
PROCEEDINGS  OF  THE  YEREVAN  STATE  UNIVERSITY         
  

 

Physical  and  Mathematical  Sciences                                                      2011,  № 3,  p. 3–8    
 
 
 

 
 

Ma t h e ma t i c s  
 

POLYNOMIAL  LENGTH  PROOFS  FOR  SOME  CLASS  OF  TSEITIN 
FORMULAS 

 
 

A. G.  ABAJYAN* 
 

Chair of Discrete Mathematics and Theoretical Computer Science YSU, Armenia 
 

In this paper the notion of quasi-hard determinative formulas is introduced 
and the proof complexities of such formulas are investigated. For some class of 
quasi-hard determinative formulas the same order lower and upper bounds for the 
length of proofs are obtained in several proof systems, basing on disjunctive 
normal forms (conjunctive normal forms). 

Keywords: proof complexity, Split Tree, resolution system, resolution over 
linear equations, determinative conjunct, quasi-hard determinative formula. 

 
1. Introduction. One of the starting points of propositional proof comple-

xity is the seminal paper of Cook and Reckhow [1], where they formalized 
propositional proof systems as polynomial-time computable functions, which have 
as their range the set of all propositional tautologies. In that paper Cook and 
Reckhow also observed a fundamental connection between lengths of proofs and 
the separation of complexity classes: they showed that there exists a propositional 
proof system, which has polynomial-size proofs for all tautologies (a polynomially 
bounded proof system, which is called super system), iff the class NP is closed 
under complementation. From this observation the so called Cook-Reckhow 
programme was derived, which serves as one of the major motivations for 
propositional proof complexity: to separate NP from coNP (and hence P from NP) 
it suffices to show super-polynomial lower bounds to the size of proofs in all 
propositional proof systems. 

Although the first super-polynomial lower bound to the lengths of proofs had 
already been shown by Tseitin in the late 60’s for the resolution [2], and, therefore, 
the resolution system is not a super system, but resolution system and some other 
weak systems are vital to applications as the design of efficient SAT (satisfaction of 
Boolean functions) solvers, and hence proving lower and upper bounds of proof 
complexity in such systems is a very important field of logic. 

In [3] the notion of hard-determinative formulas was introduced and it was 
shown that such kind of formula hardness is enough to receive a super-polynomial 
lower bounds to the lengths of proofs in weak systems. In this paper the notion of 
quasi-hard determinative formulas is introduced and it is shown that such quasi-
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hardness can also be useful to obtain “good” bounds. It is shown that some class of 
Tseitin formulas is quasi-hard determinative, and for this class the same order lower 
and upper bounds for proof complexities are obtained in several weak systems. 

2. Main Notions and Notations. To prove our main results, we recall some 
notions and notations. We will use the current concept of the unit Boolean cube 
( nE ), a propositional formula, a tautology, a proof system for Classical Proposi-
tional Logic (CPL) and proof complexity. 

By | |  we denote the size of formula  , defined as the number of all 
variable entries. It is obvious that the full length of a formula, which is understood 
to be the number of all symbols and the number of all entries of logical signs, are 
bounded by some linear function in | | . A tautology   is called minimal, if   is 
not an instance of a shorter tautology. 

Following the usual terminology we call the variables and negated variables 
literals. The conjunct K  can be simply represented as a set of literals (no conjunct 
contains a variable and its negation at the same time). 

In [3] the following notions were introduced. 
We call a replacement rule each of the following trivial identities for a 

propositional formula  : 
0 & 0,    & 0 0,    1& ,   &1 ,   & ,    & 0,    & 0,    
0 ,     0 ,     1 1,     1 1,      ,      1,     1,    
0 1,    0 ,    1 ,    1 1,    1,    ,     ,     

0 1,  1 0 ,   . 
Application of a replacement rule to some word consists in replacing some 

of its subwords, having the form of the left-hand side of one of the above identities 
by the corresponding right-hand side. 

