Physical and Mathematical Sciences

2011, № 2, p. 39–44

Mathematics

S-UNIVERSALITY IN 2-CATEGORIES

S. H. DALALYAN*

Chair of Algebra and Geometry, YSU

For 2-categories the notion of S-universality is introduced and investigated.

Keywords: 2-categories, 2-functors, 2-transformations, S-universal morphisms.

"The bold step of really formulating the general notion of a universal arrow was taken by Samuel [1] in 1948; the general notion was then lavishly popularized by Bourbaki [2]". In order to interpret Grothendieck's extension of the fundamental theorem of Galois theory [3] in abstract categories more general notions than the universality is required [4]. Here this notion of S-universality for 2-categories is introduced and investigated. Firstly, we give the definitions of 2-categories, 2-functors and 2-transformations in a form, which is convenient for our goals. For comparison see [5–7].

1. A 2-category *C* consists of a date base, satisfying some system of axioms. The date base for 2-categories is defined as follows:

(i) an arbitrary set of objects $\mathscr{C}_0 = \operatorname{Ob} \mathscr{C}$;

(ii) sets $\mathscr{C}(\mathscr{X}, \mathscr{Y})_0 = \operatorname{Mor}_{\mathscr{C}}(\mathscr{X}, \mathscr{Y})$ of morphisms $\mathscr{X} F \mathscr{Y}$ from \mathscr{X} to \mathscr{Y} for all $\mathscr{X}, \mathscr{Y} \in \operatorname{Ob} \mathscr{C}$,

(iii) sets $\mathscr{C}(F, G) = \text{Trans}(F, G)$ of transformations (or morphisms of rank 2) $F \notin G$ for all $F, G \in \mathscr{C}(\mathcal{X}, \mathcal{Y})_0$ and for all $\mathscr{X}, \mathscr{Y} \in \text{Ob } \mathscr{C}$,

(cm) a composite map for morphisms $F \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_0$ and $K \in \mathscr{C}(\mathscr{Y}, \mathscr{X})_0$ with $F \circ K \in \mathscr{C}(\mathscr{X}, \mathscr{X})_0$, where $\mathscr{X}, \mathscr{Y}, \mathscr{X} \in \text{Ob } \mathscr{C}$;

(ct) a composite map for transformations $\xi \in \mathscr{C}(F, G)$ and $\eta \in \mathscr{C}(G, H)$ with $\xi \circ \eta \in \mathscr{C}(F, H)$, where $F, G, H \operatorname{run} \mathscr{C}(\mathscr{X}, \mathscr{Y})_0$ and $\mathscr{X}, \mathscr{Y} \operatorname{run} \operatorname{Ob} \mathscr{C}$,

(mt) a multiplication map for transformations $\xi \in \mathscr{C}(F, G)$ and $\rho \in \mathscr{C}(K, L)$ with $\xi \cdot \rho \in \mathscr{C}(F \circ K, G \circ L)$, where F, G run $\mathscr{C}(\mathscr{D}, \mathscr{Y})_0$, K, L run $\mathscr{C}(\mathscr{Y}, \mathscr{X})_0$ and $\mathscr{D}, \mathscr{Y}, \mathscr{X} \in \text{Ob } \mathscr{C}$;

(im) a system of identity morphisms $e(\mathcal{X}) = 1_{\mathcal{X}} \in \mathscr{C}(\mathcal{X}, \mathcal{Y})_0$ for any $\mathcal{X} \in \text{Ob } \mathscr{C}$;

(it) for any $F \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_0$ and any $\mathscr{X}, \mathscr{Y} \in \text{Ob } \mathscr{C}$ a system of identity transformations $1_F \in \mathscr{C}(F, G)$.

^{*} E-mail: dalalyan@ysu.am

This date base of the 2-category must satisfy the following system of axioms:

