S-UNIVERSALITY IN 2-CATEGORIES

S. H. DALALYAN *

Chair of Algebra and Geometry, YSU

For 2-categories the notion of S-universality is introduced and investigated.
Keywords: 2-categories, 2-functors, 2-transformations, S-universal morphisms.
"The bold step of really formulating the general notion of a universal arrow was taken by Samuel [1] in 1948; the general notion was then lavishly popularized by Bourbaki [2]". In order to interpret Grothendieck's extension of the fundamental theorem of Galois theory [3] in abstract categories more general notions than the universality is required [4]. Here this notion of S-universality for 2-categories is introduced and investigated. Firstly, we give the definitions of 2-categories, 2 -functors and 2-transformations in a form, which is convenient for our goals. For comparison see [5-7].

1. A 2 -category \mathscr{C} consists of a date base, satisfying some system of axioms. The date base for 2-categories is defined as follows:
(i) an arbitrary set of objects $\mathscr{C}_{0}=\mathrm{Ob} \mathscr{C}$;
(ii) sets $\mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}=\operatorname{Mor}_{\mathscr{C}}(\mathscr{X}, \mathscr{Y})$ of morphisms $\mathscr{X} F \mathscr{Y}$ from \mathscr{X} to \mathscr{Y} for all $\mathscr{x}, \mathscr{Y} \in \mathrm{Ob} \mathscr{C}$,
(iii) sets $\mathscr{C}(F, G)=$ Trans (F, G) of transformations (or morphisms of rank 2) $F \xi G$ for all $F, G \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}$ and for all $\mathscr{X}, \mathscr{Y} \in \mathrm{Ob} \mathscr{C}$,
(cm) a composite map for morphisms $F \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}$ and $K \in \mathscr{C}(\mathscr{Y}, \mathscr{F})_{0}$ with $F \circ K \in \mathscr{C}(\mathscr{X}, \mathscr{\mathscr { F }})_{0}$, where $\mathscr{\mathscr { F }} \mathscr{\mathscr { Y } , \mathscr { F } \in \mathrm { Ob } \mathscr { C } ; , ~}$
(ct) a composite map for transformations $\xi \in \mathscr{C}(F, G)$ and $\eta \in \mathscr{C}(G, H)$ with $\xi \circ \eta \in \mathscr{C}(F, H)$, where F, G, H run $\mathscr{C}(\mathscr{X} ; \mathscr{Y})_{0}$ and \mathscr{X}, \mathscr{Y} run $\mathrm{Ob} \mathscr{C}$;
(mt) a multiplication map for transformations $\xi \in \mathscr{C}(F, G)$ and $\rho \in \mathscr{C}(K, L)$ with $\xi \cdot \rho \in \mathscr{C}\left(F \circ K, G^{\circ} L\right)$, where F, G run $\mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}, K, L$ run $\mathscr{C}(\mathscr{Y}, \mathscr{\mathscr { F }})_{0}$ and $\mathscr{X}, \mathscr{Y}, \mathscr{F} \in \mathrm{Ob} \mathscr{C} ;$
(im) a system of identity morphisms $e(\mathscr{X})=1_{\mathscr{X}} \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}$ for any $\mathscr{X} \in \mathrm{Ob} \mathscr{C} ;$
(it) for any $F \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}$ and any $\mathscr{X}, \mathscr{Y} \in \mathrm{Ob} \mathscr{C}$ a system of identity transformations $1_{F} \in \mathscr{C}(F, G)$.
[^0]This date base of the 2 -category must satisfy the following system of axioms:

1) $F \circ(K \circ R)=(F \circ K) \circ R$;
2) $1_{x} \circ F=F=F \circ 1_{y}$
3) $\xi \circ(\eta \circ \zeta)=(\xi \circ \eta) \circ \zeta ;$
4) $1_{F} \cdot \xi=\xi=\xi \circ 1_{G} ; \quad$ 5) $\xi \cdot(\rho \cdot \alpha)=(\xi \cdot \rho) \cdot \alpha$, 6) $1_{e(\not))} \cdot \xi=\xi \cdot 1_{e(\eta)}$;
5) $(\xi \circ \eta) \cdot(\rho \circ \sigma)=(\xi \cdot \rho) \circ(\eta \cdot \sigma)$; 8) $1_{F} \cdot 1_{K}=1_{F \circ K}$,
for transformations $\xi \in \mathscr{C}(F, G), \eta \in \mathscr{C}(G, H), \zeta \in \mathscr{C}(H, A), \rho \in \mathscr{C}(K, L)$, $\sigma \in \mathscr{C}(L, M), \quad \alpha \in \mathscr{C}(R, S)$, for morphisms $F, G, H, A \in \mathscr{C}(X, \mathscr{Y})$, $K, L, M \in \mathscr{C}(\mathscr{Y}, \mathscr{\mathscr { F }})_{0}, \quad R, S \in \mathscr{C}(\mathscr{H}, \mathscr{Y})_{0}$ and objects $\mathscr{P} ; \mathscr{Y}, \mathscr{H}, \mathscr{V} \in \mathrm{Ob} \mathscr{C}$.

