Physical and Mathematical Sciences

2011, № 3, p. 9–16

Mathematics

ON q-BILATTICES

D. S. DAVIDOVA*

Chair of Algebra and Geometry YSU, Armenia

In this paper the concept of q-bilattice is studied. Interlaced q-bilattices are characterized by the pair of congruencies.

Keywords: *q*-semilattice, *q*-lattice, *q*-bilattice, an interlaced *q*-bilattice, hyperidentity.

1. Introduction. Bilattices are algebraic structures that were introduced by Ginsberg [1, 2] as a general and uniform framework for a diversity of applications in artificial intelligence. In a series of papers it was shown that these structures may serve as a foundation for many areas, such as logic programming [3–5].

A bilattice is an algebra $(L; \cap, \cup, *, \Delta)$ with four binary operations, for which the following two reducts $L_1 = (L; \cap, \cup)$ and $L_2 = (L; *, \Delta)$ are lattices.

The bilattice is called interlaced, if all the basic bilattice operations are order preserving with respect to both orders.

In papers [1, 3, 6, 7] bounded distributive or interlaced bilattices were studied. In [8] interlaced bilattices without bounds were characterized (see also [9, 10]).

The algebra $(L; \cap)$ is called a *q*-semilattice, if it satisfies the following identities:

1. $a \cap b = b \cap a$;

2.
$$a \cap (b \cap c) = (a \cap b) \cap c$$
;

3. $a \cap (b \cap b) = a \cap b$.

The algebra $(L; \cap, \cup)$ is called a *q*-lattice (see [11]), if the reducts $(L; \cap)$ and $(L; \cup)$ are *q*-semilattices and the following identities $a \cap (b \cup a) = a \cap a$, $a \cup (b \cap a) = a \cup a$, $a \cap a = a \cup a$ are valid.

For each q-semilattice $(L; \cap)$ there is a corresponding quasiorder Q (i.e. a reflexive and transitive relation), defined in the following manner: $aQb \leftrightarrow a \cap b = a \cap a$. For each q-lattice $(L; \cap, \cup)$, we have: $aQb \leftrightarrow a \cap b =$ $= a \cap a \leftrightarrow a \cup b = b \cup b$.

A *q*-bilattice is an algebraic structure $(L; \cap, \cup, *, \Delta)$ with two *q*-lattice reducts $L_1 = (L; \cap, \cup)$ and $L_2 = (L; *, \Delta)$, which also satisfies the following identity

^{*} E-mail: di.davidova@yandex.ru

 $a * a = a \cap a$. (The quasiorder of the first reduct $(L; \cap, \cup)$ is denoted by \leq_{\cap} , and the quasiorder of the second reduct by \leq_*).

The operation * of the *q*-semilattice (L;*) is called interlaced with the operations \cap and \cup of the *q*-lattice $(L;\cap,\cup)$, if the *q*-semilattice operation * preserves the *q*-lattice quasiorder, and *q*-lattice operations \cap and \cup preserve the *q*-semilattice quasiorder. Note that the operations of a *q*-lattice are interlaced with each other.

The *q*-bilattice $(L; \cap, \cup, *, \Delta)$ is called interlaced, if all the basic *q*-bilattice operations are quasiorder preserving with respect to both quasiorders.

In the present work interlaced *q*-bilattices are studied.

We need the concept of a hyperidentity and a superproduct of algebras [12, 13].

Let us recall that a hyperidentity is a second-ordered formula of the following type:

$$\forall X_1, \dots, X_m \forall x_1, \dots, x_n (w_1 = w_2),$$

where $X_1, ..., X_m$ are functional variables and $x_1, ..., x_n$ are objective variables in the words (terms) w_1, w_2 . Hyperidentities are usually written without quantifiers: $w_1 = w_2$. We say that the hyperidentity $w_1 = w_2$ is satisfied in the algebra (Q; F), if this equality is valid, when every objective variable and every functional variable in it is replaced by any element of Q and by any operation of the corresponding arity from F (supposing the possibility of such replacement).

The reader is reffered to [14–16] for characterization of hyperidentities of varieties of lattices, modular lattices, distributive lattices and Boolean algebras. For hyperidentities in thermal (polynomial) algebras (see [17, 18].

For the categorical definition of a hyperidentity in [12] the (bi)homomorphisms between two algebras (Q,F) and (Q';F') are defined as a pair $(\varphi,\tilde{\psi})$ of maps:

$$\varphi: Q \to Q', \tilde{\psi}: F \to F', |A| = |\tilde{\psi}A|,$$

with the following condition

$$\varphi A(a_1,\ldots,a_n) = (\tilde{\psi} A)(\varphi a_1,\ldots,\varphi a_n)$$

for any $A \in F$, |A| = n, $a_1, ..., a_n \in Q$. For an application of such morphisms in the cryptography see [19].