1) $F \circ (K \circ R) = (F \circ K) \circ R;$ 2) $1_{\mathscr{X}} \circ F = F = F \circ 1_{\mathscr{Y}};$ 3) $\xi \circ (\eta \circ \zeta) = (\xi \circ \eta) \circ \zeta;$ 4) $1_{F \circ} \xi = \xi = \xi \circ 1_{G};$ 5) $\xi \cdot (\rho \cdot \alpha) = (\xi \cdot \rho) \cdot \alpha;$ 6) $1_{e(\mathscr{Y})} \cdot \xi = \xi \cdot 1_{e(\mathscr{Y})};$ 7) $(\xi \circ \eta) \cdot (\rho \circ \sigma) = (\xi \cdot \rho) \circ (\eta \cdot \sigma);$ 8) $1_{F} \cdot 1_{K} = 1_{F \circ K},$ for transformations $\xi \in \mathscr{C}(F, G), \eta \in \mathscr{C}(G, H), \zeta \in \mathscr{C}(H, A), \rho \in \mathscr{C}(K, L),$ $\sigma \in \mathscr{C}(L, M), \alpha \in \mathscr{C}(R, S),$ for morphisms $F, G, H, A \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_{0},$ $K, L, M \in \mathscr{C}(\mathscr{Y}, \mathscr{X})_{0}, R, S \in \mathscr{C}(\mathscr{X}, \mathscr{H})_{0}$ and objects $\mathscr{X}, \mathscr{Y}, \mathscr{X}, \mathscr{H} \in \text{Ob} \, \mathscr{C}.$

The system of all morphisms of the 2-category \mathscr{C} is denoted by $\operatorname{Mor}_{\mathscr{C}}$ or \mathscr{C}_M , the system of all transformations of \mathscr{C} is denoted by $\operatorname{Trans}_{\mathscr{C}}$ or \mathscr{C}_T . If \mathscr{C} is the 2-category, then for any objects \mathscr{D} , \mathscr{Y} of \mathscr{C} the sets $\mathscr{C}(\mathscr{D}, \mathscr{Y})_0$ and $\mathscr{C}(F, G)$ for all $F, G \in \mathscr{C}(\mathscr{D}, \mathscr{Y})_0$ constitute a usual category (or 1-category), which is denoted as $\mathscr{C}(\mathscr{D}, \mathscr{Y})$. A well-known example of a 2-category is the 2-category **Cat** of categories, covariant functors and natural transformations.

2. Let \mathscr{C} and \mathscr{D} be arbitrary 2-categories. A 2-functor \varPhi from \mathscr{C} to \mathscr{D} is given by

(i) a map $\Phi_0: \mathscr{C}_0 \to \mathscr{D}_0;$

(ii) maps $\Phi_{\mathcal{Y}} : \mathscr{C}(\mathscr{X}, \mathscr{Y})_0 \to \mathscr{D}(\mathscr{X}\Phi_0, \mathscr{Y}\Phi_0)_0$ for all $\mathscr{X}, \mathscr{Y} \in \text{Ob } \mathscr{C}$;

(iii) maps $\Phi_{FG}: \mathscr{C}(F, G) \to \mathscr{D}(F\Phi_{\mathscr{Y}}, \mathscr{G}\Phi_{\mathscr{Y}})$ for all $F, G \in \mathscr{C}(\mathscr{X}, \mathscr{Y})_0$ and $\mathscr{X}, \mathscr{Y} \in Ob \mathscr{C}$,

which satisfy the following conditions:

1) $(F \circ K) \ \Phi_{\mathscr{D}\mathscr{I}} = F \ \Phi_{\mathscr{D}\mathscr{I}} \circ K \ \Phi_{\mathscr{I}\mathscr{I}};$ 3) $(\xi \circ \eta) \ \Phi_{FH} = (\xi \ \Phi_{FG}) \circ (\eta \ \Phi_{GH});$ 5) $(\xi \cdot \rho) \ \Phi_{(F \circ K)(G \circ L)} = \xi \ \Phi_{FG} \cdot \rho \ \Phi_{KL}.$ 2) $e(\mathscr{D}) \ \Phi_{\mathscr{D}\mathscr{D}} = e(\mathscr{D} \ \Phi_{\mathscr{D}});$ 4) $e(F) \ \Phi_{FF} = e(F \ \Phi_{\mathscr{D}});$

Remark. The condition of naturality in Gray [8] follows from the conditions 2) and 5). Further the subscripts of the 2-functor are often omitted.

