Mathematics

ON q-BILATTICES

D. S. DAVIDOVA *

Chair of Algebra and Geometry YSU, Armenia

> In this paper the concept of q-bilattice is studied. Interlaced q-bilattices are characterized by the pair of congruencies.
> Keywords: q-semilattice, q-lattice, q-bilattice, an interlaced q-bilattice, hyperidentity.

1. Introduction. Bilattices are algebraic structures that were introduced by Ginsberg [1, 2] as a general and uniform framework for a diversity of applications in artificial intelligence. In a series of papers it was shown that these structures may serve as a foundation for many areas, such as logic programming [3-5].

A bilattice is an algebra $(L ; \cap, \cup, *, \Delta)$ with four binary operations, for which the following two reducts $L_{1}=(L ; \cap, \cup)$ and $L_{2}=(L ; *, \Delta)$ are lattices.

The bilattice is called interlaced, if all the basic bilattice operations are order preserving with respect to both orders.

In papers $[1,3,6,7]$ bounded distributive or interlaced bilattices were studied. In [8] interlaced bilattices without bounds were characterized (see also [9, 10]).

The algebra $(L ; \cap)$ is called a q-semilattice, if it satisfies the following identities:

1. $a \cap b=b \cap a$;
2. $a \cap(b \cap c)=(a \cap b) \cap c$;
3. $a \cap(b \cap b)=a \cap b$.

The algebra $(L ; \cap, \cup)$ is called a q-lattice (see [11]), if the reducts $(L ; \cap)$ and $(L ; \cup)$ are q-semilattices and the following identities $a \cap(b \cup a)=a \cap a$, $a \cup(b \cap a)=a \cup a, a \cap a=a \cup a$ are valid.

For each q-semilattice $(L ; \cap)$ there is a corresponding quasiorder Q (i.e. a reflexive and transitive relation), defined in the following manner: $a Q b \leftrightarrow a \cap b=a \cap a$. For each q-lattice $(L ; \cap, \cup)$, we have: $a Q b \leftrightarrow a \cap b=$ $=a \cap a \leftrightarrow a \cup b=b \cup b$.

A q-bilattice is an algebraic structure $(L ; \cap, \cup, *, \Delta)$ with two q-lattice reducts $L_{1}=(L ; \cap, \cup)$ and $L_{2}=(L ; *, \Delta)$, which also satisfies the following identity

[^0]$a * a=a \cap a$. (The quasiorder of the first reduct $(L ; \cap, \cup)$ is denoted by \leq_{\cap}, and the quasiorder of the second reduct by \leq_{*}).

The operation * of the q-semilattice $(L ; *)$ is called interlaced with the operations \cap and \cup of the q-lattice $(L ; \cap, \cup)$, if the q-semilattice operation * preserves the q-lattice quasiorder, and q-lattice operations \cap and \cup preserve the q-semilattice quasiorder. Note that the operations of a q-lattice are interlaced with each other.

The q-bilattice $(L ; \cap, \cup, *, \Delta)$ is called interlaced, if all the basic q-bilattice operations are quasiorder preserving with respect to both quasiorders.

In the present work interlaced q-bilattices are studied.
We need the concept of a hyperidentity and a superproduct of algebras [12, 13].

Let us recall that a hyperidentity is a second-ordered formula of the following type:

$$
\forall X_{1}, \ldots, X_{m} \forall x_{1}, \ldots, x_{n}\left(w_{1}=w_{2}\right),
$$

where X_{1}, \ldots, X_{m} are functional variables and x_{1}, \ldots, x_{n} are objective variables in the words (terms) w_{1}, w_{2}. Hyperidentities are usually written without quantifiers: $w_{1}=w_{2}$. We say that the hyperidentity $w_{1}=w_{2}$ is satisfied in the algebra $(Q ; F)$, if this equality is valid, when every objective variable and every functional variable in it is replaced by any element of Q and by any operation of the corresponding arity from F (supposing the possibility of such replacement).

The reader is reffered to [14-16] for characterization of hyperidentities of varieties of lattices, modular lattices, distributive lattices and Boolean algebras. For hyperidentities in thermal (polynomial) algebras (see [17, 18].

For the categorical definition of a hyperidentity in [12] the (bi)homomorphisms between two algebras (Q, F) and $\left(Q^{\prime} ; F^{\prime}\right)$ are defined as a pair $(\varphi, \tilde{\psi})$ of maps:

$$
\varphi: Q \rightarrow Q^{\prime}, \tilde{\psi}: F \rightarrow F^{\prime},|A|=|\tilde{\psi} A|,
$$

with the following condition

$$
\varphi A\left(a_{1}, \ldots, a_{n}\right)=(\tilde{\psi} A)\left(\varphi a_{1}, \ldots, \varphi a_{n}\right)
$$

for any $A \in F,|A|=n, a_{1}, \ldots, a_{n} \in Q$. For an application of such morphisms in the cryptography see [19].