The system of all morphisms of the 2-category \mathscr{C} is denoted by Mor $_{\mathscr{C}}$ or \mathscr{C}_{M}, the system of all transformations of \mathscr{C} is denoted by $\operatorname{Trans}_{\mathscr{E}}$ or \mathscr{C}_{T}. If \mathscr{C} is the 2-category, then for any objects \mathscr{X}, \mathscr{Y} of \mathscr{C} the sets $\mathscr{C}(\mathscr{X}, \mathscr{\mathscr { Y }})_{0}$ and $\mathscr{C}(F, G)$ for all $F, G \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0}$ constitute a usual category (or 1-category), which is denoted as $\mathscr{C}(\mathscr{\mathscr { O }} \mathscr{\mathscr { Y })}$. A well-known example of a 2-category is the 2-category Cat of categories, covariant functors and natural transformations.
2. Let \mathscr{C} and \mathscr{D} be arbitrary 2-categories. A 2 -functor Φ from \mathscr{C} to \mathscr{D} is given by
(i) a map $\Phi_{0}: \mathscr{C}_{0} \rightarrow \mathscr{D}_{0}$;
(ii) maps $\Phi_{x y:} \mathscr{C}(\mathscr{X}, \mathscr{\mathscr { Y }})_{0} \rightarrow \mathscr{\mathscr { C } (\mathscr { T } \Phi _ { 0 } , \mathscr { Y } \Phi _ { 0 }) _ { 0 } \text { for all } \mathscr { X } , \mathscr { Y } \in \mathrm { Ob } \mathscr { C } \text { ; } ; \text { ; }}$
(iii) maps $\Phi_{F G}: \mathscr{C}(F, G) \rightarrow \mathscr{D}\left(F \Phi_{3 y}, \mathscr{G} \Phi_{\partial y}\right)$ for all $F, G \in \mathscr{C}(\mathscr{X}, \mathscr{y})_{0}$ and $\mathscr{x}, \mathscr{y} \in \mathrm{Ob} \mathscr{C}$,
which satisfy the following conditions:

1) $(F \circ K) \Phi_{9 x}=F \Phi_{9 y} \circ K \Phi_{y z} ;$
2) $e(\mathscr{P}) \Phi_{\mathscr{Y}}=e\left(\mathscr{T} \Phi_{0}\right)$;
3) $(\xi \circ \eta) \Phi_{F H}=\left(\xi \Phi_{F G}\right) \circ\left(\eta \Phi_{G H}\right)$;
4) $e(F) \Phi_{F F}=e\left(F \Phi_{9 y}\right)$;
5) $(\xi \cdot \rho) \Phi_{\left(F^{\circ} K\right)\left(G^{\circ} L\right)}=\xi \Phi_{F G} \cdot \rho \Phi_{K L}$.