3. A natural 2-transformation J of a 2-functor $\mathscr{C} \Phi \mathscr{D}$ into a 2-functor $\mathscr{C} \Psi \mathscr{D}$ is a map $J_0: \operatorname{Ob} \mathscr{C} \to \operatorname{Mor} \mathscr{D}$ such that

(a0) $J_0(\mathscr{X})$ is a morphism $(\mathscr{X} \Phi) J_{\mathscr{X}}(\mathscr{X} \Psi)$ for any $\mathscr{X} \in \text{Ob } \mathscr{C}$;

(a1) $F \Phi \circ J_{\mathcal{Y}} = J_{\mathfrak{X}} \circ F \Psi$ for any $\mathscr{X}F \mathscr{Y} \in Mor \mathscr{C}$;

(a2) $\xi \Phi \cdot e(J_{\mathcal{Y}}) = e(J_{\mathcal{X}}) \cdot \xi \Psi$ for any $(F \xi G) \in \text{Trans } \mathcal{C}, F$ and $\in \mathcal{C}(\mathcal{X}, \mathcal{Y})_0$.

Then one can define a map J_T : Trans $\mathscr{C} \to$ Trans \mathscr{D} such that $J_T (F \xi G)$, where $F, G \in \mathscr{C}(\mathscr{D}, \mathscr{Y})_0$, is the transformation $J_{\xi} = \xi \Phi \cdot e(J_{\mathscr{Y}}) = e(J_{\mathscr{D}}) \cdot \xi \Psi$ of the functor $F \Phi \circ J_{\mathscr{Y}} = J_{\mathscr{X}} \circ F \Psi$ into the functor $G \Phi \circ J_{\mathscr{Y}} = J_{\mathscr{X}} \circ G \Psi$, which both are functors from $\mathscr{D} \Phi$ to $\mathscr{Y} \Psi$.

This map satisfies the following equalities:

(b1) $\boldsymbol{J}_T(1_F) = \boldsymbol{e}(F\boldsymbol{\Phi} \circ \boldsymbol{J}_{\mathcal{Y}}) = \boldsymbol{e}(\boldsymbol{J}_{\mathcal{X}}) \circ F\boldsymbol{\Psi};$

(b2) $\boldsymbol{J}_T((F \xi G) \circ (G \eta H)) = \boldsymbol{J}_T(\xi) \circ \boldsymbol{J}_T(\eta);$

(b3) $J_T((F \xi G) \cdot (K \rho L)) = J_T(\xi) \cdot \rho \Psi = \xi \Phi \cdot J_T(\rho)$

for any $F, G, H \in \mathcal{C}(\mathcal{D}, \mathcal{Y})$, for any $K, L \in \mathcal{C}(\mathcal{Y}, \mathcal{X})$ and for any $\mathcal{D}, \mathcal{Y}, \mathcal{X} \in Ob \mathcal{C}$.

Further, the notion of S-universal morphisms is introduced and investigated. 4. Let S_M be a property of morphisms, S_T be a property of transformations.

Usually we suppose that the properties S are

(u) unitary: any identity element (morphism or transformation) has the property *S*;

(m) multiplicative: the composite (resp., product) of morphisms or transformations has the property S, if each composant has this property.

Naturally, any property S for an element x can be expressed in the form $x \in \mathcal{M}_S$, where \mathcal{M}_S is the set of all elements satisfying the property S.

5. Definition. Let \mathscr{C} and \mathscr{D} be arbitrary 2-categories, S_M and S_T be arbitrary properties of morphisms and transformations respectively. Let $\mathscr{D}u\mathscr{C}$ be a 2-functor and \mathscr{X} be an object in \mathscr{C} . Then a pair $(\mathscr{D}, \mathscr{X} \ J_{\mathscr{X}}(\mathscr{D}u))$, consisting of an object \mathscr{D} in \mathscr{D} and a morphism $J_{\mathscr{X}}$ in \mathscr{C} , is called S-universal pair from \mathscr{X} to u, if

(i) for any object \mathscr{P} in \mathscr{D} and for any morphism $\mathscr{X} F(\mathscr{P}u)$ in \mathscr{C} there is a unique morphism $\mathscr{X} \underline{F} \mathscr{P}$ with property S_M such that $J_{\mathscr{X}} \circ \underline{F}u = F$;

(ii) for any two morphisms F and G from \mathscr{X} to $\mathscr{P}u$ and for any transformation $F \xi G$ there is the only transformation $\underline{F} \xi \underline{G}$ with the property S_T and such that $e(J_{\mathscr{P}} \cdot \underline{\xi}u) = \xi$.

Dually, the S-couniversality is defined. Note, that if all morphisms and transformations in \mathcal{D} satisfy respectively the properties S_M and S_T , we get the usual definition of (co)universality.

