system of coordinates with origin at x^m). Let $l_0 < h$ be such a positive number that the complement of the domain $Q_{l_0} = \{x \in Q : r(x) = \text{dist}(x, \partial Q) > l_0\}$ in Q is contained in the union of the

"cylinders"
$$\prod_{m}^{l_{m},h}$$
, $m = 1,...,p$, i.e. $Q^{l_{0}} = \{x \in Q : r(x) = \text{dist}(x,\partial Q) \le l_{0}\} \subset \bigcup_{m=1}^{p} \prod_{m=1}^{l_{m},h}$.

Easily verified that for all $x = (x', x_n) \in \prod_m^{l_m, h}$, m = 1, ..., p, $r(x) \le x_n - \varphi_m(x') \le \frac{\sqrt{5}}{2}r(x)$.

We fix an index m, $1 \le m \le p$, and take a local coordinate system with origin at x^m .

Now define mappings L and L_{-1} of the space \mathbb{R}^n onto itself by relations $L(x) = (x', x_n - \varphi_m(x'))$, where $x = (x', x_n)$ and $L_{-1}(y) = (y', y_n + \varphi_m(y'))$ with $y = (y', y_n)$. The image of $\prod_{m=1}^{l_m, h}$ under the mapping L will be denoted by $\prod_{m=1}^{l_m, h} : L(\prod_{m=1}^{l_m, h}) = \prod_{m=1}^{l_m, h}$.

Consider the sequence of operators

$$T_{k}u = (\overline{b}_{k}(x), \nabla u(x)) - \operatorname{div}(\overline{c}_{k}(x)u(x)) + d_{k}(x)u(x), \quad u \in W_{2}^{1}(Q), \quad k = 1, 2, \dots$$

$$\overline{b}_{k}(x) = \begin{cases} \overline{b}(x), \text{ if } r(x) > \frac{1}{k}, \\ 0, \text{ if } r(x) \le \frac{1}{k}, \end{cases}, \quad \overline{c}_{k}(x) = \begin{cases} \overline{c}(x), \text{ if } r(x) > \frac{1}{k}, \\ 0, \text{ if } r(x) \le \frac{1}{k}, \end{cases}, \quad d_{k}(x) = \begin{cases} d(x), \text{ if } r(x) > \frac{1}{k}, \\ 0, \text{ if } r(x) \le \frac{1}{k}, \end{cases}$$

It can be readily verified that the operator T_k is a compact linear operator from $W_2^{-1}(Q)$ into $W_2^{-1}(Q)$. Indeed, let $\{w(x)\}$ be a bounded set in $W_2^{-1}(Q)$. Then sets $\{(\overline{b}_k(x), \nabla w(x))\}, \{\overline{c}_k(x)w(x)\}$ and $\{d_k(x)w(x)\}$ are bounded in $L_2(Q)$ and by that are compact in $W_2^{-1}(Q)$ (see, for example, [4]). Hence, for the proof of the theorem it is sufficient to show that $||T - T_k|| \to 0$ as $k \to \infty$.

Without loss of generality we suggest that $k > \frac{1}{l_0}$ and functions $\omega_1(t)$, $\omega_2(t)$ are positive. In view of (1) there exists a monotone function $\varepsilon(t) \to 0$, as $t \to +0$, such that $\left|\overline{b}(x)\right| \le \frac{\varepsilon(r(x))}{r(x)}$. For $u \in W_2^{-1}(Q)$ and $\eta \in C_0^{\infty}(Q)$ consider $\langle (T - T_k)u, \eta \rangle = \int_{Q^{1/k}} \left((\overline{b}(x), \nabla u(x))\eta(x) + (\overline{c}(x)u(x), \nabla \eta(x)) + d(x)u(x)\eta(x) \right) dx$. Denote $u(y', y_n + \varphi(y')) = \tilde{u}(y)$, $\eta(y', y_n + \varphi(y')) = \tilde{\eta}(y)$. Due to (1), (2) and (3), we have $\left| \langle (T - T_k)u, \eta \rangle \right| \le \int_{Q^{1/k}} \left(\frac{\varepsilon(r(x))|\nabla u(x)||\eta(x)|}{r(x)} + C(r(x))|u(x)||\nabla \eta(x)| + D(r(x))|u(x)||\eta(x)| \right) dx \le$ $\le \varepsilon \left(\frac{1}{k} \right) \int_{Q^{1/k}} \frac{|\nabla u(x)||\eta(x)|}{r(x)} dx + \omega_1^{1/2} \left(\frac{1}{k} \right) \int_{Q^{1/k}} \frac{C(r(x))}{\alpha_1^{1/2}(r(x))} |u(x)||\nabla \eta(x)| dx + (4)$ $+ \omega_2^{1/2} \left(\frac{1}{k} \right) \int_{Q^{1/k}} \frac{D(r(x))}{\alpha_2^{1/2}(r(x))} |u(x)||\eta(x)| dx.$ Let us estimate