Let   be a propositional formula, 1{ , , }nX x x   be the set of all variables 
of   and 

1
{ , , }

mi iX x x    (1 )m n   be some subset of X . 

Definition 1. Given 1{ ,..., } m
m E    , the conjunct 1 2

1 2
{ , ,..., }m

mi i iK x x x    is 
called  -determinative, if assigning j  (1 )j m   to each 

jix  and successively 
using replacement-rules we obtain the value of   (0 or 1) independently of the 
values of the remaining variables. 

Definition 2. We call the minimal possible number of variables in a                       
 -determinative conjunct the determinative size of   and denote it by ( )d  . 

Obviously, ( ) | |d    for every formula  , and the smaller is the difference 
between these quantities, the “harder” can be considered the formula under study. 

Definition 3. Let n  ( 1)n   be a sequence of minimal tautologies. If for 
some 0n , 0n n  , 1( ) ( )n nd d   , then the formulas 

0 0 01, 2, ,...n n n     are called 
quasi-hard determinative. 

Examples.  
1. The determinative conjuncts of the formulas 

 1 2 1( ( ( ) ))k k kx x x x        ( 3)k   are in particular 1 1{ },{ },{ },k kx x x   

1{ , },k kx x  1 2{ , , , }kx x x  , therefore, ( ) 1kd    for all 3k  . 
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2. For the well-known tautologies 
1

1 1 111
& ( & )
n n

n ij ij kjj i k n j ni
PHP x x x



      
        

( 1)n   presenting the Pigeonhole Principle, the determinative conjuncts are in 
particular 11 21 11 12 1{ , },{ , , , }nx x x x x , therefore, ( ) 2nd PHP   for all 1n  . 

3. For example, the following tautologies 1 1n n n nu x x x x       

1 1nx x    are quasi-hard determinative. Indeed, ( )nd u n  and for 1n   

1( ) ( )n nd u d u  .  Other sequences of quasi-hard tautologies can be constructed on 
the base of graphs. 

Proposition. Any disjunctive normal form ( )DNF  for tautology   contains 
at least ( )2d   conjuncts. 

Proof.  Let’s assume tautology   has n  distinct variables. Each jK  conjunct 

from DNF  will cover at most ( )2n d   vertices from nE . In that case we need at 
least ( ) ( )2 / 2 2n n d d    conjuncts to cover all nE .                                                   

Let us recall the definition of Tseitin graph formulas [2]. Let G  be a 
connected and finite graph with no loops, and assume distinct literals are attached 
to its edges. 

Definition 4. Graph is called marked, if each vertex is marked by 0 or 1 and 
one assigned literal is chosen for each edge. 

Let 1, , nx x  be distinct literals, {0,1}  . 1[ , , ]nx x   denotes the set of 
disjunctions that consists of literals 1, , nx x  and satisfy the following conditions: 

1. For each i  (1 )i n   either ix  or ix  belongs to the disjunction. 
2. If   is odd, then the number of negated literals is even, and if   is even, 

the number of negated literals is odd. 
Let G  be a marked graph. Let’s construct the set of 1[ , , ]nx x   disjunctions 

for each vertex, where   is the value assigned to the given vertex and 1, , nx x  are 
variables assigned to the incident edges. The set of disjunctions constructed for all 
vertices of graph G  is denoted by ( )G  and the sum of values assigned to vertices 
of the graph by modulo 2 is denoted by ( )G . In [2] it is proved that ( )G  is 
unsatisfiable, iff ( ) 1G  . 

It is obvious, that if Tseitin graph formulas are constructed on the base of 
graphs, minimal degree of which is of the same order as the number of vertices, 
then such formulas are quasi-hard determinative. 