Let $(\underline{\mathscr{X}}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{X}} u))$ and $(\underline{\mathscr{Y}}, \underline{\mathscr{Y}} J_{\mathscr{Y}}(\underline{\mathscr{Y}} u))$ be two S-universal pairs respectively from \mathscr{X} and \mathscr{Y} to $\mathscr{C}u\mathscr{D}$. A morphism from $(\underline{\mathscr{X}}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{Y}} u))$ to $(\underline{\mathscr{Y}}, \underline{\mathscr{Y}} J_{\mathscr{Y}}(\underline{\mathscr{Y}} u))$ is a pair of morphisms $\mathscr{X} K \mathscr{Y}$ in \mathscr{C} and $\underline{\mathscr{X}} K \mathscr{Y}$ in \mathscr{D} such that $J_{\mathscr{X}} \circ \underline{K} u = K \circ J_{\mathscr{Y}}$. Emphasize that this condition determines \underline{K} uniquely.

If (K, \underline{K}) and (L, \underline{L}) are two morphisms from $(\underline{\mathscr{D}}; J_{\mathscr{D}})$ to $(\mathcal{Y}, J_{\mathscr{Y}})$, then the transformation from (K, \underline{K}) to (L, \underline{L}) is a pair of transformations $K\rho L$ in \mathscr{C} and $\underline{K} \rho \underline{L}$ in \mathscr{D} , where the last transformation is uniquely determined by condition $\rho \cdot e(J_{\mathscr{Y}}) = e(J_{\mathscr{D}}) \cdot \rho$.

All S-universal pairs from objects in \mathscr{C} to the functor $\mathscr{D}u\mathscr{C}$, their morphisms and the transformations of morphisms together with composition of morphisms, composition and multiplication of transformations, identity morphisms and identity transformations, that are induced by those in \mathscr{C} and \mathscr{D} , from a 2-category (\mathscr{C} , u, S) of S-universal pairs from objects in \mathscr{C} to u.

Dually, the category (v, \mathcal{D}, S^*) of S-couniversal pairs from a 2-functor $\mathscr{C}v\mathscr{D}$ to objects in \mathscr{D} is defined.

6. Proposition. If the properties S_M and S_T are unitary and multiplicative both for the composites and for the products, then for any object \mathscr{X} in \mathscr{C} and any 2-functor $\mathscr{D} u \mathscr{C}$ the S-universal pair $(\mathscr{D}, J_{\mathscr{X}})$ from \mathscr{X} to u is determined uniquely up to the isomorphism of the object \mathscr{X} . More exactly,

(i) if $(\underline{\mathscr{D}}^{*}J_{\underline{\mathscr{D}}^{*}})$ is another S-universal pair from \mathscr{X} to u and S_{M} is multiplicative for composites and unitary, then the only morphism $\underline{\mathscr{D}} \ \underline{J}_{\underline{\mathscr{D}}^{*}} \ \underline{\mathscr{D}}^{*}$, satisfying S_{M} and $J_{\underline{\mathscr{D}}} \circ \underline{J}_{\underline{\mathscr{D}}^{*}} \ u = J_{\underline{\mathscr{D}}^{*}}$, is the isomorphism;

(ii) if $\underline{\mathscr{X}} \ \underline{J} \ \underline{\mathscr{X}}^*$ is an isomorphism such that $\underline{J}, \ \underline{J}^{-1}, \ e(\underline{J}), \ e(\underline{J}^{-1})$ have the properties S_M and S_T respectively, which are multiplicative for composites of morphisms and products of transformations, then $J_{\underline{\mathscr{X}}} = J_{\underline{\mathscr{X}}} \circ \underline{J}$ together with $\underline{\mathscr{X}}^*$ constitutes a S-universal pair from \mathscr{X} to u.

7. Proposition. Consider an arbitrary object $\underline{\mathscr{X}}$ in \mathscr{D} , an object \mathscr{X} and a morphism $\mathscr{X}J \underline{\mathscr{A}}u$ in \mathscr{C} . Then for any object \mathscr{P} in \mathscr{D} the maps

 $\varphi_{M}: \mathcal{D}(\underline{\mathcal{X}}, \mathcal{P})_{0} \to \mathscr{C}(\mathcal{X}, \mathcal{P}u)_{0}, \quad \underline{F} \mid \to J \circ Fu,$

 $\varphi_T: \mathcal{D}(\underline{F},\underline{G}) \to \mathscr{C}(\underline{F},\varphi_M,\underline{G}\varphi_M), \ \underline{\xi} \parallel \to 1_J \cdot \underline{\xi} \text{ for all } \underline{F}, \ \underline{G} \in \mathcal{D}(\underline{\mathscr{X}},\mathscr{P}_0)$

constitute a 1-functor of 1-categories φ : $\mathcal{D}(\underline{\mathscr{X}}, \mathscr{P}) \rightarrow \mathscr{C}(\mathfrak{X}, \mathscr{P}u)$.