Remark. The condition of naturality in Gray [8] follows from the conditions 2) and 5). Further the subscripts of the 2 -functor are often omitted.
3. A natural 2-transformation \boldsymbol{J} of a 2-functor $\mathscr{C} \Phi \mathscr{D}$ into a 2 -functor $\mathscr{C} \Psi \mathscr{D}$ is a map $\boldsymbol{J}_{0}: \mathrm{Ob} \mathscr{C} \rightarrow$ Mor \mathscr{D} such that
(a0) $\boldsymbol{J}_{0}(\mathscr{P})$ is a morphism $(\mathscr{X} \Phi) \boldsymbol{J}_{x}(\mathscr{X} \Psi)$ for any $\mathscr{X} \in \mathrm{Ob} \mathscr{C}$;
(a1) $F \Phi \circ \boldsymbol{J}_{y}=\boldsymbol{J}_{x} \circ F \Psi$ for any $\mathscr{X} F \mathscr{Y} \in \operatorname{Mor} \mathscr{C}$;
(a2) $\xi \Phi \cdot e\left(\boldsymbol{J}_{\mathscr{y}}\right)=e\left(\boldsymbol{J}_{\mathscr{r}}\right) \cdot \xi \Psi$ for any $(F \xi G) \in \operatorname{Trans} \mathscr{C}, F$ and $\in \mathscr{C}(\mathscr{P} ; \mathscr{Y})_{0}$.
Then one can define a map \boldsymbol{J}_{T} : Trans $\mathscr{C} \rightarrow$ Trans \mathscr{D} such that $\boldsymbol{J}_{T}(F \xi G)$, where $F, G \in \mathscr{C}(\mathscr{O} ; \mathscr{Y})_{0}$, is the transformation $\boldsymbol{J}_{\xi}=\xi \Phi \cdot e\left(\boldsymbol{J}_{y}\right)=e\left(\boldsymbol{J}_{\mathscr{y}}\right) \cdot \xi \Psi$ of the functor $F \Phi \circ \boldsymbol{J}_{y_{y}}=\boldsymbol{J}_{x} \circ F \Psi$ into the functor $G \Phi \circ \boldsymbol{J}_{y}=\boldsymbol{J}_{x} \circ G \Psi$, which both are functors from $\mathscr{X} \Phi$ to $\mathscr{Y} \Psi$.

This map satisfies the following equalities:
(b1) $\boldsymbol{J}_{T}\left(1_{F}\right)=e\left(F \Phi \circ \boldsymbol{J}_{\boldsymbol{y}}\right)=e\left(\boldsymbol{J}_{\vartheta}\right) \circ F \Psi$;
(b2) $\boldsymbol{J}_{T}((F \xi G) \circ(G \eta H))=\boldsymbol{J}_{T}(\xi) \circ \boldsymbol{J}_{T}(\eta)$;
(b3) $\boldsymbol{J}_{T}((F \xi G) \cdot(K \rho L))=\boldsymbol{J}_{T}(\xi) \cdot \rho \Psi=\xi \Phi \cdot \boldsymbol{J}_{T}(\rho)$
for any $F, G, H \in \mathscr{C}(\mathscr{O}, \mathscr{Y})$, for any $K, L \in \mathscr{C}(\mathscr{y}, \mathscr{F})$ and for any $\mathscr{x}, \mathscr{y}, \mathscr{F} \in \mathrm{Ob} \mathscr{C}$.
Further, the notion of S-universal morphisms is introduced and investigated.
4. Let S_{M} be a property of morphisms, S_{T} be a property of transformations. Usually we suppose that the properties S are
(u) unitary: any identity element (morphism or transformation) has the property S;
(m) multiplicative: the composite (resp., product) of morphisms or transformations has the property S, if each composant has this property.

Naturally, any property S for an element x can be expressed in the form $x \in \mathscr{M}_{S}$, where \mathscr{M}_{S} is the set of all elements satisfying the property S.
5. Definition. Let \mathscr{C} and \mathscr{D} be arbitrary 2-categories, S_{M} and S_{T} be arbitrary properties of morphisms and transformations respectively. Let $\mathscr{D} u \mathscr{C}$ be a 2 -functor and \mathscr{X} be an object in \mathscr{C}. Then a pair $\left(\mathscr{X}, \mathscr{X} J_{\mathscr{X}}(\mathscr{\mathscr { X }} u)\right.$), consisting of an object $\underline{\mathscr{X}}$ in \mathscr{D} and a morphism $J_{\mathscr{X}}$ in \mathscr{C}, is called S-universal pair from \mathscr{X} to u, if
(i) for any object \mathscr{P} in \mathscr{D} and for any morphism $\mathscr{X} F(\mathscr{R} u)$ in \mathscr{C} there is a unique morphism $\underline{\mathscr{X}} \underline{F} \mathscr{P}$ with property S_{M} such that $J_{\mathscr{X}} \circ \underline{F} u=F$;
(ii) for any two morphisms F and G from \mathscr{X} to $\mathscr{P} u$ and for any transformation $F \xi G$ there is the only transformation $\underline{F} \underline{G}$ with the property S_{T} and such that $e\left(J_{\mathscr{P}} \cdot \xi u\right)=\xi$.

Dually, the $\$$-couniversality is defined. Note, that if all morphisms and transformations in \mathscr{D} satisfy respectively the properties S_{M} and S_{T}, we get the usual definition of (co)universality.