Algebras and their (bi)homomorphisms ($\varphi, \tilde{\psi}$) (as morphisms) form a category with a product. The product in this category is called a superproduct of algebras and denoted by $Q^{\infty} Q^{\prime}$ for algebras Q and Q^{\prime}. For example, a superproduct of two q-lattices $Q(+, \cdot)$ and $Q^{\prime}(+, \cdot)$ is the binary algebra $Q \times Q^{\prime}((+,+),(\cdot \cdot),(+, \cdot),(\cdot,+))$ with four binary operations, where the pairs of the operations act component-wise, i.e. $(A, B)((x, y),(u, v))=(A(x, u), B(y, v))$, and $Q^{D \triangleleft} Q^{\prime}$ is a q-bilattice. In fact, let us show that $Q \times Q^{\prime}((+,+),(\cdot, \cdot))$ and $Q \times Q^{\prime}((+, \cdot),(\cdot,+))$ are q-lattices and satisfy the identity $(+,+)((x, y),(x, y))=$ $=(+),((x, y),(x, y))$. The commutativity and associativity are obvious. For other identities we have:
A. $((a, b)(+,+)(c, d))(+,+)(c, d)=((a+c)+c,(b+d)+d)=(a+c, b+d)=$ $=(a, b)(+,+)(c, d) ;$
$((a, b)(+, \cdot)(c, d))(+, \cdot)(c, d)=((a+c)+c,(b \cdot d) \cdot d)=(a+c, b \cdot d)=(a, b)(+, \cdot)(c, d) ;$
$((a, b)(\cdot,+)(c, d))(\cdot,+)(c, d)=((a \cdot c) \cdot c,(b+d)+d)=(a \cdot c, b+d)=(a, b)(\cdot,+)(c, d) ;$
$((a, b)(\cdot, \cdot)(c, d))(\cdot, \cdot)(c, d)=((a \cdot c) \cdot c,(b \cdot d) \cdot d)=(a \cdot c, b \cdot d)=(a, b)(\cdot, \cdot)(c, d) ;$
B. $(a, b)(+,+)((c, d)(\cdot, \cdot)(a, b))=(a+(c \cdot a), b+(d \cdot b))=(a+a, b+b)=$ $=(a, b)(+,+)(a, b)$;
$(a, b)(\cdot, \cdot)((c, d)(+,+)(a, b))=(a \cdot(c+a), b \cdot(d+b))=(a \cdot a, b \cdot b)=(a, b)(\cdot, \cdot)(a, b) ;$
$(a, b)(+, \cdot)((c, d)(\cdot,+)(a, b))=(a+(c \cdot a), b \cdot(d+b))=(a+a, b \cdot b)=(a, b)(+, \cdot)(a, b) ;$
$(a, b)(\cdot,+)((c, d)(\cdot,+)(a, b))=(a \cdot(c+a), b+(d \cdot b))=(a \cdot a, b+b)=(a, b)(\cdot,+)(a, b) ;$
C. $(a, b)(+,+)(a, b)=(a+a, b+b)=(a \cdot a, b \cdot b)=(a, b)(\cdot, \cdot)(a, b)$;
$(a, b)(+, \cdot)(a, b)=(a+a, b \cdot b)=(a \cdot a, b+b)=(a, b)(\cdot,+)(a, b) ;$
D. $(a, b)(+,+)(a, b)=(a+a, b+b)=(a+a, b \cdot b)=(a, b)(+, \cdot)(a, b)$.

It is easy to show that quasiorders on the q-lattices $Q \times Q^{\prime}((+,+),(\cdot, \cdot))$ and $Q \times Q^{\prime}((+, \cdot),(\cdot,+))$, which are denoted by the symbols \leq_{I} and \leq_{II} correspondingly, are defined by the following rules:

$$
\begin{aligned}
& (a, b) \leq_{\mathrm{I}}(c, d) \leftrightarrow a \leq_{1} c \text { and } b \leq_{2} d ; \\
& (a, b) \leq_{\mathrm{II}}(c, d) \leftrightarrow a \leq_{1} c \text { and } d \leq_{2} b,
\end{aligned}
$$

where \leq_{1} and \leq_{2} are the quasiorders on the q-lattices $Q(+, \cdot)$ and $Q^{\prime}(+, \cdot)$. So,

