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In the present paper we consider the Dirichlet problem for the fourth order 
differential-operator equation 2( ) ,Lu t u t Au f      where (1, ), 2,t     

2,2((1, ), )f L H  , A  is a linear operator in the separable Hilbert space H and 
has a complete system of eigenvectors that form a Riesz basis in .H  The 
existence and uniqueness of the generalized solution for the Dirichlet problem are 
proved, and the description of spectrum for the corresponding operator is given. 
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1. The Problem Formulation. In this paper we consider the Dirichlet 

problem for the fourth order differential-operator equation   
                                               2( ) ,Lu t u t Au f                                             (1) 
where 2,2(1, ), 2, (1, )t f L     .  We assume that the operator A  has a 

complete system 1{ }k k 
  of eigenfunctions , ,k k kA a k N    that form the Riesz 

basis in ,H  i.e. for every x H  we have a representation 
1

k k
k

x x 



  and 
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1 1
.k k

k k
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    First we give the definition and some properties of the 

weighted Sobolev space  2 (1, )W  , as well give definition of the generalized 
solution of Dirichlet problem for one-dimensional equation (1), i.e. when             
the operator ,Au au  , consta C a   (see [1, 2]). Then the description of the 
spectrum  ( )L  of  L  operator is given. 

Our approach is based on investigations of the one-dimensional equation. 
This method for the second and fourth order degenerate equations in the finite 
interval was applied in [3, 4] and for higher order equations in [5]. 

Then using the general method of A.A. Dezin (see [6]) we pass to the 
operator case and prove the existence and uniqueness of the generalized solution 
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for equation (1) under a given condition on the operator A . Note that the operator 
:A H H  is, in general, unbounded. 

2. One-dimensional Case. 
2.1. The Space W 2(1, ).   Denote by 2 (1, )W   the completion of  

2 2[1, ) { (1, ), (1) (1) ( ) ( ) 0}C u C u u u u            in the norm 

2
2 2

(1, )
1

( ) .Wu t u t dt






   

First note that for functions 2 (1, )u W   for every 0 [1, )t    there exist the 
finite values 0( )u t , 0( )u t  and (1) (1) 0u u  (see [2, 5] ).  

Proposition 1.  For functions  2 (1, )u W   at large values of  t  we have 
the following estimates: 
                                       2

2 23
1 (1, )( ) , 1, 3,Wu t c t u



  


                              (2) 

                                          2
2 21

2 (1, )( ) , 1.Wu t c t u


 


                                     (3) 

For 3   in the inequality (2) we replace 3t   with ln t , and for 1   we replace 
3t   with 2 lnt t  in  (2) and  1t   with  ln t   in  (3).  

It follows from Proposition 1 that for 3   the conditions ( ) ( ) 0u u     
“are retained” after the completion, for 1 3   only the condition ( ) 0u    “is 
retained”, while for 1   the values ( )u   and ( ),u   in general, can become 
the infinity. 

Let 
2,

2 2
2, (1, )

1
(1, ) , ( ) .LL f f t f t dt










 
     

 
  

Proposition 2.  For 2  we have the continuous embedding 
                                             2

2, 2(1, ) (1, ),W L                                               (4) 
which is compact for 2  .  

Note that the embedding (4) fails for 2  , and is not compact for 2   
(see [2]). 

2.2. One-dimensional Equation. In this section we define the generalized 
solution of the Dirichlet problem for one-dimensional equation (1) 
                                2

2,2( ) , 2, (1, )Lu t u at u f f L        .                   (5) 
First we define the particular case of equation (5) for 0a   
                                    2,2( ) , 2, (1, ).Bu t u f f L                                  (6) 

Definition 1. The function 2 (1, )u W   is called the generalized solution 
of the Dirichlet problem for equation (6), if for every 2 (1, )v W  we have 

( , ) ( , ),t u v f v     
where ( , )   stands for the scalar product in 2 (1, )L  .  

Proposition 3. The generalized solution of the equation (6) exists and is 
unique for every 2,2 (1, ).f L   
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Denote by 2
2, 2 2,2: ( ) (1, ) (1, ) (1, )B D B W L L        the operator, 

corresponding to Definition 1. 
Proposition 4. The domain of definition of B  operator consists of functions 
2 (1, )u W  , for which ( ) 0u    and the value ( )u   is finite for 5

2
   

( ( )u    can  not  be  arbitrarily,  but  is  determined  by  the  right-hand  side  of 
equation  (6)). 

