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1. Introduction.  Bilattices are algebraic structures that were introduced by 

Ginsberg [1, 2] as a general and uniform framework for a diversity of applications 
in artificial intelligence. In a series of papers it was shown that these structures may 
serve as a foundation for many areas, such as logic programming [3–5]. 

A bilattice is an algebra ( ; , , , )L      with four binary operations, for which 
the following two reducts 1 ( ; , )L L    and 2 ( ; , )L L     are lattices. 

The bilattice is called interlaced, if all the basic bilattice operations are order 
preserving with respect to both orders. 

In papers [1, 3, 6, 7] bounded distributive or interlaced bilattices were studi-
ed. In [8] interlaced bilattices without bounds were characterized (see also [9, 10]).  

The algebra ( ; )L   is called a q-semilattice, if it satisfies the following 
identities: 

1. a b b a   ; 
2. ( ) ( )a b c a b c     ; 
3. ( )a b b a b    . 
The algebra ( ; , )L    is called a q-lattice (see [11]), if the reducts ( ; )L   

and ( ; )L   are q-semilattices and the following identities ( ) ,a b a a a     
( ) ,a b a a a     a a a a    are valid. 

For each q-semilattice ( ; )L   there is a corresponding quasiorder Q           
(i.e. a reflexive and transitive relation), defined in the following manner: 
aQb a b a a    . For each q-lattice ( ; , )L   , we have: aQb a b    

a a a b b b      . 
A q-bilattice is an algebraic structure ( ; , , , )L      with two q-lattice 

reducts 1 ( ; , )L L    and 2 ( ; , )L L   , which also satisfies the following identity 
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a a a a   . (The quasiorder of the first reduct ( ; , )L    is denoted by  , and 
the quasiorder of the second reduct by  ). 

The operation   of the q-semilattice ( ; )L   is called interlaced with the 
operations   and   of the q-lattice ( ; , )L   , if the q-semilattice operation   
preserves the q-lattice quasiorder, and q-lattice operations   and   preserve the 
q-semilattice quasiorder. Note that the operations of a q-lattice are interlaced with 
each  other. 

The q-bilattice ( ; , , , )L      is called interlaced, if all the basic q-bilattice 
operations  are quasiorder preserving with  respect to both quasiorders. 

In  the present work  interlaced  q-bilattices  are studied. 
We  need  the  concept  of a hyperidentity and a superproduct of algebras 

[12, 13].  
Let us recall that a hyperidentity is a second-ordered formula of the 

following  type: 
1 1 1 2,..., ,..., ( )m nX X x x w w   , 

where 1,..., mX X  are functional variables  and 1,..., nx x are objective variables in the 
words (terms) 1 2,w w . Hyperidentities are usually written without quantifiers: 

1 2w w . We say that the hyperidentity 1 2w w  is satisfied in the algebra ( ; )Q F , if 
this equality is valid, when every objective variable and every functional variable 
in it is replaced by any element of Q  and by any operation of the corresponding 
arity from F  (supposing the possibility of such replacement). 

The reader is reffered to [14–16] for characterization of hyperidentities of 
varieties of lattices, modular lattices, distributive lattices and Boolean algebras.  
For  hyperidentities  in  thermal (polynomial) algebras (see [17, 18]. 

For the categorical definition of a hyperidentity in [12] the (bi)homomorphisms 
between  two algebras ( , )Q F  and ( ; )Q F   are defined as a pair ( , )   of  maps: 

: , : ,| | | |Q Q F F A A       ,  
with  the following condition 

1 1( ,..., ) ( )( ,..., )n nA a a A a a      
for any 1, | | , ,..., nA F A n a a Q   . For an application of such morphisms in the 
cryptography see [19]. 

Algebras and their (bi)homomorphisms ( , )   (as morphisms) form a 
category with a product. The product in this category is called a superproduct of 
algebras and denoted by Q Q   for algebras Q  and Q . For example, a 
superproduct of two q-lattices ( , )Q    and ( , )Q    is the binary algebra 

(( , ),( , ), ( , ), ( , ))Q Q          with four binary operations, where the pairs of the 
operations act component-wise, i.e. ( , )(( , ),( , )) ( ( , ), ( , ))A B x y u v A x u B y v , and 
Q Q  is a q-bilattice. In fact, let us show that (( , ), ( , ))Q Q      and 