Dually, a functor $\varphi^* \colon \mathscr{C}(\mathscr{X}, \underline{\mathscr{P}}) \to \mathscr{D}(\mathscr{X}v, \mathscr{P})$ is determined.

8. Proposition.

(a) The pair $(\underline{\mathscr{X}}, \mathscr{X} J_{\mathscr{X}}(\underline{\mathscr{Y}} u))$ is a *S*-universal pair from \mathscr{X} to u, if and only if the composants of the functor $\varphi = (\varphi_M, \varphi_T)$ associated with *J* have sections, i.e. left inverse maps

$$\begin{array}{cccc} \psi_{M} & \mathcal{C}(\mathscr{X}, \mathscr{P}u)_{0} \to \mathscr{D}(\mathscr{\underline{X}}, \mathscr{P})_{0}, \\ \psi_{T} & \mathcal{C}(\underline{F} \ \varphi_{M}, \ \underline{G} \ \varphi_{M}) \to \mathscr{D}(\underline{F}, \ \underline{G}), \ \underline{F}, \ \underline{G} \in \mathscr{D}, \ \underline{\mathscr{X}} \in \mathscr{I} \end{array}$$

for all $\mathscr{P} \in \mathscr{D}_0$.

Moreover, one can take

(i) the property S_M for a functor \underline{F} is $\underline{F} \in \text{Im } \psi_M$;

(ii) the property S_T for a transformation $\underline{F} \not\subseteq \underline{G}$ with $\underline{F}, \underline{G} \in \underline{\mathcal{D}} (\underline{\mathcal{X}}, \mathcal{P})$ is $\underline{\mathcal{E}} \in \text{Im } \psi_T$.

(b) The pair $\psi = (\psi_M, \psi_T)$ gives a functor from $\mathscr{C}(\mathscr{X} \mathscr{P} u)$ to $\mathscr{D}(\mathscr{X}, \mathscr{P})$, if and only if S_T is a unitary and multiplicative for composites property.

A dual necessary and sufficient condition is true for a S-couniversal pair $(\underline{\mathscr{P}}, \underline{\mathscr{P}}v) \ I \ \mathscr{P}$ from v to \mathscr{P} and the pair of sections

 ψ_M^* : $\mathscr{D}(\mathscr{X}v,\mathscr{P})_0 \to \mathscr{C}(\mathscr{X},\mathscr{P})_0,$

 ψ_T^* : $\mathscr{D}(\underline{U} \, \varphi_M^*, \underline{V} \, \varphi M^*) \mathcal{O}_0 \rightarrow \mathscr{C}(U, V)_0, \quad U, V \in \mathscr{C}(\mathscr{Q}, \underline{\mathscr{P}})_0$

gives a functor from $\mathcal{D}(\mathcal{X}, \mathcal{P})$ to $\mathcal{C}(\mathcal{X}, \mathcal{P})$, if and only if S_T^* is a multiplicative for composite and unitary property.

9. Let $\mathcal{D} \ u \ \mathcal{C}$ be an arbitrary 2-functor, $\underline{\mathcal{X}}$ and \mathcal{X} be arbitrary objects in \mathcal{D} and \mathcal{C} respectively.

Proposition. By assigning to each

(i) object $\mathscr{P} \in \mathscr{D}_0$ the objects $\mathscr{D}(\mathscr{X}, \mathscr{P})$ and $\mathscr{C}(\mathscr{X}, \mathscr{P}u)$;

(ii) morphism $\mathcal{P}U\mathcal{Q}$ in \mathcal{D} the morphisms.