Algebras and their (bi)homomorphisms $(\varphi, \tilde{\psi})$ (as morphisms) form a category with a product. The product in this category is called a superproduct of algebras and denoted by $Q \bowtie Q'$ for algebras Q and Q'. For example, a superproduct of two q-lattices $Q(+,\cdot)$ and $Q'(+,\cdot)$ is the binary algebra $Q \times Q'((+,+),(\cdot,\cdot),(+,\cdot),(\cdot,+))$ with four binary operations, where the pairs of the operations act component-wise, i.e. (A,B)((x,y),(u,v)) = (A(x,u),B(y,v)), and $Q \bowtie Q'$ is a q-bilattice. In fact, let us show that $Q \times Q'((+,+),(\cdot,+))$ are q-lattices and satisfy the identity $(+,+)((x,y),(x,y)) = (+,\cdot)((x,y),(x,y))$. The commutativity and associativity are obvious. For other identities we have:

A.
$$((a,b)(+,+)(c,d))(+,+)(c,d) = ((a+c)+c,(b+d)+d) = (a+c,b+d) = (a,b)(+,+)(c,d);$$

 $((a,b)(+,+)(c,d))(+,+)(c,d) = ((a+c)+c,(b+d)+d) = (a+c,b+d) = (a,b)(+,+)(c,d);$
 $((a,b)(\cdot,+)(c,d))(\cdot,+)(c,d) = ((a+c)+c,(b+d)+d) = (a+c,b+d) = (a,b)(\cdot,+)(c,d);$
 $((a,b)(\cdot,+)(c,d))(\cdot,+)(c,d) = ((a+c)+c,(b+d)+d) = (a+c,b+d) = (a,b)(\cdot,+)(c,d);$
 $(a,b)(+,+)((c,d)(\cdot,+)(a,b)) = (a+(c+a),b+(d+b)) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)((c,d)(+,+)(a,b)) = (a+(c+a),b+(d+b)) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)((c,d)(\cdot,+)(a,b)) = (a+(c+a),b+(d+b)) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)((c,d)(\cdot,+)(a,b)) = (a+(c+a),b+(d+b)) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)((c,d)(\cdot,+)(a,b)) = (a+(c+a),b+(d+b)) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)(a,b) = (a+a,b+b) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)(a,b) = (a+a,b+b) = (a+a,b+b) = (a,b)(\cdot,+)(a,b);$
 $(a,b)(+,+)(a,b) = (a+a,b+b) = (a+a,b+b) = (a,b)(\cdot,+)(a,b).$

It is easy to show that quasiorders on the *q*-lattices $Q \times Q'((+,+),(\cdot,\cdot))$ and $Q \times Q'((+,\cdot),(\cdot,+))$, which are denoted by the symbols \leq_{I} and \leq_{II} correspondingly, are defined by the following rules:

$$(a,b) \leq_{\mathrm{I}} (c,d) \leftrightarrow a \leq_{\mathrm{I}} c \text{ and } b \leq_{\mathrm{2}} d;$$

$$(a,b) \leq_{\mathrm{II}} (c,d) \leftrightarrow a \leq_{\mathrm{I}} c \text{ and } d \leq_{\mathrm{2}} b,$$

where \leq_1 and \leq_2 are the quasiorders on the *q*-lattices $Q(+,\cdot)$ and $Q'(+,\cdot)$. So,

 $(a,b) \leq_{I} (c,d) \& (e,f) \leq_{I} (g,h) \to a \leq_{I} c \& b \leq_{2} d \& e \leq_{I} g \& f \leq_{2} h \to$

 $\rightarrow a + e \leq_1 c + g, a \cdot e \leq_1 c \cdot g \And b + f \leq_2 d + h, b \cdot f \leq_2 d \cdot h \rightarrow$

 $\rightarrow (a+e,b+f) \leq_{\mathrm{I}} (c+g,d+h) \& (a \cdot e,b \cdot f) \leq_{\mathrm{I}} (c \cdot g,d \cdot h);$

 $(a,b) \leq_{II} (c,d) \& (e,f) \leq_{II} (g,h) \to a \leq_{1} c \& d \leq_{2} b \& e \leq_{1} g \& h \leq_{2} f \to a \leq_{1} c \& d \leq_{2} b \& e \leq_{1} g \& h \leq_{2} f \to a \leq_{1} c \& d \leq_{2} b \& e \leq_{1} g \& h \leq_{2} f \to a \leq_{1} c \& d \leq_{1} b \& e \leq_{1} c \& d \leq_{2} b \& e \leq_{1} c \& d \in_{1} c$