So, from the classical point of view the correct formulation of problem (6) 
(as well as for problem (5), since ( ) ( )D L D B ) is: 

for  3             (1) (1) ( ) ( ) 0,u u u u        

for  5 3
2

     (1) (1) ( ) 0u u u      and ( )u   is finite, 

for  52
2

      (1) (1) ( ) 0u u u     . 

The operator B  acts from 2, 2 (1, )L    into 2,2 (1, )L  . To have an operator 
acting in the same space, which is necessary for consideration of spectral    
problems, denote by 2 , ( ) ( ).u t Bu D D B    Since for 2( ) ( )g t t f t  we have 

2, 2 2,2(1, ) (1, )|| || || ||L Lg f
   , hence we get an operator in 2, 2 (1, )L   , i.e. 

2, 2 2, 2: (1, ) (1, )L L     .  
T h eo r e m 1 .  The operator 2, 2 2, 2: (1, ) (1, )L L      is positive and 

self-adjoint for 2  . The inverse operator 1
2, 2 2, 2: (1, ) (1, )L L 
     is 

bounded and is compact for 2  . The spectrum of operator   for 2   is 
discrete ( ) ( )p    , and for 2   is purely continuous ( ) ( )c    . It 

coincides with the ray  1 ,
16
  

. 

Note that now we can rewrite equation (5) in the form ,u au g     i.e. we 
can consider the number a  as a spectral parameter (see [2]) and, hence, for 

( )a    , where ( )   is the set of regular points for operator ,  equation (5) 
is uniquely solvable for every 2,2 2, 2(1, ) ( (1, ))f L g L     . Note also that 

( ) ( ) ( )D L D D B  . 
3. Operator Equation. Now consider the operator equation (1). First 

describe a special class of the so-called  -operators A , which have complete 
system 1{ }k k 

  of  eigenfunctions , ,k k kA a k N     forming   a   Riesz   base  in  
H   (see [6]). Let  xV  be n -dimensional cube in nR  with the side 2 . Denote by 
   the linear manifold of infinitely differentiable complex functions that are 
periodical with respect to all variables 1 2( , , , )n xx x x V  having the period 2 . 
We associate  to the polynomial ( ), nA s s Z , with constant complex coefficients   

1 2
1 2 1 2 1 2

| |
( ) , ( , , , ) , , | | ,nn

n n n
m

A s a s Z s s s s  
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the differential operation ( )xA iD  such that ( ) ( ) ,is x is x
xA iD e A s e     

1 1 2 2 .n ns x s x s x s x      Now define the operator 2 2: ( ) ( )x xА L V L V   as the 
closure of differential operation ( )xA iD , originally given on   . It is evident 
that the system of the eigenfunctions ,is x ne s Z  , forms an orthogonal base in 

2 ( )xL V , corresponding to the eigenvalues ( ) { ( ), }nA S A s s Z  . We have the 
following important 

Proposition 5.  The spectrum ( )A  of operator A  coincides with the closure 

( )A S   in C of the set ( )A S , which forms a point spectrum ( )p A  of operator A . 

The continuous spectrum ( )c A coincides  with  ( ) \ ( )A S A S . 
Note that for 2n   the resolvent set ( )A  for the   -operator A  is always 

nonempty, but for 2n   the spectrum ( )A  can fill the whole complex plane C . 

For example, if 3n  , then for the polynomial 2
1 2 3 2( ) ( )A s s s i s s     , where 

,   are irrational numbers, the set ( )A S  is dense in C .  

Since the system 1{ }k k 
  forms a base in ,H  we can write 

1
( ) ( ) ,k k

k
u t u t 




  

1
( ) ( )k k

k
f t f t 




 . Then the operator equation (1) is decomposed to an infinite 

chain of ordinary differential equations 
                                      ( ) ( ) 2( ) , .m m

k k k k k kL u t u a t u f k N                              (7) 
From 2,2 ((1, ), )f L H   it follows that 2,2 (1, ),kf L k N   . Hence we get the 
equation (5), for which we discussed the existence and uniqueness of the 
generalized solution in the subsection 2.2.  