(( , ), ( , ))Q Q      are q-lattices and satisfy the identity ( , )(( , ),( , ))x y x y    
( , )(( , ), ( , ))x y x y   . The commutativity and associativity are obvious. For other 

identities  we  have: 
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A. (( , )( , )( , ))( , )( , ) (( ) , ( ) )a b c d c d a c c b d d          ( , )a c b d    
     ( , )( , )( , )a b c d   ; 
    (( , )( , )( , ))( , )( , ) (( ) ,( ) ) ( , ) ( , )( , )( , );a b c d c d a c c b d d a c b d a b c d                      
    (( , )( , )( , ))( , )( , ) (( ) , ( ) ) ( , ) ( , )( , )( , );a b c d c d a c c b d d a c b d a b c d                    
    (( , )( , )( , ))( , )( , ) (( ) ,( ) )a b c d c d a c c b d d          ( , ) ( , )( , )( , )a c b d a b c d     ;   
B. ( , )( , )(( , )( , )( , )) ( ( ), ( )) ( , )a b c d a b a c a b d b a a b b              
     = ( , )( , )( , )a b a b  ; 
    ( , )( , )(( , )( , )( , )) ( ( ), ( )) ( , ) ( , )( , )( , );a b c d a b a c a b d b a a b b a b a b                
    ( , )( , )(( , )( , )( , )) ( ( ), ( )) ( , ) ( , )( , )( , );a b c d a b a c a b d b a a b b a b a b                
    ( , )( , )(( , )( , )( , )) ( ( ), ( )) ( , ) ( , )( , )( , );a b c d a b a c a b d b a a b b a b a b                 
C. ( , )( , )( , ) ( , ) ( , ) ( , )( , )( , )a b a b a a b b a a b b a b a b           ; 
     ( , )( , )( , ) ( , ) ( , ) ( , )( , )( , )a b a b a a b b a a b b a b a b           ; 
 D. ( , )( , )( , ) ( , ) ( , ) ( , )( , )( , )a b a b a a b b a a b b a b a b           . 

It is easy to show that quasiorders on the q-lattices (( , ), ( , ))Q Q      and 
(( , ), ( , ))Q Q     , which are denoted by the symbols I  and II  correspondingly, 

are defined by the following rules:  
I 1( , ) ( , )a b c d a c    and  2b d ; 

II 1( , ) ( , )a b c d a c    and  2d b , 
where 1 and 2  are the quasiorders on the q-lattices ( , )Q    and ( , )Q   . So, 

I I 1 2 1 2( , ) ( , ) & ( , ) ( , ) & & &a b c d e f g h a c b d e g f h         

1 1 2 2, & ,a e c g a e c g b f d h b f d h               

I I( , ) ( , ) & ( , ) ( , )a e b f c g d h a e b f c g d h           ; 

II II 1 2 1 2( , ) ( , ) & ( , ) ( , ) & & &a b c d e f g h a c d b e g h f         

1 1 2 2, & ,a e c g a e c g d h b f d h b f               

II II( , ) ( , ) & ( , ) ( , )a e b f c g d h a e b f c g d h           . 
Hence, (( , ),( , ), ( , ), ( , ))Q Q          is an interlaced q-bilattice. 
2. Some Lemmas.  
2.1. Congruence relations ,  of a q-lattice ( ; , )L    satisfying to the 

following conditions: a a a   and a a a  , commute iff for each ,a b L , 
a b a b   is equivalent to a b  

Proof. The condition is obviously necessary. Let’s show that it is sufficient 
too. Suppose ,x y L , x z  and z y , hence, x x z , z y y  . Then 

,x y z x z x x      and it follows that there exists t L  such that 
x y z t x x    , so y y y t  . Further, x y z y z y y     , then 
y z y t  , y z y t   and t y z  , so t y t  , x x t y t y y     , 

hence, x x y y  . This shows that    so    .                         □ 
2.2. The operation   of a q-semilattice ( ; )L   is interlaced with the 

operations   and   of the q-lattice ( ; , )L   , iff the following hyperidentity is 
satisfied  in  the  algebra ( ; , , )L    : 

( ( ( , ), ), ( , )) ( ( ( , ), ), ( ( , ), ))X Y X x y z Y y z X Y X x y z Y X x y z . 
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Proof. Let us show, for example, that [( ) ] ( )x y z y z      
[( ) ] [( ) ]x y z x y z       follows from x y x z y z       and conversely.     

( )  x y y   for any ,x y L . Then ( )x y z y z    . So, 
[( ) ] ( )x y z y z     [( ) ] [( ) ]x y z x y z     . 