(a) $\mathscr{D}(\underline{\mathscr{X}}; U): \mathscr{D}(\underline{\mathscr{X}}; \mathscr{P}) \to \mathscr{D}(\underline{\mathscr{X}}; \mathscr{D})$ such that $\underline{F} \mid \to \underline{F} \circ U$, $\underline{F} \not\subseteq \underline{G} \mid \to (\underline{F} \circ U) (\underline{\xi} \cdot 1_U) (\underline{G} \circ U);$

(b) $\mathscr{C}(\mathscr{X}, Uu)$: $\mathscr{C}(\mathscr{X}, \mathscr{P}u) \to \mathscr{C}(\mathscr{X}, \mathscr{Q}u)$ such that $F \mid \to F \circ Uu$,

 $F \xi G \mapsto (F \circ Uu) (\xi \cdot 1_{Uu}) (G \circ Uu).$

(iii) transformation $U \kappa V$ with $U, V \in \mathcal{D}(\mathcal{P}, \mathcal{D})$ the transformations

(a) $\mathscr{D}(\underline{\mathscr{X}}, \kappa)$: $\mathscr{D}(\underline{\mathscr{X}}, U) \to \mathscr{D}(\underline{\mathscr{X}}, V)$ such that for any $\underline{F} \in \mathscr{D}(\underline{\mathscr{X}}, \mathscr{P})$ $\mathscr{D}(\underline{\mathscr{X}}, \kappa)_{\underline{F}} = 1_{\underline{F}} \cdot \kappa \cdot \underline{F} \circ U \mid \to \underline{F} \circ V;$

(b) $\mathscr{C}(\mathscr{X}, \kappa u)$: $\mathscr{C}(\mathscr{X}, Uu) \to \mathscr{C}(\mathscr{X}, Vu)$ such that for any $F \in \mathscr{C}(\mathscr{X}, \mathscr{P}u)$ $\mathscr{C}(\mathscr{X}, \kappa u)_F = = 1_F \cdot \kappa u$: $F \circ Uu \to F \circ Vu$, we define 2-functors $\mathscr{D}\{(\mathscr{X}, \cdot)\}$ and $\mathscr{C}(\mathscr{X}, \cdot u)$ from \mathscr{D} to **Cat**.

Dually, the 2-functors $\mathcal{D}(\cdot v, \mathcal{P})$ and $\mathcal{C}(\cdot, \mathcal{P})$ from \mathcal{C}^{op} to **Cat** are defined. So, if $\mathcal{C}v\mathcal{D}$ and $\mathcal{D}u\mathcal{C}$ are arbitrary 2-functors, then we have two 2-bifunctors $\mathcal{D}(\cdot v, \cdot)$ and $\mathcal{C}(\cdot, \underline{\cdot U})$ from $\mathcal{C}^{op} \times \mathcal{D}$ to **Cat**.

10. Proposition.

(a) Let $\mathcal{D} u \mathscr{C}$ be an arbitrary 2-functor, \mathscr{X} and \mathscr{X} be arbitrary objects in \mathscr{C} and \mathscr{D} respectively, $\mathscr{X} J (\mathscr{X} u)$ be an arbitrary morphism. Then the system of functors φ for all $\mathscr{P} \in \mathscr{D}_0$ constitutes a natural 2-transformation $\varphi: \mathscr{D}(\mathscr{X}, \cdot) \to \mathscr{C}(\mathscr{X}, \cdot u)$ of 2-functors from \mathscr{D} to **Cat**.

(b) If $(\underline{\mathscr{X}}, \mathscr{X}J(\underline{\mathscr{X}}u))$ is a S-universal pair from \mathscr{X} to u, then the system of pairs $\psi = (\psi_M, \psi_T)$ for all $\mathscr{P} \in \mathscr{D}_0$ is natural in the second variable. It gives a natural 2-transformation $\psi : \mathscr{C}(\mathscr{X}, \cdot u) \to \mathscr{D}(\underline{\mathscr{X}}, \cdot)$ of 2-functors from \mathscr{D} to **Cat**, if the property S_T is unitary and multiplicative for composites.

11. Theorem. Given a 2-functor $\mathcal{D} u \mathcal{C}$, objects \mathcal{X} in \mathcal{C} and $\underline{\mathcal{X}}$ in \mathcal{D} , then there exists a canonical bijection between all

(i) S-universal pairs $(\underline{\mathscr{X}}, \mathscr{X} J_{\mathscr{X}} (\underline{\mathscr{X}} u))$ with a unitary and multiplicative for composites property S_T ;

(ii) pairs (φ, ψ) , consisting of natural 2-transformations

 $\varphi: \mathcal{D}(\underline{\mathscr{X}}, \cdot) \to \mathscr{C}(\mathscr{X}, \cdot u), \ \psi: \mathscr{C}(\mathscr{X}, \cdot u) \to \mathcal{D}(\underline{\mathscr{X}}, \cdot u),$

of 2-functors from \mathcal{D} to **Cat**, satisfying the condition $\psi \circ \varphi = 1$.