$$
\begin{aligned}
& (a, b) \leq_{\mathrm{II}}(c, d) \&(e, f) \leq_{\mathrm{I}}(g, h) \rightarrow a \leq_{1} c \& b \leq_{2} d \& e \leq_{1} g \& f \leq_{2} h \rightarrow \\
& \rightarrow a+e \leq_{1} c+g, a \cdot e \leq_{1} c \cdot g \& b+f \leq_{2} d+h, b \cdot f \leq_{2} d \cdot h \rightarrow \\
& \rightarrow(a+e, b+f) \leq_{\mathrm{I}}(c+g, d+h) \&(a \cdot e, b \cdot f) \leq_{\mathrm{I}}(c \cdot g, d \cdot h) ; \\
& (a, b) \leq_{\mathrm{II}}(c, d) \&(e, f) \leq_{\mathrm{II}}(g, h) \rightarrow a \leq_{1} c \& d \leq_{2} b \& e \leq_{1} g \& h \leq_{2} f \rightarrow \\
& \rightarrow a+e \leq_{1} c+g, a \cdot e \leq_{1} c \cdot g \& d+h \leq_{2} b+f, d \cdot h \leq_{2} b \cdot f \rightarrow \\
& \rightarrow(a+e, b+f) \leq_{\mathrm{II}}(c+g, d+h) \&(a \cdot e, b \cdot f) \leq_{\mathrm{II}}(c \cdot g, d \cdot h) .
\end{aligned}
$$

Hence, $Q \times Q^{\prime}((+,+),(\cdot, \cdot),(+, \cdot),(\cdot,+))$ is an interlaced q-bilattice.

2. Some Lemmas.

2.1. Congruence relations Θ, Φ of a q-lattice $(L ; \cap, \cup)$ satisfying to the following conditions: $a \Theta a \cap a$ and $a \Phi a \cap a$, commute iff for each $a, b \in L$, $a \leq b \rightarrow a \Theta \Phi b$ is equivalent to $a \Phi \Theta b$

Proof. The condition is obviously necessary. Let's show that it is sufficient too. Suppose $x, y \in L, x \Theta z$ and $z \Phi y$, hence, $x \cap x \Theta z, z \Phi y \cap y$. Then $x \cap y \cap z \Phi x \cap z \Theta x \cap x$, and it follows that there exists $t \in L$ such that $x \cap y \cap z \Theta t \Phi x \cap x$, so $y \cup y \Theta y \cup t$. Further, $x \cap y \cap z \Theta y \cap z \Phi y \cap y$, then $y \cap z \Phi \Theta y \cup t, y \cap z \Theta \Phi y \cup t$ and $t \Theta y \cap z$, so $t \Theta \Phi y \cup t, x \cap x \Phi t \Phi \Theta y \cup t \Theta y \cup y$, hence, $x \cap x \Phi \Theta y \cap y$. This shows that $\Theta \Phi \leq \Phi \Theta$ so $\Theta \Phi=\Phi \Theta$.
2.2. The operation * of a q-semilattice $(L ; *)$ is interlaced with the operations \cap and \cup of the q-lattice $(L ; \cap, \cup)$, iff the following hyperidentity is satisfied in the algebra $(L ; \cap, \cup, *)$:

$$
X(Y(X(x, y), z), Y(y, z))=X(Y(X(x, y), z), Y(X(x, y), z))
$$

Proof. Let us show, for example, that $[(x \cap y) * z] \cap(y * z)=$ $=[(x \cap y) * z] \cap[(x \cap y) * z]$ follows from $x \leq_{\cap} y \rightarrow x * z \leq_{\cap} y * z$ and conversely.
$(\rightarrow) \quad x \cap y \leq_{\cap} y$ for any $x, y \in L$. Then $(x \cap y) * z \leq_{\cap} y * z$. So, $[(x \cap y) * z] \cap(y * z)=[(x \cap y) * z] \cap[(x \cap y) * z]$.
$(\leftarrow) x * z \leq_{\cap}(x \cap x) * z \leq_{\cap} x * z$ for any $x, y, z \in L$, then $[(x \cap x) * z] \cap[(x \cap x) * z]=$ $=(x * z) \cap(x * z)$. Let $x \leq_{\cap} y$, then $x \cap y=x \cap x$. In that case $(x * z) \cap(y * z)=$ $=(x * z) \cap(x * z) \cap(y * z)=[(x \cap x) * z] \cap[(x \cap x) * z] \cap(y * z)=[(x \cap y) * z] \cap(y * z)=$ $=[(x \cap y) * z] \cap[(x \cap y) * z]=[(x \cap x) * z] \cap[(x \cap x) * z]=(x * z) \cap(x * z)$. Hence, $x * z \leq_{\cap} y * z$.
2.3. The operation $*$ of a q-semilattice $(L ; *)$ is interlaced with the operations \cap and \cup of the q-lattice $(L ; \cap, \cup)$, for which $x * x=x \cap x$, iff the algebra $(L ; \cap, \cup, *)$ satisfies the following hyperidentity:

$$
X(Y(X(x, y), z), Y(y, z))=Y(X(x, y), z) .
$$

In the propositions $2.4-2.17$ we suppose that $(L ; \cap, \cup)$ is a q-lattice, $(L ; *)$ is a q-semilattice and the operation $*$ is interlaced with the operations \cap, \cup and satisfies the identity $a \cap a=a * a$.
2.4. $x \cap y \leq_{\cap} x * y \leq_{\cap} x \cup y, x * y \leq_{*} x \cap y, x * y \leq_{*} x \cup y$.
2.5. $X(Y(x, y), Y(x, y))=Y(x, y)$, where $X, Y \in\{\cap, \cup, *\}$ for any $x, y \in L$.
2.6. $a \leq_{\cap} x \leq_{\cap} b \& a \leq_{*} b \rightarrow a \leq_{*} x \leq_{*} b ; a \leq_{\cap} x \leq_{\cap} b \& b \leq_{*} a \rightarrow b \leq_{*} x \leq_{*} a$.

Proof. If we suppose $a \leq_{*} b$, then $a \cap x \leq_{*} b \cap x$ and $a \cup x \leq_{*} b \cup x$. Since, $a \leq_{\cap} x \leq_{\cap} b$, then $a \cap a \leq_{*} x \cap x$ and $x \cap x \leq_{*} b \cap b$, hence, $a \leq_{*} x \leq_{*} b$. The second statement can be proved analogously.
2.7. $u \leq_{\cap} x \& u \leq_{\cap} y \& u \leq_{*} x \& u \leq_{*} y \rightarrow x \cap y=x * y$; $x \leq_{\cap} u \& y \leq_{\cap} u \& u \leq_{*} x \& u \leq_{*} y \rightarrow x \cup y=x * y$.
Proof. We have $u \cap u \leq_{\cap} x \cap y \leq_{*} x * y, u \leq_{*} x$ and $u \leq_{*} y$, hence, $u \cap u=u * u \leq_{*} x * y$, then $x \cap y \leq_{*} x * y$. Similarly, $x * y \leq_{*} x \cap y$, so, $x * y \leq_{*} x \cap y \leq_{*} x * y$, hence, $x \cap y=x * y$.
2.8. Let the q-semilattice $(L ; *)$ forms a q-lattice $(L ; *, \Delta)$. Then

$$
a \leq_{\cap} b \rightarrow a \leq_{\cap} a \Delta b \leq_{\cap} b .
$$

Proof. By 2.4, $a \cap a=a * a=a *(a \Delta b) \leq_{*} a \cup(a \Delta b)$, then from $a \leq_{n} b$ we get $a * a=a \cap a=b \cap a=b \cap(a \cap a) \leq_{*} b \cap[a \cup(a \Delta b)]$, hence,

$$
\begin{equation*}
a * a \leq_{*} b \cap[a \cup(a \Delta b)] . \tag{1}
\end{equation*}
$$

From $b \leq_{*} a \Delta b$ and $a \leq_{\cap} b$ we obtain $b \cap b=a \cup b \leq_{*} a \cup(a \Delta b)$, hence, $b * b=b \cap b=(b \cap b) \cap b \leq_{*} b \cap[a \cup(a \Delta b)]$, so,

$$
\begin{equation*}
b * b \leq_{*} b \cap[a \cup(a \Delta b)] . \tag{2}
\end{equation*}
$$

From (1) and (2) it follows that

$$
\begin{aligned}
& (a * a) \Delta(b * b) \leq_{*}(b \cap[a \cup((a \Delta b))]) \Delta(b \cap[a \cup(a \Delta b)])= \\
& =(b \cap[a \cup(a \Delta b)]) \cap(b \cap[a \cup(a \Delta b)])=b \cap[a \cup(a \Delta b)] .
\end{aligned}
$$

Then $a \Delta b \leq_{*} b \cap[a \cup(a \Delta b)]$.

Further, from $a \leq_{*} a \Delta b$ it follows that
$a \cup(a \Delta b) \leq_{*}(a \Delta b) \cup(a \Delta b)=a \Delta b, a \cap(a \Delta b) \leq_{*}(a \Delta b) \cap(a \Delta b)=a \Delta b$.
From $b \leq_{*} a \Delta b$ we deduce that $b \cup(a \Delta b) \leq_{*} a \Delta b, b \cap(a \Delta b) \leq_{*} a \Delta b$.
So, $a \Delta b \leq_{*} b \cap[a \cup(a \Delta b)] \leq_{*} b \cap(a \Delta b) \leq_{*} a \Delta b$, hence,
$[b \cap(a \Delta b)] *[b \cap(a \Delta b)]=(a \Delta b) *(a \Delta b)$.
$[b \cap(a \Delta b)] *[b \cap(a \Delta b)]=[b \cap(a \Delta b)] \cap[b \cap(a \Delta b)]=b \cap(a \Delta b)$,
$(a \Delta b) *(a \Delta b)=(a \Delta b) \cap(a \Delta b)$, hence, $b \cap(a \Delta b)=(a \Delta b) \cap(a \Delta b)$.
So, $a \Delta b \leq_{\cap} b$. The second part of the inequality can be proved the same way.
Define the relations θ_{1} and θ_{2} in $(L ; \cap, \cup, *)$ as follows:

$$
a \theta_{1} b \leftrightarrow a * b=a \cup b ; a \theta_{2} b \leftrightarrow a * b=a \cap b
$$

2.9. θ_{2} is an equivalence relation in $(L ; \cap, \cup)$.