Let us recall the definition of some proof systems of CPL. 
3.1 .  Split Tree System. Let us give the notion of Split Tree ( ST ) system 

following [4]. This proof system is the analogue of the Analytic Tableaux system. 
DNF  is represented as a set of conjuncts, and conjunct is represented as a 

set of literals. Two formulas are different, if the corresponding sets are different. 
Definition 5. Split results by variable x  of formula F  are called two 

formulas [ ]F x  and [ ]F x , which are being obtained from F  by substituting 
inverse values of x  ( 1x   and 0x   accordingly). 

In the rest of the paper, we will assume that F  consists of n  variables, and 
X  is the set of its variables (|| || )X n , Y X , Y Ø. 
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Definition 6. ST  for formula F  on set Y  is called a marked binary tree T , 
each node v  of which is assigned by a formula vF , and the following statements 
are satisfied: 

1. Formula F  is assigned to the root. 
2. Assignments on the leaves contain no variables from the set Y  

(particularly, 0 or 1 can be assigned). 
3. The formulas assigned to the children of node v  are obtained from F  

splitting it by variable y , that is, [ ]vF y  and [ ]vF y , where y Y , and formula vF  
contains y . 

When Y  coincides with X , we deal with the ST  for formula F . The 
leaves of such a tree can be only 0 or 1. A ST  is called closed, if 1 is the only 
assignment to the leaves. Formula F  is a tautology, iff it possesses an closed ST . 

3.2 . Resolution System. Let us describe the resolution refutation system 
( )R  following [5]. A clause is a disjunction of literals. A conjunctive normal form 
(CNF )  formula is a conjunction of clauses. 

Resolution is a complete and sound proof system for unsatisfiable CNF  
formulas. Let C  and D  be two clauses containing neither ix  nor ix . The 
resolution rule allows one to derive C D  from iC x  and iD x . 

Definition 7 (Resolution). A resolution proof of the clause D  from a CNF  
formula K  is a sequence of clauses 1 2, , , lD D D  such that: 

1. Each clause jD  is either a clause of K  or can be obtained from two 
previous clauses in the sequence using the resolution rule. 

2. The last clause lD D . 
A resolution refutation of a CNF  formula K  is a resolution proof of the 

empty clause from K  (the empty clause stands for FALSE , that is, no value 
satisfies to the empty clause. 

3.3 . Resolution Over Linear Equations. Now, let us describe ( )R lin  
system following [5]. ( )R lin  is an extension of resolution, which operates with 
disjunction of linear equations with integer coefficients. A disjunction of linear 
equation is of the following form 

(1) (1) (1) ( ) ( ) ( )
1 1 0 1 1 0( ... ) ... ( ... )t t t

n n n na x a x a a x a x a        , 
where 0t  and the coefficients ( )j

ia  are integers (for all 0 i n  , 1 j t  ). We 
discard duplicate linear equations from a disjunction of linear equations. Any 
CNF  formula can be translated to a collection of disjunctions of linear equations 
directly: every clause i ji I j J

x x
 
     (where I  and J  are sets of indices of variab-

les) involved in the CNF  is translated into the disjunction ( 1) ( 0)i ji I j J
x x

 
     . 

For a clause D  we denote by D  its translation into a disjunction of linear 
equations. It is easy to verify that any Boolean assignment to the variables 1, , nx x  
satisfies a clause D , iff it satisfies D . 

As we wish to deal with Boolean values we augment the system with 
axioms, called Boolean axioms:  ( 0) ( 1)i ix x    for all [ ]i n . 
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Axioms are not fixed: for any formula   we obtain  , then we obtain 
( )R lin  translation of CNF  of  . We also add Boolean axioms for each variable. 