( ) ( )x z x x z x z        for any , ,x y z L , then [( ) ] [( ) ]x x z x x z       
( ) ( )x z x z    . Let x y , then x y x x   . In that case ( ) ( )x z y z     
( ) ( ) ( ) [( ) ] [( ) ] ( ) [( ) ] ( )x z x z y z x x z x x z y z x y z y z                     
[( ) ] [( ) ] [( ) ] [( ) ] ( ) ( )x y z x y z x x z x x z x z x z                . Hence, 

zyzx   .                                                                                                         □  
2.3. The operation   of a q-semilattice ( ; )L   is interlaced with the 

operations   and   of the q-lattice ( ; , )L   , for which xxxx  ,  iff  the 
algebra ( ; , , )L     satisfies  the  following  hyperidentity:   
                                     ( ( ( , ), ), ( , )) ( ( , ), )X Y X x y z Y y z Y X x y z .                            □ 

In the propositions 2.4−2.17 we suppose that ( ; , )L    is a q-lattice, ( ; )L   
is a q-semilattice and the operation   is interlaced with the operations  ,  and 
satisfies  the identity  a a a a   . 

2.4.  , ,x y x y x y x y x y x y x y              . 
2.5. ( ( , ), ( , )) ( , )X Y x y Y x y Y x y , where , { , , }X Y      for any ,x y L . 
2.6. &a x b a b a x b          ; &a x b b a b x a          .                                         
Proof. If we suppose a b , then a x b x    and a x b x   . Since, 

,a x b    then a a x x    and x x b b   , hence, a x b   . The 
second  statement can  be proved analogously.                                                         □ 

2.7.    & & &u x u y u x u y x y x y           ; 
               & & &x u y u u x u y x y x y           .  

Proof. We have u u x y x y      , u x  and u y , hence, 
u u u u x y     , then x y x y   . Similarly, x y x y   , so, 
x y x y x y      , hence, x y x y   .                                                            □ 

2.8.  Let  the  q-semilattice ( ; )L   forms  a  q-lattice ( ; , )L   . Then 
a b a a b b       . 

Proof.   By  2.4, ( ) ( )a a a a a a b a a b         , then  from  a b  
we get ( ) [ ( )]a a a a b a b a a b a a b            , hence,                                                
                                                 [ ( )]a a b a a b     .                                         (1) 

 From b a b   and ba   we obtain ( )b b a b a a b      , hence, 
( ) [ ( )],b b b b b b b b a a b          so, 

                                                 [ ( )]b b b a a b     .                                         (2) 
From (1) and (2) it follows that  

 ( ) ( ) ( [ ( )])a a b b b a a b b a a b              
( [ ( )]) ( [ ( )]) [ ( )].b a a b b a a b b a a b             

Then [ ( )]a b b a a b     . 
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Further, from a a b   it follows that 
( ) ( ) ( ) , ( ) ( ) ( ) .a a b a b a b a b a a b a b a b a b                  

From b a b   we deduce that ( ) , ( ) .b a b a b b a b a b                                
So, [ ( )] ( ) ,a b b a a b b a b a b             hence, 

[ ( )] [ ( )] ( ) ( ).b a b b a b a b a b          
[ ( )] [ ( )] [ ( )] [ ( )] ( ),b a b b a b b a b b a b b a b               

( ) ( ) ( ) ( )a b a b a b a b       , hence, ( ) ( ) ( )b a b a b a b      . 
So, a b b  . The second part of the inequality can be proved the same way.       □ 

Define  the relations 1  and 2  in ( ; , , )L     as follows: 

1 ;a b a b a b      2 .a b a b a b      
2.9.  2  is an equivalence relation in ( ; , )L   . 
Proof. Reflexivity and symmetry are clear. Let 2a b  and 2b c , then a b    

a b   and b c b c   . Hence, a b b   and b c b  . Then a b c b c     
and a b c a b    , hence, ( ) ( ) ( ) ( )a b c a b c a b b c           

( ) ( ) ( )a b b c a b b c a b c           . On the other hand, a b c a b c     . 
So, a b c a b c     , hence, ,a b c a    ,a b c c    ,a b c a    and  

.a b c c    Then, by 2.7, a c a c   , which shows that gives 2a c .             □ 
 2.10. 2  is a congruence relation in ( ; , )L   . 
 Proof. Let 2a b , hence, a b a b   .   So, a b a   and a b b  . Then 

for any c L  it follows that a b c a c     and a b c b c     and since 
a b c a c     and a b c b c    , we get by 2.7 that ( ) ( )a c b c     

( ) ( ),a b b c    hence, 2a c b c  . Similarly we get that 2a c b c  .           □ 
2.11.  1  is a congruence relation in ( ; , )L   . 
2.12.  1  and 2  are congruence relations in ( ; )L  .                                
Proof.  Let 1a b , i.e. a b a b   , then a a b   and b a b  . So, 

a c a b c     and b c a b c    . Since, a b c a c     and a b c b c    ,  
then from 2.7 we obtain ( ) ( ) ( ) ( )a c b c a c b c       , hence 1a c b c  .  