Proof. Reflexivity and symmetry are clear. Let $a \theta_{2} b$ and $b \theta_{2} c$, then $a * b=$ $=a \cap b$ and $b * c=b \cap c$. Hence, $a \cap b \leq_{*} b$ and $b \cap c \leq_{*} b$. Then $a \cap b \cap c \leq_{*} b \cap c$ and $\quad a \cap b \cap c \leq_{*} a \cap b, \quad$ hence, $\quad(a \cap b \cap c) \cap(a \cap b \cap c) \leq_{*}(a \cap b) *(b \cap c)=$ $=(a * b) *(b * c)=a *(b * b) * c=a * b * c$. On the other hand, $a * b * c \leq_{*} a \cap b \cap c$. So, $a \cap b \cap c=a * b * c$, hence, $a \cap b \cap c \leq_{*} a, a \cap b \cap c \leq_{*} c, a \cap b \cap c \leq_{\cap} a$, and $a \cap b \cap c \leq_{\cap} c$. Then, by 2.7, $a \cap c=a * c$, which shows that gives $a \theta_{2} c$.
2.10. θ_{2} is a congruence relation in $(L ; \cap, \cup)$.

Proof. Let $a \theta_{2} b$, hence, $a * b=a \cap b$. So, $a \cap b \leq_{*} a$ and $a \cap b \leq_{*} b$. Then for any $c \in L$ it follows that $a \cap b \cap c \leq_{*} a \cap c$ and $a \cap b \cap c \leq_{*} b \cap c$ and since $a \cap b \cap c \leq_{\cap} a \cap c$ and $a \cap b \cap c \leq_{\cap} b \cap c$, we get by 2.7 that $(a \cap c) \cap(b \cap c)=$ $=(a \cap b) *(b \cap c)$, hence, $a \cap c \theta_{2} b \cap c$. Similarly we get that $a \cup c \theta_{2} b \cup c$.
2.11. θ_{1} is a congruence relation in $(L ; \cap, \cup)$.
2.12. θ_{1} and θ_{2} are congruence relations in ($L ; *$).

Proof. Let $a \theta_{1} b$, i.e. $a * b=a \cup b$, then $a \leq_{n} a * b$ and $b \leq_{n} a * b$. So, $a * c \leq_{\cap} a * b * c$ and $b * c \leq_{\cap} a * b * c$. Since, $a * b * c \leq_{*} a * c$ and $a * b * c \leq_{*} b * c$, then from 2.7 we obtain $(a * c) *(b * c)=(a * c) \cup(b * c)$, hence $a * c \theta_{1} b * c$.

In the same way we can show that $a * c \theta_{2} b * c$ follows from $a \theta_{2} b$.
2.13. $a\left(\theta_{1} \cap \theta_{2}\right) b \leftrightarrow a \cap a=b \cap b$.

Proof. $\quad a\left(\theta_{1} \cap \theta_{2}\right) b \leftrightarrow a \theta_{1} b \quad$ and $\quad a \theta_{2} b \leftrightarrow a * b=a \cup b \quad$ and $\quad a * b=$ $=a \cap b \leftrightarrow a \cup b=a \cap b \leftrightarrow a \cap a=b \cap b$.
2.14. $a \cap b \theta_{1} a * b, a * b \theta_{2} a \cup b$.

Proof. $\quad(a \cap b) *(a * b)=a * b=(a \cap b) \cup(a * b)$, hence, $a \cap b \theta_{1} a * b$. By 2.4, we have $(a \cup b) *(a * b)=a * b=(a \cup b) \cap(a * b)$, hence, $a \cup b \theta_{2} a * b$.
2.15. $a \leq_{\cap} b \rightarrow a \theta_{1} \theta_{2} b$.

Proof. By 2.14, $a \cap b \theta_{1} a * b$ and $a * b \theta_{2} a \cup b$, giving us $a \cap b \theta_{1} \theta_{2} a \cup b$, hence, $a \cap a \theta_{1} \theta_{2} b \cap b$, so $a \theta_{1} \theta_{2} b$.
2.16. $a \leq_{\cap} b \rightarrow a \theta_{2} \theta_{1} b$.