Let $\left(\mathscr{X}, \mathscr{X} J_{\mathscr{x}}(\underline{\mathscr{C}} u)\right)$ and $\left(\mathscr{Y}, \mathscr{Y} J_{\mathscr{y}}(\mathscr{Y} u)\right)$ be two S-universal pairs respectively from \mathscr{X} and \mathscr{Y} to $\mathscr{C} u \mathscr{D}$. A morphism from $\left(\mathscr{X}, \mathscr{X} J_{\mathscr{X}}(\mathscr{C} u)\right)$ to $\left(\mathscr{Y}, \mathscr{Y} J_{\mathscr{Y}}(\mathscr{Y} u)\right)$ is a pair of morphisms $\mathscr{X} K \mathscr{Y}$ in \mathscr{C} and $\underline{\mathscr{C}} \underline{K} \mathscr{Y}$ in \mathscr{D} such that $J_{\mathscr{X}}{ }^{\circ} \underline{K} u=K \circ J_{\mathscr{y}}$. Emphasize that this condition determines \underline{K} uniquely.

If (K, \underline{K}) and (L, \underline{L}) are two morphisms from $\left(\mathscr{\mathscr { T }}, J_{x}\right)$ to $\left(\mathscr{Y}, J_{y}\right)$, then the transformation from (K, \underline{K}) to (L, \underline{L}) is a pair of transformations $K \rho L$ in \mathscr{C} and $\underline{K} \varrho \underline{L}$ in \mathscr{D}, where the last transformation is uniquely determined by condition $\rho \cdot e\left(J_{y}\right)=e\left(J_{x}\right) \cdot \rho$.

All S-universal pairs from objects in \mathscr{C} to the functor $\mathscr{D} u \mathscr{C}$, their morphisms and the transformations of morphisms together with composition of morphisms, composition and multiplication of transformations, identity morphisms and identity transformations, that are induced by those in \mathscr{C} and \mathscr{D}, from a 2-category (\mathscr{C}, u, S) of S-universal pairs from objects in \mathscr{C} to u.

Dually, the category (v, \mathscr{D}, S^{*}) of S-couniversal pairs from a 2-functor $\mathscr{C} v \mathscr{D}$ to objects in \mathscr{D} is defined.
6. Proposition. If the properties S_{M} and S_{T} are unitary and multiplicative both for the composites and for the products, then for any object \mathscr{X} in \mathscr{C} and any 2 functor $\mathscr{D} u \mathscr{C}$ the S-universal pair $\left(\mathscr{X}, J_{\underline{x}}\right)$ from \mathscr{X} to u is determined uniquely up to the isomorphism of the object $\underline{\mathscr{X}}$. More exactly,
(i) if ($\underline{x}^{\prime} J_{\underline{\mathscr{g}}}$) is another S-universal pair from \mathscr{X} to u and S_{M} is multiplicative for composites and unitary, then the only morphism $\underline{\mathscr{X}} \underline{J}_{\mathscr{o}} \underline{\mathscr{X}}$, satisfying S_{M} and $J_{\underline{\mathscr{x}}} \underline{J}_{\underline{\mathscr{x}}} u=J_{\underline{\mathscr{x}}}$, is the isomorphism;
(ii) if $\underline{\mathscr{X}} \underline{J} \underline{\mathscr{X}}$ is an isomorphism such that $\underline{J}, \underline{J}^{-1}, e(\underline{J}), e\left(\underline{J}^{-1}\right)$ have the properties S_{M} and S_{T} respectively, which are multiplicative for composites of morphisms and products of transformations, then $J_{\underline{\mathscr{x}}}=J_{\underline{\mathscr{x}}} \circ \underline{J}$ together with $\underline{\mathscr{X}}^{\text {' }}$ constitutes a S-universal pair from \mathscr{X} to u.
7. Proposition. Consider an arbitrary object \mathscr{X} in \mathscr{D}, an object \mathscr{X} and a morphism $\mathscr{X} J \mathscr{\mathscr { u }}$ in \mathscr{C}. Then for any object \mathscr{P} in \mathscr{D} the maps $\varphi_{M}: \mathscr{D}(\underline{\mathscr{X}} \mathscr{P})_{0} \rightarrow \mathscr{C}(\mathscr{X}, \mathscr{T})_{0}, \quad \underline{F} \mid \rightarrow J \circ F u$,
$\varphi_{T}: \mathscr{D}(\underline{F}, \underline{G}) \rightarrow \mathscr{C}\left(\underline{F} \varphi_{M}, \underline{G} \varphi_{M}\right), \underline{\xi} \| \rightarrow 1_{J} \cdot \xi$ for all $\underline{F}, \underline{G} \in \mathscr{D}(\underline{\mathscr{X}}, \mathscr{P})_{0}$ constitute a 1-functor of 1-categories $\varphi: \mathscr{D}(\mathscr{X}, \mathscr{P}) \rightarrow \mathscr{C}(\mathscr{X} ; \mathscr{P} u)$.