In the same way we can show that 2a c b c   follows from 2a b .              □ 
2.13.  1 2( )a b a a b b      . 
Proof. 1 2 1( )a b a b     and 2a b a b a b      and a b   

a b a b a b a a b b          .                                                                □ 
2.14. 1 2,a b a b a b a b     .  
Proof.  ( ) ( ) ( ) ( )a b a b a b a b a b         ,  hence, 1a b a b  . By 

2.4, we have ( ) ( ) ( ) ( )a b a b a b a b a b         , hence, 2a b a b  .          □ 
2.15.  1 2a b a b   . 
Proof. By 2.14, 1a b a b   and 2a b a b  , giving us 1 2a b a b   , 

hence,  1 2a a b b   , so 1 2a b  . 
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2.16. 2 1a b a b   .                                                                                   □ 
Proof. Using  2.8  we  get 2 1a a b b  .                                                            □ 
2.17.  1/L   and 2/L   are lattices. 
Proof. Note that ia a a   and ia a a  , for  1,2i  . Hence, the elements of 

quantient-algebras, 1/L   and 2/L  , are idempotent.                                               □  
3. Theorems. 
T h eo r e m 1 .  Let ( ; , )L    be a q-lattice, ( ; )L   be a q-semilattice, the 

operation of which is interlaced with the operations   and  , and satisfy the 
identity a a a a   . Then there exists a pair of congruences 1 2( , )   in the                 
q-lattice ( ; , )L   ,  satisfying the following conditions: 

1. 1 2( )a b a a b b      ; 
2. 1 2a b a b   ; 
3. ( ( ( , ), ), ( , )) ( ( , ), ) for 1,2iX Y X x y z Y y z Y X x y z i   ,                         (3)               

where , { , }, , ,X Y x y z L    . 
Conversely, each pair of congruences 1 2( , )   in ( ; , )L    satisfying the 

conditions 1–3, corresponds to a q-semilattice ( ; )L  , the operation of which is 
interlaced  with  the operations   and   and satisfies the identity a a a a   . 

Proof. Define the relations 1  and 2  as above. From 2.10, 2.11, 2.13 and 
2.15 we get that 21 ,  are congruences in ( ; , )L    satisfying conditions 1 and 2.  
The condition 3 is valid, since any q-lattice is interlaced.  

Conversely, let 1  and 2 are congruences satisfying the conditions of 
Theorem 1. Define the operation   by the following rule: 

1a b d d d a b      and 2d a b  . 
The existence of such d L  follows from the Condition 2. Obviously, the 

operation   is commutative, and the following identities are true: ( )a b b a b    ,  
a a a a   . The elements 1 ( )d a b c   , 2 ( )d a b c    satisfy 1 1 1d d a b c    
and 1 1 2d d a b c   ,  2 2 1d d a b c    and 2 2 1d d a b c    consequently, 

1 1 2d d  and 1 2 2d d , hence, 1 1 2 2d d d d   ,  so  by  2.5, ( ) ( )a b c a b c     . 
To prove that the operation   is interlaced with the operations  ,  , we use 

the  definition  of  the  operation   and  the  fact  that  the  q-lattices / iL   are  
interlaced ( 1,2)i  . For example, the elements 1 ( )u x y z    and 2u    

[( ) ] ( )x y z y z      satisfy 1 1 2( )x y z u x y z      and 1 2 2( )x y z u x y z     , 
then  2211 uuuu  ( ) [( ) ] ( )x y z x y z y z         (by 2.5).               □ 

T h eo r e m 2 .  Let ( ; , )L    be a q-lattice. There exists a bijective 
correspondence between the q-semilattice operations   in L , which are interlaced 
with the operations ,   and satisfy the identity a a a a   , and the 
epimorphism   acting from ( ; , )L    to the subdirect product of two lattices, 
satisfying ( ) ( )x y x x y y      . Moreover, if ( , ), ( , )a b a b   are elements of 
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this subdirect product and ( , ) ( , )a b a b    , then ( , )a b  belongs to this subdirect 
product too, and if ( ) ( , )x a b  , ( ) ( , )y a b   , then ( ) ( , )x y a a b b      . 