Proof. Using 2.8 we get $a \theta_{2} a \Delta b \theta_{1} b$.
2.17. L / θ_{1} and L / θ_{2} are lattices.

Proof. Note that $a \theta_{i} a \cap a$ and $a \theta_{i} a \cup a$, for $i=1,2$. Hence, the elements of quantient-algebras, L / θ_{1} and L / θ_{2}, are idempotent.

3. Theorems.

Theorem 1. Let $(L ; \cap, \cup)$ be a q-lattice, $(L ; *)$ be a q-semilattice, the operation of which is interlaced with the operations \cup and \cap, and satisfy the identity $a \cap a=a * a$. Then there exists a pair of congruences $\left(\theta_{1}, \theta_{2}\right)$ in the q-lattice $(L ; \cap, \cup)$, satisfying the following conditions:

1. $a\left(\theta_{1} \cap \theta_{2}\right) b \leftrightarrow a \cap a=b \cap b$;
2. $a \leq_{\cap} b \rightarrow a \theta_{1} \theta_{2} b$;
3. $X(Y(X(x, y), z), Y(y, z)) \theta_{i} Y(X(x, y), z) \quad$ for $i=1,2$,
where $X, Y \in\{\cap, \cup\}, x, y, z \in L$.
Conversely, each pair of congruences $\left(\theta_{1}, \theta_{2}\right)$ in $(L ; \cap, \cup)$ satisfying the conditions $1-3$, corresponds to a q-semilattice $(L ; *)$, the operation of which is interlaced with the operations \cup and \cap and satisfies the identity $a \cap a=a * a$.

Proof. Define the relations θ_{1} and θ_{2} as above. From 2.10, 2.11, 2.13 and 2.15 we get that θ_{1}, θ_{2} are congruences in $(L ; \cap, \cup)$ satisfying conditions 1 and 2. The condition 3 is valid, since any q-lattice is interlaced.

Conversely, let θ_{1} and θ_{2} are congruences satisfying the conditions of Theorem 1. Define the operation $*$ by the following rule:

$$
a * b=d \cap d \leftrightarrow d \theta_{1} a \cap b \text { and } d \theta_{2} a \cup b
$$

The existence of such $d \in L$ follows from the Condition 2. Obviously, the operation $*$ is commutative, and the following identities are true: $a *(b * b)=a * b$, $a \cap a=a * a$. The elements $d_{1}=(a * b) * c, d_{2}=a *(b * c)$ satisfy $d_{1} \cap d_{1} \theta_{1} a \cap b \cap c$ and $d_{1} \cap d_{1} \theta_{2} a \cup b \cup c, \quad d_{2} \cap d_{2} \theta_{1} a \cap b \cap c$ and $d_{2} \cap d_{2} \theta_{1} a \cup b \cup c$ consequently, $d_{1} \theta_{1} d_{2}$ and $d_{1} \theta_{2} d_{2}$, hence, $d_{1} \cap d_{1}=d_{2} \cap d_{2}$, so by $2.5,(a * b) * c=a *(b * c)$.

To prove that the operation $*$ is interlaced with the operations \cap, \cup, we use the definition of the operation $*$ and the fact that the q-lattices L / θ_{i} are interlaced $(i=1,2)$. For example, the elements $u_{1}=(x * y) \cap z$ and $u_{2}=$ $=[(x * y) \cap z] *(y \cap z)$ satisfy $x \cap y \cap z \theta_{1} u_{1} \theta_{2}(x \cup y) \cap z$ and $x \cap y \cap z \theta_{1} u_{2} \theta_{2}(x \cup y) \cap z$, then $u_{1} \cap u_{1}=u_{2} \cap u_{2} \rightarrow(x * y) \cap z=[(x * y) \cap z] *(y \cap z)$ (by 2.5).

Theorem 2. Let $(L ; \cap, \cup)$ be a q-lattice. There exists a bijective correspondence between the q-semilattice operations $*$ in L, which are interlaced with the operations \cap, \cup and satisfy the identity $a \cap a=a * a$, and the epimorphism φ acting from $(L ; \cap, \cup)$ to the subdirect product of two lattices, satisfying $\varphi(x)=\varphi(y) \leftrightarrow x \cap x=y \cap y$. Moreover, if $(a, b),\left(a^{\prime}, b^{\prime}\right)$ are elements of
this subdirect product and $(a, b) \leq_{\cap}\left(a^{\prime}, b^{\prime}\right)$, then $\left(a, b^{\prime}\right)$ belongs to this subdirect product too, and if $\varphi(x)=(a, b), \varphi(y)=\left(a^{\prime}, b^{\prime}\right)$, then $\varphi(x * y)=\left(a \cap a^{\prime}, b \cup b^{\prime}\right)$.