Dually, given a 2-functor $\mathscr{C} v \mathscr{D}$, objects \mathscr{P} in \mathscr{D} and $\underline{\mathscr{P}}$ in \mathscr{C} there exists a canonical bijection between all

(i) S^* -couniversal pairs $(\underline{\mathcal{P}}, \mathcal{P} V I_{\mathcal{P}} \underline{\mathcal{P}})$ with a unitary and multiplicative for property S_T^* ;

(ii) pairs of natural 2-transformations

$$\varphi^* \colon \mathscr{C}(\mathsf{\cdot},\mathscr{P}) \to \mathscr{D}(\mathsf{\cdot} v, \underline{\mathscr{P}}), \quad \psi^* \colon \mathscr{D}(\mathsf{\cdot} v, \underline{\mathscr{P}}) \to \mathscr{C}(\mathsf{\cdot}, \mathscr{P})$$

of 2-functors from \mathscr{C} to **Cat** such that $\psi^* \circ \varphi^* = 1$.

12. We denote by \mathscr{C}_u the full 2-subcategory of \mathscr{C} , for which the objects are all objects \mathscr{X} in \mathscr{C} such that there is a S-universal pair $(\mathscr{X}, \mathscr{X}J(\mathscr{D}u))$ from \mathscr{X} to u and $\gamma: \mathscr{C}_u \to \mathscr{C}$ is the canonical embedding.

Fix a S-universal pair $(\underline{\mathscr{X}}, \mathscr{X}J_{\mathscr{X}}(\underline{\mathscr{X}}u))$ from \mathscr{X} to u for any object \mathscr{X} in \mathscr{C}_u . Then assigning to each

(i) object \mathscr{X} the object \mathscr{X} ;

(ii) morphism $\mathscr{X}K\mathscr{Y}$ the morphism $\underline{\mathscr{X}}\underline{K}\mathscr{Y}$, which is uniquely determined by condition $J_{\mathscr{X}} \circ \underline{K}u = K \circ J_{\mathscr{Y}}$ and the property S_{M} ;

(iii) transformation $(\mathscr{X} \mathscr{K} \mathscr{Y}) \rho (\mathscr{X} \mathscr{L} \mathscr{Y})$ the transformation $(\mathscr{X} \mathscr{K} \mathscr{Y}) \rho (\mathscr{X} \mathscr{L} \mathscr{Y})$, which is uniquely determined by properties $\rho \cdot e(J_{\mathscr{Y}}) = e(J_{\mathscr{X}}) \cdot \rho u$ and S_T ;

(iv) object \mathscr{X} the morphism $\mathscr{X}J_{\mathscr{X}}\mathscr{Q}(v \circ u)$ we get a 2-functor $\mathscr{C}_u v \mathscr{D}$ and a natural 2-transformation from γ to $v \circ u$.

In the dual case we denote by \mathcal{D}^{ν} the full 2-subcategory of \mathcal{D} defined by all objects \mathcal{P} in \mathcal{D} such that there is a S^* -couniversal pair $(\underline{\mathcal{P}}, \underline{\mathcal{P}}\nu) I \mathcal{P}$ from $\mathcal{C}\nu \mathcal{D}$ to \mathcal{P} and by $\delta: \mathcal{D}^{\nu} \to \mathcal{D}$ the canonical embedding. Then the 2-functor $\mathcal{D}^{\nu} u \mathcal{C}$ and the natural 2-transformation from $u \circ v$ to δ are similarly determined.