Proof.  Let ( ; )L   be a q-semilattice satisfying the theorem’s conditions, and 

1  and 2  are the congruence relations from Theorem 1. Then the q-lattice 
( ; , )L    is epimorphically mapped to the subdirect product of the two lattices 

1/L   and 2/L  , 
1 2

: ([ ] ,[ ] )x x x   ,  such that ( ) ( )x y x x y y      .       
Let ( , )a b  and ( , )a b   belong to this subdirect product and ( , ) ( , )a b a b   . 

Then there exist ,u v L  such that ( ) ( , ), ( ) ( , )u a b v a b      and u v . Then 
by the Theorem 1there exists t L  with the property 1 2u t v  , hence, ( ) ( , )t a b  . 

Conversely, let   be an epimorphism between L  and the subdirect product 
of lattices A  and B  satisfying the Theorem’s conditions. Then there exist 
congruence relations 1  and 2  such that 1 2( ) ,a b a a b b       and  1/L  , 

2/L   are isomorphic to A  and B  respectively. So, / iL   satisfy the condition (1).  
If ,a b L   and ba  , then ( ) ( )a b  , so, by our assumption we get  

that 
1 2

([ ] ,[ ] )a b   belongs to the subdirect product, hence there exists t L  such 
that 

1 2 1( ) ([ ] ,[ ] )t a b a t     and 2 1 2t b a b   . Hence, the pair of congruences  

1 2( , )   in L  satisfies the conditions of Theorem 1, and it follows that there exists a 
q-semilattice operation,  , which is interlaced with the operations   and  , and 
satisfies the identity a a a a    . The last statement of the theorem can be proved 
with the help of the relation 1 2a b a b a b    .                                                      □ 

T h eo r e m 3 .  a) The q-semilattice ( ; )L   from Theorem 1 can be 
transformed into a lattice ( ; , )L    (moreover, in the unique way), iff the 
corresponding congruences 1  and 2  commute.                                                                   

b) The q-semilattice ( ; )L   of Theorem 2 can be transformed into a q-lattice 
( ; , )L   , iff the subdirect product turns out to be a direct.                     

Proof.  a) If the lattice ( ; , )L    exists, then 1 2 2 1     by 2.1, 2.15 and 2.16.                                                             
Conversely, let 1 2 2 1    . Then for a b  we get by Theorem 1 1 2a b  , hence, 

2 1a b  , too. By Theorem 1 there exists a q-semilattice operation   in L  
corresponding to the pair 2 1( , )  , which is interlaced with the operations    and 
 , and satisfies the identities a a a a   , 2 1( )a b a b a b    . Hence,  

2 2( ) ( ) ( )a b a a b a a b a a a          and 1 1( ) ( ) ( )a b a a b a a b a         

1 2( ) ( ) ( )a a a b a a a a a a b a             . Similarly, we get ( )a b a a a    . 
Hence, ( ; , )L    is a q-lattice.  

b) Let ,a b L  then by 2.14 and 2.4 1 2a b a b a b     and a b a    
b a b   , then 1 2 i    [20]. So, the subdirect product is a direct product, iff 

2 1   1 2   [20]. By a), this is equivalent to the condition that ( ; )L   forms a q-lattice.  □   
T h eo r e m 4 .   Let  ( ; , )L    and ( ; , )L     be q-lattices. If the operation   

is interlaced with the operations   and  , and  satisfies the identity  a a a a     
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then the operation   is interlaced with the operations   and   too.                                                          
Proof.  The proof follows from Theorems 1 and 3.                                        □   
T h eo r e m 5 .  Let  1 ( ; , )L L   and 2 ( ; , )L L    be q-lattices with the 

following identity: x x x x   . The operation   is interlaced with the operations 
,  , iff there exists an epimorphism   from the q-bilattice ( ; , , , )L      to the 

superproduct of the two lattices 1L 2L , such that the epimorphism   satisfies the 
following condition:  ( ) ( )x y x x y y      . Hence, the epimorphism   is 
an isomorphism on the bilattice of the idempotent elements of the q-bilattice. 

Proof. By the Theorems 2 and 3b), there exists an epimorphism 
: L A B    between the q-lattice ( ; , )L    and the subdirect product of two 

lattices A  and B , which satisfying the condition ( ) ( )x y x x y y      . 
The map   can be continued to the epimorphism between the q-bilattice 
( ; , , , )L       and the superproduct A B  in the following manner: 

( ) ( , ); ( ) ( , )x y a a b b x y a a b b            , 
where  ( ) ( , ), ( ) ( , )x a b y a b     .                                                                         □    
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