Proof. Let $(L ; *)$ be a q-semilattice satisfying the theorem's conditions, and θ_{1} and θ_{2} are the congruence relations from Theorem 1. Then the q-lattice $(L ; \cap, \cup)$ is epimorphically mapped to the subdirect product of the two lattices L / θ_{1} and $L / \theta_{2}, \varphi: x \rightarrow\left([x]_{\theta_{1}},[x]_{\theta_{2}}\right)$, such that $\varphi(x)=\varphi(y) \leftrightarrow x \cap x=y \cap y$.

Let (a, b) and $\left(a^{\prime}, b^{\prime}\right)$ belong to this subdirect product and $(a, b) \leq_{\cap}\left(a^{\prime}, b^{\prime}\right)$. Then there exist $u, v \in L$ such that $\varphi(u)=(a, b), \varphi(v)=\left(a^{\prime}, b^{\prime}\right)$ and $u \leq_{\cap} v$. Then by the Theorem 1 there exists $t \in L$ with the property $u \theta_{1} t \theta_{2} v$, hence, $\varphi(t)=\left(a, b^{\prime}\right)$.

Conversely, let φ be an epimorphism between L and the subdirect product of lattices A and B satisfying the Theorem's conditions. Then there exist congruence relations θ_{1} and θ_{2} such that $a\left(\theta_{1} \cap \theta_{2}\right) b \leftrightarrow a \cap a=b \cap b$, and L / θ_{1}, L / θ_{2} are isomorphic to A and B respectively. So, L / θ_{i} satisfy the condition (1).

If $a, b \in L$ and $a \leq_{\cap} b$, then $\varphi(a) \leq_{\cap} \varphi(b)$, so, by our assumption we get that $\left([a]_{\theta_{1}},[b]_{\theta_{2}}\right)$ belongs to the subdirect product, hence there exists $t \in L$ such that $\varphi(t)=\left([a]_{\theta_{1}},[b]_{\theta_{2}}\right) \rightarrow a \theta_{1} t$ and $t \theta_{2} b \rightarrow a \theta_{1} \theta_{2} b$. Hence, the pair of congruences $\left(\theta_{1}, \theta_{2}\right)$ in L satisfies the conditions of Theorem 1 , and it follows that there exists a q-semilattice operation, $*$, which is interlaced with the operations \cap and \cup, and satisfies the identity $a \cap a=a * a$. The last statement of the theorem can be proved with the help of the relation $a \cap b \theta_{1} a * b \theta_{2} a \cup b$.

Theorem 3. a) The q-semilattice $(L ; *)$ from Theorem 1 can be transformed into a lattice $(L ; *, \Delta)$ (moreover, in the unique way), iff the corresponding congruences θ_{1} and θ_{2} commute.
b) The q-semilattice $(L ; *)$ of Theorem 2 can be transformed into a q-lattice $(L ; *, \Delta)$, iff the subdirect product turns out to be a direct.

Proof. a) If the lattice $(L ; *, \Delta)$ exists, then $\theta_{1} \theta_{2}=\theta_{2} \theta_{1}$ by 2.1, 2.15 and 2.16. Conversely, let $\theta_{1} \theta_{2}=\theta_{2} \theta_{1}$. Then for $a \leq_{n} b$ we get by Theorem $1 a \theta_{1} \theta_{2} b$, hence, $a \theta_{2} \theta_{1} b$, too. By Theorem 1 there exists a q-semilattice operation Δ in L corresponding to the pair $\left(\theta_{2}, \theta_{1}\right)$, which is interlaced with the operations \cap and \cup, and satisfies the identities $a \Delta a=a \cap a, \quad a \cap b \theta_{2}(a \Delta b) \theta_{1} a \cup b$. Hence, $(a \Delta b) * a \theta_{2}(a \cap b) * a \theta_{2}(a \cap b) \cup a=a \cup a$ and $(a \Delta b) * a \theta_{1}(a \cup b) * a \theta_{1}(a \cup b) \cap a=$ $=a \cap a \rightarrow(a \Delta b) * a\left(\theta_{1} \cap \theta_{2}\right) a \cap a \rightarrow a * a=(a \Delta b) * a$. Similarly, we get $(a * b) \Delta a=a \Delta a$. Hence, $(L ; *, \Delta)$ is a q-lattice.
b) Let $a, b \in L$ then by 2.14 and $2.4 a \cap b \theta_{1} a * b \theta_{2} a \cup b$ and $a \cap b \leq_{\cap} a *$ $* b \leq_{\cap} a \cup b$, then $\theta_{1} \cup \theta_{2}=i$ [20]. So, the subdirect product is a direct product, iff $\theta_{2} \theta_{1}=\theta_{1} \theta_{2}$ [20]. By a), this is equivalent to the condition that $(L ; *)$ forms a q-lattice. \square