Dually, a functor $\varphi^{*}: \mathscr{C}(\mathscr{X}, \mathscr{P}) \rightarrow \mathscr{D}(\mathscr{T} v, \mathscr{P})$ is determined.
8. Proposition.
(a) The pair $\left(\underline{\mathscr{X}}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{T}} u)\right)$ is a S-universal pair from \mathscr{X} to u, if and only if the composants of the functor $\varphi=\left(\varphi_{M}, \varphi_{T}\right)$ associated with J have sections, i.e. left inverse maps

$$
\begin{gathered}
\psi_{M}: \mathscr{C}(\mathscr{X}, \mathscr{P} u)_{0} \rightarrow \mathscr{D}(\mathscr{X}, \mathscr{P})_{0} \\
\psi_{T}: \mathscr{C}\left(\underline{F} \varphi_{M}, \underline{G} \varphi_{M}\right) \rightarrow \mathscr{D}(\underline{F}, \underline{G}), \underline{F}, \underline{G} \in \mathscr{D}, \underline{\mathscr{X}} \in \mathscr{P}
\end{gathered}
$$

for all $\mathscr{P} \in \mathscr{D}_{0}$.
Moreover, one can take
(i) the property S_{M} for a functor \underline{F} is $\underline{F} \in \operatorname{Im} \psi_{M}$;
(ii) the property S_{T} for a transformation $\underline{F} \underline{\xi} \underline{G}$ with $\underline{F}, \underline{G} \in \underline{\mathscr{D}}(\underline{\mathscr{O}}, \mathscr{P})$ is $\xi \in \operatorname{Im} \psi_{T}$.
(b) The pair $\psi=\left(\psi_{M}, \psi_{T}\right)$ gives a functor from $\mathscr{C}(\mathscr{X} ; \mathscr{P} u)$ to $\mathscr{D}(\mathscr{X}, \mathscr{P})$, if and only if S_{T} is a unitary and multiplicative for composites property.

A dual necessary and sufficient condition is true for a S-couniversal pair $(\underline{\mathscr{P}}, \underline{\mathscr{P}} v) \mathrm{I} \mathscr{P}$ from v to \mathscr{P} and the pair of sections

$$
\begin{gathered}
\psi_{M}^{*}: \mathscr{D}(\mathscr{P}, \mathscr{P})_{0} \rightarrow \mathscr{C}(\mathscr{T}, \mathscr{P})_{0} \\
\psi_{T}^{*}: \mathscr{D}\left(\underline{U} \varphi_{M}^{*}, \underline{V} \varphi M^{*}\right) \mathrm{O}_{0} \rightarrow \mathscr{C}(U, V)_{0}, \quad U, V \in \mathscr{C}(\mathscr{X}, \mathscr{P})_{0}
\end{gathered}
$$

gives a functor from $\mathscr{D}(\mathscr{X} v, \mathscr{P})$ to $\mathscr{C}(\mathscr{X}, \mathscr{P})$, if and only if $S_{T}{ }^{*}$ is a multiplicative for composite and unitary property.
9. Let $\mathscr{D} u \mathscr{C}$ be an arbitrary 2-functor, $\underline{\mathscr{X}}$ and \mathscr{X} be arbitrary objects in \mathscr{D} and \mathscr{C} respectively.