13. Let $\mathscr{C}_u v \mathscr{D}$ be the 2-functor associated with a system of fixed S-universal pairs from all $\mathscr{X} \in (\mathscr{C}_u)_0$ to u. Suppose that S_T is unitary and multiplicative for composite property. Then for any object \mathscr{P} in \mathscr{X} the systems of functors

 $\varphi: \mathcal{D}(\mathfrak{N}, \mathcal{P}) \to \mathcal{C}(\mathfrak{X}, \mathcal{P}u), \quad \psi: \mathcal{C}(\mathfrak{X}, \mathcal{P}u), \to \mathcal{D}(\mathfrak{N}, \mathcal{P}) \text{ for all } \mathcal{X} \in \mathcal{C}_0$

constitute the natural 2-transformations

 $\varphi \colon \mathscr{D}(\ensuremath{\cdot} v, \mathscr{P}) \to \mathscr{C}(\ensuremath{\cdot} , \mathscr{P}u), \quad \psi \colon \mathscr{C}(\ensuremath{\cdot} , \mathscr{P}u) \to \mathscr{D}(\ensuremath{\cdot} v, \mathscr{P})$

of 2-functors from \mathcal{C}_u^{op} to **Cat**.

Dual assertions are true for the 2-functor $\mathscr{D}^{V} u \mathscr{C}$ associated with a system of fixed S^{*} -couniversal pairs from $\mathscr{C} v \mathscr{D}$ to all $\mathscr{P} \in (\mathscr{D}^{V})_{0}$.

14. *Theorem*. Given a 2-functor $\mathcal{D} \ u \ \mathcal{C}$ and a full 2-subcategory \mathcal{E} of \mathcal{C} with an embedding functor $\mathcal{E} \ \gamma \ \mathcal{C}$ there exists a canonical bijection between all

(i) pairs (v, J), where $\mathscr{E} v \mathscr{D}$ is a 2-functor and $J: \gamma \to v \circ u$ is a natural 2-transformation such that for any $\mathscr{X} \in \mathscr{E}_0$, $(\mathscr{X}v, \mathscr{X}J_{\mathscr{X}}\mathscr{A}(v \circ u))$ is a S-universal pair from \mathscr{X} to u with unitary and multiplicative for property S_T ;

(ii) triples (v, φ, ψ) , where $\mathscr{E} v \mathscr{D}$ is a 2-functor,

 $\varphi: \mathcal{D}(\cdot v, \cdot) \to \mathcal{C}(\cdot, \cdot u), \quad \psi: \mathcal{C}(\cdot, \cdot u) \to \mathcal{D}(\cdot v, \cdot)$

are binatural 2-transformations of 2-functors from $\mathscr{E}^{op} \times \mathscr{D}$ to **Cat** such that $\psi \circ \varphi = 1$.

A similar canonical bijection exists in the dual case for a 2-functor $\mathscr{Cv} \mathscr{D}$ and a full 2-subcategory \mathscr{F} of \mathscr{D} with an embedding functor $\mathscr{F} \delta \mathscr{D}$.

15. Remarks.

(a) In the case, when all morphisms and transformations of the category \mathcal{D} have the property *S*, we have both equalities $\psi \circ \varphi = 1$ and $\varphi \circ \psi = 1$. Consequently, in this case φ is a bijection, ψ is the inverse bijection, therefore, ψ is functorial and φ , ψ determine reciprocally inverse isomorphisms of natural 2-transformations. In general case we have not $\varphi \circ \psi = 1$, but only $(\varphi \circ \psi)^2 = \varphi \circ \psi$. The similar remark is correct in S^* -couniversal case.

(b) There is a simple method to reduce the results and notions for 2-categories to 1-categories by interpreting 1-categories as trivial 2-categories, which have only identity transformations.

Received 03.11.2010

REFERENCES

- 1. Samuel P. Bull, Am. Math. Soc., 1948, v. 54, p. 591–598.
- 2. Bourbaki N. Élément de Mathématique. V. VII, Algebre, Livre I, Structures, ch. 4. Paris: Hermann, 1948.
- 3. Grothendieck A. Lecture Notes in Math., bf 269. Springer-Verlag, 1972.
- 4. Dalalyan S.H. Izv. NAN Armenii. Matematica, 2011, v. 46, № 1, p. 1–12 (in Russian).
- 5. Gray J.W. Lecture Notes in Math., bf 10. Berlin–Heidelberg–New York: Springer, 1974.
- 6. **Bénabou J.** Lecture Notes in Math. Berlin–Heidelberg–New York: Springer, 1967, v. 47, p. 1–77.
- Gabriel P., Zisman M. Calculus of Fractions and Homotopy Theory. Ergeb. der Math. und ihre Grenzgebiete. Berlin–Heidelberg–New York: Springer, 1967.