Theorem 4. Let $(L ; \cap, \cup)$ and $(L ; *, \Delta)$ be q-lattices. If the operation * is interlaced with the operations \cap and \cup, and satisfies the identity $a \cap a=a * a$
then the operation Δ is interlaced with the operations \cap and \cup too.
Proof. The proof follows from Theorems 1 and 3.
Theorem 5. Let $L_{1}=(L ; \cap, \cup)$ and $L_{2}=(L ; *, \Delta)$ be q-lattices with the following identity: $x \cap x=x * x$. The operation $*$ is interlaced with the operations \cap, \cup, iff there exists an epimorphism φ from the q-bilattice $(L ; \cap, \cup, *, \Delta)$ to the superproduct of the two lattices $L_{1} \bowtie L_{2}$, such that the epimorphism φ satisfies the following condition: $\varphi(x)=\varphi(y) \leftrightarrow x \cap x=y \cap y$. Hence, the epimorphism φ is an isomorphism on the bilattice of the idempotent elements of the q-bilattice.

Proof. By the Theorems 2 and 3b), there exists an epimorphism $\varphi: L \rightarrow A \times B$ between the q-lattice $(L ; \cap, \cup)$ and the subdirect product of two lattices A and B, which satisfying the condition $\varphi(x)=\varphi(y) \leftrightarrow x \cap x=y \cap y$. The map φ can be continued to the epimorphism between the q-bilattice $(L ; \cap, \cup, *, \Delta)$ and the superproduct $A \triangleright B$ in the following manner:

$$
\varphi(x * y)=\left(a \cap a^{\prime}, b \cup b^{\prime}\right) ; \quad \varphi(x \Delta y)=\left(a \cup a^{\prime}, b \cap b^{\prime}\right)
$$

where $\varphi(x)=(a, b), \varphi(y)=\left(a^{\prime}, b^{\prime}\right)$.
Received 25.02.2011

REFERENCES

1. Ginsberg M.L. Computational Intelligence, 1988, v. 4, p. 265-316.
2. Ginsberg M.L. Multi-Valued Logics, Proc. AAA-186. Fifth National Conference on Artificial Intelligence. Morgan Kaufman Pablishers, 1986, p. 243-247.
3. Fitting M.C. Bilattices in Logic Programming. In: G. Epstain ed., proc. $20^{\text {th }}$ Internat. Symp. on Multiple-Valued Logic, IEEE, New York, 1990, p. 63-70.
4. Fitting M.C. Journal of Logic Programming, 1991, v. 11, p. 91-116.
5. Mobasher B., Pigozzi D., Slutski G. Theoretical Computer Science, 1997, v. 171, p. 77-109.
6. Romanowska A.B., Trakul A. On the Structure of Some Bilattices. Universal and Applied Algebra. World Scientific, 1989, p. 235-253.
7. Avron A. Math. Struct. in Comp. Science. Cambridge University Press., 1996, v. 6, p. 287-289.
8. Movsisyan Yu.M., Romanowska A.B., Smith J.D.H. Comb. Math.and Comb. Comp., 2006, v. 58, p. 101-111.
9. Movsisyan Yu M. Armenian Journal of Mathematics, 2008, v. 1, p. 7-13.
10. Movsisyan Yu.M. Proceedings of the Steclov Inst. of Math., 2011, v. 274, p. 174-192.
11. Chajda I. Acta Polacky University, 1992, v. 31, p. 6-12.
12. Movsisyan Yu.M. Introduction to Theory of Algebras with Hyperidentities. Yer.: YSU Press, 1986 (in Russian).
13. Movsisyan Yu.M. Hyperidentities and Hypervarieties in Algebras. Yer.: YSU Press, 1990 (in Russian).
14. Movsisyan Yu.M. Uspekhi Mat. Nauk, 1998, v. 53, № 1, p. 61-114; English transl. in Russ. Math. Surveys, 1998, v. 53.
15. Movsisyan Yu.M. Izv. Ross. Acad. Nauk. Ser. Mat., 1992, v. 56, p. 654-672; English transl. in Russ. Acad. Sci Izv. Math., 1992, v. 56.
16. Movsisyan Yu.M. Izv. Ross. Acad. Nauk. Ser. Mat., 1996, v.60, p. 127-168; English transl. in Russ. Acad. Sci Izv. Math., 1996, v. 60.
17. Denecke K., Wismath S.L. Hyperidentities and Clones. Gordon and Breach Science Publishers, 2000.
18. Denecke K., Koppitz J. M-Solid Varieties of Algebras. Advances in Mathematic. New York: Spriger-Science+Business Media, 2006, v. 10.
19. Anosov A.D. Discrete Mathematics and Applications, 2007, v. 17, № 4, p. 331-347.
20. Gratzer G. General Lattice Theory. Berlin: Springer-Verlag, 1978.

[^0]: * E-mail: di.davidova@yandex.ru