Proposition. By assigning to each
(i) object $\mathscr{P} \in \mathscr{D}_{0}$ the objects $\mathscr{D}(\mathscr{X}, \mathscr{P})$ and $\mathscr{C}(\mathscr{X}, \mathscr{P} u)$;
(ii) morphism $\mathscr{P} U \mathscr{Q}$ in \mathscr{D} the morphisms.
(a) $\mathscr{D}(\underline{\mathscr{O}}, \mathrm{U}): \mathscr{D}(\underline{\mathscr{O}}, \mathscr{P}) \rightarrow \mathscr{D}(\underline{\mathscr{T}}, \mathscr{2})$ such that $\underline{F} \mid \rightarrow \underline{F} \circ U$, $\underline{F} \underline{\xi} \underline{G} \mid \rightarrow(\underline{F} \circ U)\left(\underline{\xi} \cdot 1_{U}\right)(\underline{G} \circ U) ;$
(b) $\mathscr{C}(\mathscr{X}, U u): \mathscr{C}(\mathscr{X}, \mathscr{A} u) \rightarrow \mathscr{C}(\mathscr{X}, \mathscr{2} u)$ such that $F \mid \rightarrow F \circ U u$,
$F \xi G \mid \rightarrow(F \circ U u)\left(\xi \cdot 1_{U u}\right)(G \circ U u)$.
(iii) transformation $U \kappa V$ with $U, V \in \mathscr{D}(\mathscr{P}, \mathscr{Q})$ the transformations
(a) $\mathscr{D}(\underline{\mathscr{X}}, \kappa): \quad \mathscr{D}(\underline{\mathscr{X}}, U) \rightarrow \mathscr{D}(\underline{\mathscr{X}}, V)$ such that for any $\underline{F} \in \mathscr{D}(\underline{\mathscr{X}}, \mathscr{P})$ $\mathscr{D}(\underline{\mathscr{O}}, \kappa)_{\underline{E}}=1_{\underline{E}} \cdot \kappa . \underline{F} \circ U \mid \rightarrow \underline{F} \circ V ;$
(b) $\mathscr{C}(\mathscr{X}, \kappa \cup): \mathscr{C}(\mathscr{X}, U u) \rightarrow \mathscr{C}(\mathscr{X}, V u)$ such that for any $F \in \mathscr{C}(\mathscr{X}, \mathscr{R} u)$ $\mathscr{C}(\mathscr{X}, \kappa \boldsymbol{\kappa})_{F}==1_{F} \cdot \kappa и: F \circ U u \rightarrow F \circ V u$, we define 2 -functors $\mathscr{D}\{(\underline{\mathscr{C}} \cdot \cdot)$ and $\mathscr{O}(\mathscr{X}, \cdot u)$ from \mathscr{D} to Cat.

Dually, the 2-functors $\mathscr{P}(\cdot v, \mathscr{P})$ and $\mathscr{C}(\cdot, \mathscr{P})$ from $\mathscr{C}^{p p}$ to Cat are defined. So, if $\mathscr{C V D}$ and $\mathscr{D} U \mathscr{C}$ are arbitrary 2 -functors, then we have two 2-bifunctors $\mathscr{D}(\cdot v, \cdot)$ and $\mathscr{G}(\cdot, \underline{U})$ from $\mathscr{C} \mathscr{C}^{p} \times \mathscr{D}$ to Cat.

10. Proposition.

(a) Let $\mathscr{D} u \mathscr{C}$ be an arbitrary 2-functor, \mathscr{X} and $\underline{\mathscr{X}}$ be arbitrary objects in \mathscr{C} and \mathscr{D} respectively, $\mathscr{X} J(\underline{\mathscr{C}} u)$ be an arbitrary morphism. Then the system of functors φ for all $\mathscr{P} \in \mathscr{D}_{0}$ constitutes a natural 2-transformation $\varphi: \mathscr{D}(\mathscr{X}, \cdot) \rightarrow$ $\rightarrow \mathscr{C}(\mathscr{X}, \cdot u)$ of 2-functors from \mathscr{D} to Cat.
(b) If $(\mathscr{X}, \mathscr{X} J(\underline{\mathscr{X}} u))$ is a S-universal pair from \mathscr{X} to u, then the system of pairs $\psi=\left(\psi_{M}, \psi_{T}\right)$ for all $\mathscr{P} \in \mathscr{D}_{0}$ is natural in the second variable. It gives a natural 2-transformation $\psi: \mathscr{C}(\mathscr{X}, \cdot u) \rightarrow \mathscr{D}(\mathscr{\mathscr { O }} \cdot \bullet)$ of 2 -functors from \mathscr{D} to Cat, if the property S_{T} is unitary and multiplicative for composites.
11. Theorem. Given a 2-functor $\mathscr{D} u \mathscr{C}$, objects \mathscr{X} in \mathscr{C} and $\mathscr{\mathscr { V }}$ in \mathscr{D}, then there exists a canonical bijection between all
(i) S-universal pairs ($\mathscr{\mathscr { C }}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{X}} u)$) with a unitary and multiplicative for composites property S_{T};
(ii) pairs (φ, ψ), consisting of natural 2-transformations