Definition 8 ( ( ))R lin . Let 1{ ,..., }mK K K  be a collection of disjunctions of 
linear equations. An ( )R lin -proof from K  of a disjunction of linear equations D  
is a finite sequence 1( ,..., )lD D   of disjunctions of linear equations such that 

lD D  and for every [ ]i l , either i jD K  for some [ ]j m , or iD  is a Boolean 
axiom ( 0) ( 1)h hx x    for some [ ]h n , or iD  was deduced by one of the 
following ( )R lin -inference rules, using ,j kD D  for some ,j k i : 

Resolution. Let ,A B  be two disjunctions of linear equations (possibly the 
empty disjunctions), and let 1 2,L L  be two linear equations. From 1A L  and 

2B L  it is derived 1 2( )A B L L    or 1 2( )A B L L   . 
Weakening. From a disjunction of linear equations A  one derives A L , 

where L  is an arbitrary linear equation over X. 
Simplification. From (0 )A k   derive A , where A  is a disjunction of 

linear equations and 0k  . 
An ( )R lin  refutation of a collection of disjunctions of linear equations K  is 

a proof of the empty disjunction from K . Raz and Tzameret showed, that ( )R lin  is 
a sound and complete Cook-Reckhow refutation system for unsatisfiable CNF  for-
mulas (translated into unsatisfiable collection of disjunctions of linear equations). 

3.4 . Proof Complexity, Polynomial Simulation. In the theory of proof 
complexity one of the characteristics of the proof is t -complexity, defined as the 
number of proof steps. Let   be a proof system and   be a tautology. We denote 

by t  the minimal possible value of t -complexity of all the proofs of a tautology 
   in  . 

Let 1  and 2  be two different proof systems. Following [1], we recall 
Definition 9. 2  polynomially simulates 1 , if there exists a polynomial 

()p  such that for every formula   derivable both in 1  and in 2 ,  2 1( )t p t 
  . 

Definition 10. The systems 1  and 2  are polynomially equivalent, iff 1  
polynomially simulates 2  and 2  polynomially simulates 1 . 

4. Main Results. Let us denote by nTsgf  ( 2)n   the Tseitin graph formulas, 
which are constructed on the base of complete n -vertex graphs, only one of 
vertices of which is marked with 1. 

As pointed above, every formula nTsgf  is unsatisfiable, therefore, has some 
refutation in R  (hence, in ( )R lin  also), and nTsgf  is tautology and can be 
derived in ST . 

Theorem .  
1. 12

n

R n
Tsgft  . 

2. ( ) (2 )
n n

R R lin n
Tsgf Tsgft t p   for some polynomial ()p . 
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Proof. 
1. Taking into consideration that ( ( )) 1

nTsgfd n n    and proposition from 

the third paragraph, we will get 1( ) 2R nt n
 , since the number of axioms in R  is 

more than 12n . 
2. Let’s consider a proof of nTsgf in ST . To pass from a complete graph 

with n  vertices to complete graph with 1n   vertices, we take one vertex labeled 0 
and do successively splits for all the variables labeled to the edges incident to      
that vertex. As a result, we will have a binary tree with 1n   depth, half of                  
which leaves will be assigned by 1, and another half will belong to the same 
isomorph class, therefore, they will also be counted once.  Denote by ( )i  the 
derivation complexity of the complete graph with i  vertices. So, (1) 2   and 

2

1
( ) ( 1) 2 1

n
i

i
n n 




    . It is not difficult to verify that ( ) 2 1 2n nn n     . 

Taking into consideration that R  system polynomially simulates ST  system [6], 
we obtain that there is polynomial ()f  such that ( ) (2 )

n

R n
Tsgft n f . 

Taking into consideration that fact, that ( )R lin  polynomially simulates  R  

system [5], we obtain that   ( ) (2 )
n

R lin n
Tsgft n p  for some polynomial ()p .                   

Corollary 1. nTsgf  have polymonially-size R , ( )R lin  refutation. 
Indeed, since 2n

nTsgf n , then the proof follows from the Theorem. 
Corollary 2.  There are lower and upper bounds of the same order for proof 

complexities in every system, which is polynomially equivalent to R , ( )R lin  or 
ST  systems. 
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