$$I_{1} = \int_{Q^{1/k}} \frac{|\nabla u(x)| |\eta(x)|}{r(x)} dx \leq \int_{Q^{t_{0}}} \frac{|\nabla u(x)| |\eta(x)|}{r(x)} dx \leq \sum_{m=1}^{p} \int_{\prod_{m=1}^{m,h}} \frac{|\nabla u(x)| |\eta(x)|}{r(x)} dx .$$

In view of the Hardy inequality (see, for example, [5]) for m = 1, ..., p the following estimate holds:

$$\int_{\Pi_{m}^{l_{m,h}}} \frac{|\nabla u(x)| |\eta(x)|}{r(x)} dx \le \sqrt{\frac{5}{2}} \int_{\Pi_{m}^{l_{m,h}}} \frac{|\nabla \tilde{u}(y)| |\tilde{\eta}(y)|}{y_n} dy \le \sqrt{\frac{5}{2}} \left(\int_{\Pi_{m}^{l_{m,h}}} |\nabla \tilde{u}(y)|^2 dy \right)^{1/2} \left(\int_{\Pi_{m}^{l_{m,h}}} \frac{\tilde{\eta}^2(y)}{y_n^2} dy \right)^{1/2} \le \sqrt{5} \left(\int_{\Pi_{m}^{l_{m,h}}} |\nabla u(x)|^2 dx \right)^{1/2} \left(\int_{\Pi_{m}^{l_{m,h}}} \frac{\tilde{\eta}^2(y)}{y_n^2} dy \right)^{1/2} \le \operatorname{const} \|u\|_{W_2^1(Q)} \|\eta\|_{W_2^1(Q)}^{\circ}.$$
Thus

Thus,

$$I_{1} \leq \text{const} \| u \|_{W_{2}^{1}(Q)}^{\circ} \| \eta \|_{W_{2}^{1}(Q)}^{\circ}, \qquad (5)$$

where the constant does not depend on u and η .

Next
$$I_2 = \int_{\mathcal{Q}^{1/k}} \frac{C(r(x))}{\omega_1^{\frac{1}{2}}(r(x))} |u(x)| |\nabla \eta(x)| dx \le \int_{\mathcal{Q}^{l_0}} \frac{C(r(x))}{\omega_1^{1/2}(r(x))} |u(x)| |\nabla \eta(x)| dx \le$$

 $\le \sum_{m=1}^p \int_{\prod_m^{l_m,h}} \frac{C(r(x))}{\omega_1^{1/2}(r(x))} |u(x)| |\nabla \eta(x)| dx.$

For m = 1, ..., p we have

$$\begin{split} &\int_{\Pi_{m}^{l_{m},h}} \frac{C(r(x))}{\omega_{l}^{1/2}(r(x))} |u(x)| |\nabla \eta(x)| dx \leq \left(\int_{\Pi_{m}^{l_{m},h}} \frac{C^{2}(r(x))}{\omega_{l}(r(x))} u^{2}(x) dx \right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)} \leq \\ \leq \left(\int_{\Pi_{m}^{l_{m},h}} \frac{C^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{\omega_{l}\left(\frac{2}{\sqrt{5}}y_{n}\right)} \tilde{u}^{2}(y) dy \right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)} \leq \left(\int_{\Pi_{m}^{l_{m},h}} \frac{C^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{\omega_{l}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n} \int_{0}^{1} |\nabla \tilde{u}(y',\tau)|^{2} d\tau dy \right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)} \leq \\ \leq \left(\int_{0}^{h} dy_{n} \frac{C^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{\omega_{l}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n} \int_{0}^{h} d\tau |\nabla \tilde{u}(y',\tau)|^{2} \right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)} \leq \\ \leq \sqrt{2} \left(\int_{0}^{h} \frac{C^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{\omega_{l}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n} dy_{n} \int_{0}^{h} d\tau |\nabla \tilde{u}(y',\tau)|^{2} \right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)} \leq \\ \leq \sqrt{2} \left(\int_{0}^{h} \frac{C^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{\omega_{l}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n} dy_{n} dy_{n} \right)^{1/2} \|u\|_{W_{2}^{1}(Q)} \|\eta\|_{W_{2}^{1}(Q)} \,. \end{split}$$

Thus, we get

$$I_{2} \leq \text{const} \| u \|_{W_{2}^{1}(Q)}^{\circ} \| \eta \|_{W_{2}^{1}(Q)}^{\circ}, \qquad (6)$$

where the constant does not depend on u and η .