$$
\varphi: \mathscr{D}(\mathscr{X}, \cdot) \rightarrow \mathscr{C}(\mathscr{X}, \cdot u), \psi: \mathscr{C}(\mathscr{X}, \cdot u) \rightarrow \mathscr{D}(\mathscr{X}, \cdot u)
$$

of 2-functors from \mathscr{D} to Cat, satisfying the condition $\psi^{\circ} \varphi=1$.
Dually, given a 2 -functor $\mathscr{C} v \mathscr{D}$, objects \mathscr{P} in \mathscr{D} and \mathscr{P} in \mathscr{C} there exists a canonical bijection between all
(i) S^{*}-couniversal pairs $\$\left(\underline{P}, \mathscr{A} I_{\mathscr{P}} \underline{\mathscr{P})}\right)$ with a unitary and multiplicative for property $S_{T}{ }^{*}$;
(ii) pairs of natural 2-transformations

$$
\varphi^{*}: \mathscr{C}(\cdot, \mathscr{P}) \rightarrow \mathscr{D}(\cdot v, \underline{P}), \psi^{*}: \mathscr{D}(\cdot v, \underline{P}) \rightarrow \mathscr{C}(\cdot, \mathscr{P})
$$

of 2 -functors from \mathscr{C} to $\mathbf{C a t}$ such that $\psi^{*} \circ \varphi^{*}=1$.
12. We denote by \mathscr{C}_{u} the full 2 -subcategory of \mathscr{C}, for which the objects are all objects \mathscr{X} in \mathscr{C} such that there is a S-universal pair ($\mathscr{X}, \mathscr{X} J(\mathscr{O} u))$ from \mathscr{X} to u and $\gamma: \mathscr{C}_{u} \rightarrow \mathscr{C}$ is the canonical embedding.

Fix a S-universal pair ($\mathscr{X}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{X}} u)$) from \mathscr{X} to u for any object \mathscr{X} in \mathscr{C}_{u}. Then assigning to each
(i) object \mathscr{X} the object \mathscr{X};
(ii) morphism $\mathscr{X} K \mathscr{Y}$ the morphism $\mathscr{\mathscr { X }} \underline{K} \mathscr{Y}$, which is uniquely determined by condition $\mathrm{J}_{\mathscr{x}} \circ \underline{K} u=K \circ J_{y}$ and the property S_{M};
(iii) transformation $(\mathscr{T} K \mathscr{Y}) \rho(\mathscr{X} L \mathscr{Y})$ the transformation $(\mathscr{\mathscr { X }} \underline{\mathscr{Z}}) \varrho(\mathscr{X} \underline{L} \mathscr{Z})$, which is uniquely determined by properties $\rho \cdot e\left(J_{y}\right)=e\left(J_{9}\right) \cdot \rho u$ and S_{T};
(iv) object \mathscr{X} the morphism $\mathscr{X} J_{\mathscr{X}} \mathscr{O}(v \circ u)$ we get a 2 -functor $\mathscr{C}_{u} v \mathscr{D}$ and a natural 2-transformation from γ to $v \circ u$.

In the dual case we denote by \mathscr{D}^{ν} the full 2 -subcategory of \mathscr{D} defined by all objects \mathscr{P} in \mathscr{D} such that there is a S^{*}-couniversal pair $\left.(\underline{\mathscr{P}}, \underline{P} v) I \mathscr{P}\right)$ from $\mathscr{C} v \mathscr{D}$ to \mathscr{P} and by $\delta: \mathscr{D}^{\mathrm{v}} \rightarrow \mathscr{D}$ the canonical embedding. Then the 2 -functor $\mathscr{D}^{v} u \mathscr{C}$ and the natural 2-transformation from $u \circ v$ to δ are similarly determined.
13. Let $\mathscr{C}_{u} v \mathscr{D}$ be the 2 -functor associated with a system of fixed S-universal pairs from all $\mathscr{X} \in\left(\mathscr{C}_{u}\right)_{0}$ to u. Suppose that S_{T} is unitary and multiplicative for composite property. Then for any object \mathscr{P} in \mathscr{X} the systems of functors