Definition 2. The function 2, 2 ((1, ), )u L H   is called the generalized 

solution for equation (1), if in representation 
1

( ) ( )k k
k

u t u t 



  the functions 

2( ) (1, ), ,ku t W k N    are generalized solutions of Dirichlet problem for 
equations (7) (see Definition 1). 

Actually the operator L  is defined as the closure in  2, 2 ((1, ), )L H   of the 
differential expression ( )L D , originally given on all finite linear combinations of  
functions  ( ) ,k ku t k N  , where ( )k ku D L . 

Of great importance at the transition to the operator case is the following 
(see [6]) 

Proposition 6. The operator equation (1) is uniquely solvable for every  
2,2 ((1, ), ),f L H   iff the equations (11) are uniquely solvable for every 

2,2 (1, ),kf L   ,k N  and the inequalities  

                                                 
2, 2 2,2(1, ) (1, )k kL Lu c f
  

                                     (8) 

are fulfilled uniformly with respect to k N .  
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Proof. The Necessity. Let the operator equation (1) be uniquely solvable. If 
for some k N  the unique solvability of equation (7) breaks and 

2( ) (1, )ku t W   is a nontrivial solution for homogeneous equation, then the 
function ( )k ku t   will be the nontrivial solution for the homogeneous equation (1). 
If equation (7) for all k N  is uniquely solvable for every right-hand side, but fails 
(8), then there exists  a sequence 2,2 (1, ),

mkf L m N   , such that 

                                       
2, 2 2,2(1, ) (1, )

, .
m mk kL L

u m f m N
  

                              (9) 

Then, the inverse operator 1L  does exist, it is given on the dense set (on finite 
linear combinations of the functions 2,2( ) , (1, )k k kf t f L   ), but is an 
unbounded operator (it suffice to consider the right-hand sides of functions 

2,2( ) , (1, )
m m mk k kf t f L    and use inequalities (9)). Since the operator 1L  is 

closed, then 1( )D L  can not coincide with the whole space 2,2 ((1, ), )L H . 
 The Sufficiency. Let the equations (7) are uniquely solvable for every 

2,2 (1, )kf L  , k N , and inequalities (8) are fulfilled uniformly with respect to 

k N . Then the function 
1

( ) ( )k k
k

u t u t 



 , where the functions ( )ku t , k N , are 

the solutions of equations (7), is the solution of the operator equation (1). Indeed, 
since the system 1{ }k k 

  is the Riesz base, we can write  

2, 2 2,22,2

2 22 2 22 2
2 2 3((1, ), ) ((1, ), )(1, )

1 11 1
( ) ( ) ,k kL H H L HL

k k
u t u t dt c t u t dt c c f c f



   
 

 
 

     

where 
1

( ) ( ) ,k k
k

f t f t 



  i.e. we have 

2, 2 2,2
4((1, ), ) ((1, ), )L H L Hu c f

  
   

2,2
4 ((1, ), )L Hc Lu


 , and, therefore, the operator 1L  is defined on the whole space 

1
2,2( ) ((1, ), )D L L H    and is bounded. 

The proof is complete. 
Note that the inverse operator 1

2,2 2, 2: ((1, ), ) ((1, ), )L L H L H
    for 

2   is compact only in the case, when H  is finite-dimensional. 
Suppose that the following conditions are valid 

                                               ( , ( )) , ,ka k N                                            (10)                                                
where 0  , and   is the distance in the complex plane. 

T h eo r e m 2 .  Under the conditions (10) the generalized solution of 
equation (1) exists and is unique for every 2,2 ((1, ), )f L H  .   

For the proof first note that under conditions (10) the equations (7) are unique-
ly solvable and inequalities (8) are fulfilled. It remains only to use Proposition 6. 

Denote  by  2 , ( ) ( )L t L D L D L   .  If    the    operator   A    is  self-adjoint, 
then the following description of spectrum for the operator 

2, 2 2, 2: ((1, ), ) ((1, ), )L L H L H     may be given. 
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T h eo r e m 3 .  The spectrum of operator L coincides with the closure of the 
direct sum ( )   and ( )A ,  i.e. 1 2 1 2( ) ( ) ( ) { : ( ), ( )}L A A                .  

The proof follows from the representation of operator L  in the form 

2, 2 (1, ) ,H LL I I A
       

where   denotes the tensor product of the operators (see [7]). 
The author thanks L. Tepoyan for suggesting this problem and useful 

advices. 
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