Similarly we obtain

$$\begin{split} I_{3} &= \int_{Q^{1/k}} \frac{D(r(x))}{a_{2}^{1/2}(r(x))} |u(x)| |\eta(x)| dx \leq \int_{Q^{0}} \frac{D(r(x))}{a_{2}^{1/2}(r(x))} |u(x)| |\eta(x)| dx \leq \sum_{m=1}^{p} \int_{\Pi_{m}^{m,h}} \frac{D(r(x))}{a_{2}^{1/2}(r(x))} |u(x)| |\eta(x)| dx. \\ & \text{Finally, for } m = 1, \dots, p \text{ we get} \\ & \int_{\Pi_{m}^{m,h}} \frac{D(r(x))}{a_{2}^{1/2}(r(x))} |u(x)| |\eta(x)| dx \leq \int_{\Pi_{m}^{m,h}} \frac{D\left(\frac{2}{\sqrt{5}}y_{n}\right)}{a_{2}^{1/2}\left(\frac{2}{\sqrt{5}}y_{n}\right)} |\tilde{u}(y)| |\tilde{\eta}(y)| dy \leq \\ & \leq \left(\int_{\Pi_{m}^{m,h}} \frac{D^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{a_{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n}^{2} \tilde{u}^{2}(y) dy\right)^{1/2} \left(\int_{\Pi_{m}^{m,h}} \frac{\tilde{\eta}^{2}(y)}{y_{n}^{2}} dy\right)^{1/2} \leq \\ & \leq \text{const} \left(\int_{\Pi_{m}^{m,h}} \frac{D^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{a_{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n}^{3} \int_{0}^{y_{n}} |\nabla \tilde{u}(y',\tau)|^{2} d\tau dy\right)^{1/2} \|\eta\|_{W_{2}^{1}(Q)}^{*} \leq \\ & \leq \text{const} \left(\int_{0}^{h} \frac{D^{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)}{a_{2}\left(\frac{2}{\sqrt{5}}y_{n}\right)} y_{n}^{3} dy_{n}\right)^{1/2} \|u\|_{W_{2}^{1}(Q)}^{*} \|\eta\|_{W_{2}^{1}(Q)}^{*}. \end{split}$$

Thus,

$$I_{3} \leq \text{const} \| u \|_{W_{2}^{1}(Q)}^{\circ} \| \eta \|_{W_{2}^{1}(Q)}^{\circ}, \qquad (7)$$

where the constant does not depend on u and η . From (4)–(7) we obtain the estimate

$$\left| \left\langle (T-T_k)u,\eta \right\rangle \right| \le \operatorname{const} \left(\varepsilon \left(\frac{1}{k} \right) + \omega_1^{1/2} \left(\frac{1}{k} \right) + \omega_2^{1/2} \left(\frac{1}{k} \right) \right) \| u \|_{W_2^1(\mathcal{Q})}^{\circ} \| \eta \|_{W_2^1(\mathcal{Q})}^{\circ},$$

where the constant does not depend on u and η .

From this it immediately follows that $||T - T_k|| \le \operatorname{const}\left(\varepsilon\left(\frac{1}{k}\right) + \omega_1^{1/2}\left(\frac{1}{k}\right) + \omega_2^{1/2}\left(\frac{1}{k}\right)\right)$ and consequently $||T - T_k|| \to 0$ as $k \to \infty$. The Theorem is proved.

Received 15.11.2010

REFERENCES

- 1. Dumanyan V.Zh. Proceedings of the YSU. Physical and Mathematical Sciences, 2011, № 1, p. 3–6.
- Ladyzhenskaya O.A., Uraltseva N.N. Linear and Quasilinear Elliptic Equations. Academic Press, 1968.
- Mikhailov V.P. Partial Differential Equations. 1st ed. M.: Nauka, 1976; English transl. of 1st ed. M.: Mir, 1978.
- 4. **Mikhailov V.P., Gushchin A.K.** Advanced Topics of "Equations of Mathematical Physics". Lecture courses of SEC. M., Steklov Mathematical Institute of RAS, 2007.
- Maz'ya V.G. Sobolev Spaces. L.: Leningrad Univ. Press, 1985 (in Russian); English transl. from the Russian by T.O. Shaposhnikova. Berlin–New York: Springer-Verlag, 1985.