$$
\varphi: \mathscr{D}(\mathscr{X v}, \mathscr{P}) \rightarrow \mathscr{C}(\mathscr{X}, \mathscr{R} u), \quad \psi: \mathscr{C}(\mathscr{X}, \mathscr{R}), \rightarrow \mathscr{D}(\mathscr{P} v, \mathscr{P}) \text { for all } \mathscr{X} \in \mathscr{C}_{0}
$$

constitute the natural 2 -transformations

$$
\varphi: \mathscr{D}(\cdot v, \mathscr{A}) \rightarrow \mathscr{C}(\cdot, \mathscr{P} u), \psi: \mathscr{A}(\cdot, \mathscr{P} u) \rightarrow \mathscr{D}(\cdot v, \mathscr{A})
$$

of 2 -functors from $\mathscr{C}_{u}^{o p}$ to Cat.
Dual assertions are true for the 2 -functor $\mathscr{D}^{V} u \mathscr{C}$ associated with a system of fixed S^{*}-couniversal pairs from $\mathscr{C} v \mathscr{D}$ to all $\mathscr{P} \in\left(\mathscr{D}^{V}\right)_{0}$.
14. Theorem. Given a 2 -functor $\mathscr{D} u \mathscr{C}$ and a full 2 -subcategory \mathscr{E} of \mathscr{C} with an embedding functor $\mathscr{E} \gamma \mathscr{C}$, there exists a canonical bijection between all
(i) pairs (v, J), where $\mathscr{E} v \mathscr{D}$ is a 2 -functor and $J: \gamma \rightarrow v \circ u$ is a natural 2-transformation such that for any $\mathscr{X} \in \mathscr{E}_{0},\left(\mathscr{T} v, \mathscr{X} J_{X} \mathscr{O}(v \circ u)\right)$ is a S-universal pair from \mathscr{X} to u with unitary and multiplicative for property S_{T};
(ii) triples (v, φ, ψ), where $\mathscr{E} v \mathscr{D}$ is a 2 -functor,

$$
\varphi: \mathscr{D}(\cdot v, \cdot) \rightarrow \mathscr{C}(\cdot, \cdot u), \quad \psi: \mathscr{C}(\cdot, \cdot u) \rightarrow \mathscr{D}(\cdot v, \cdot)
$$

are binatural 2-transformations of 2-functors from $\mathscr{E}^{\text {op }} \times \mathscr{D}$ to Cat such that $\psi \circ \varphi=1$.

A similar canonical bijection exists in the dual case for a 2 -functor $\mathscr{C} \mathcal{D}$ and a full 2 -subcategory \mathscr{F} of \mathscr{D} with an embedding functor $\mathscr{F} \delta \mathscr{D}$.
15. Remarks.
(a) In the case, when all morphisms and transformations of the category \mathscr{D} have the property S, we have both equalities $\psi \circ \varphi=1$ and $\varphi \circ \psi=1$. Consequently, in this case φ is a bijection, ψ is the inverse bijection, therefore, ψ is functorial and φ, ψ determine reciprocally inverse isomorphisms of natural 2-transformations. In general case we have not $\varphi \circ \psi=1$, but only $(\varphi \circ \psi)^{2}=\varphi \circ \psi$. The similar remark is correct in S^{*}-couniversal case.
(b) There is a simple method to reduce the results and notions for 2-categories to 1 -categories by interpreting 1 -categories as trivial 2 -categories, which have only identity transformations.

Received 03.11.2010

REFERENCES

1. Samuel P. Bull. Am. Math. Soc., 1948, v. 54, p. 591-598.
2. Bourbaki N. Élément de Mathématique. V. VII, Algebre, Livre I, Structures, ch. 4. Paris: Hermann, 1948.
3. Grothendieck A. Lecture Notes in Math., bf 269. Springer-Verlag, 1972.
4. Dalalyan S.H. Izv. NAN Armenii. Matematica, 2011, v. 46, № 1, p. 1-12 (in Russian).
5. Gray J.W. Lecture Notes in Math., bf 10. Berlin-Heidelberg-New York: Springer, 1974.
6. Bénabou J. Lecture Notes in Math. Berlin-Heidelberg-New York: Springer, 1967, v. 47, p. 1-77.
7. Gabriel P., Zisman M. Calculus of Fractions and Homotopy Theory. Ergeb. der Math. und ihre Grenzgebiete. Berlin-Heidelberg-New York: Springer, 1967.

[^0]: * E-mail: dalalyan@ysu.am