 $\rightarrow a + e \leq_1 c + g, a \cdot e \leq_1 c \cdot g \& d + h \leq_2 b + f, d \cdot h \leq_2 b \cdot f \rightarrow d \cdot h \leq_2 b \cdot f \to d \cdot h = d \cdot$

 $\rightarrow (a+e,b+f) \leq_{\mathrm{II}} (c+g,d+h) \,\& \, (a \cdot e,b \cdot f) \leq_{\mathrm{II}} (c \cdot g,d \cdot h) \,.$

Hence, $Q \times Q'((+,+),(\cdot,\cdot),(+,\cdot))$ is an interlaced q-bilattice.

2. Some Lemmas.

2.1. Congruence relations Θ , Φ of a *q*-lattice $(L; \cap, \cup)$ satisfying to the following conditions: $a\Theta a \cap a$ and $a\Phi a \cap a$, commute iff for each $a, b \in L$, $a \leq b \rightarrow a\Theta \Phi b$ is equivalent to $a\Phi\Theta b$

Proof. The condition is obviously necessary. Let's show that it is sufficient too. Suppose $x, y \in L$, $x\Theta z$ and $z\Phi y$, hence, $x \cap x\Theta z$, $z\Phi y \cap y$. Then $x \cap y \cap z\Phi x \cap z\Theta x \cap x$, and it follows that there exists $t \in L$ such that $x \cap y \cap z\Theta t\Phi x \cap x$, so $y \cup y\Theta y \cup t$. Further, $x \cap y \cap z\Theta y \cap z\Phi y \cap y$, then $y \cap z\Phi\Theta y \cup t$, $y \cap z\Theta\Phi y \cup t$ and $t\Theta y \cap z$, so $t\Theta\Phi y \cup t$, $x \cap x\Phi t\Phi\Theta y \cup t\Theta y \cup y$, hence, $x \cap x\Phi\Theta y \cap y$. This shows that $\Theta\Phi \leq \Phi\Theta$ so $\Theta\Phi = \Phi\Theta$.

2.2. The operation * of a q-semilattice (L;*) is interlaced with the operations \cap and \cup of the q-lattice $(L;\cap,\cup)$, iff the following hyperidentity is satisfied in the algebra $(L;\cap,\cup,*)$:

X(Y(X(x, y), z), Y(y, z)) = X(Y(X(x, y), z), Y(X(x, y), z)).

Proof. Let us show, for example, that $[(x \cap y)*z] \cap (y*z) = = [(x \cap y)*z] \cap [(x \cap y)*z]$ follows from $x \leq_{\cap} y \to x*z \leq_{\cap} y*z$ and conversely.

 $(\rightarrow) \quad x \cap y \leq_{\cap} y \text{ for any } x, y \in L. \text{ Then } (x \cap y) * z \leq_{\cap} y * z. \text{ So,} \\ [(x \cap y) * z] \cap (y * z) = [(x \cap y) * z] \cap [(x \cap y) * z].$

 $(\leftarrow) x * z \leq_{\frown} (x \cap x) * z \leq_{\frown} x * z \text{ for any } x, y, z \in L \text{, then } [(x \cap x) * z] \cap [(x \cap x) * z] = \\ = (x * z) \cap (x * z) \text{. Let } x \leq_{\frown} y \text{, then } x \cap y = x \cap x \text{. In that case } (x * z) \cap (y * z) = \\ = (x * z) \cap (x * z) \cap (y * z) = [(x \cap x) * z] \cap [(x \cap x) * z] \cap (y * z) = [(x \cap y) * z] \cap (y * z) = \\ = [(x \cap y) * z] \cap [(x \cap y) * z] = [(x \cap x) * z] \cap [(x \cap x) * z] = (x * z) \cap (x * z) \text{. Hence,} \\ x * z \leq_{\frown} y * z \text{.} \qquad \Box$

2.3. The operation * of a q-semilattice (L;*) is interlaced with the operations \cap and \cup of the q-lattice $(L;\cap,\cup)$, for which $x*x = x \cap x$, iff the algebra $(L;\cap,\cup,*)$ satisfies the following hyperidentity:

$$X(Y(X(x,y),z),Y(y,z)) = Y(X(x,y),z).$$

In the propositions 2.4–2.17 we suppose that $(L; \cap, \cup)$ is a q-lattice, (L; *) is a q-semilattice and the operation * is interlaced with the operations \cap, \cup and satisfies the identity $a \cap a = a * a$.

 $2.4. \quad x \cap y \leq_{\cap} x * y \leq_{\cap} x \cup y, x * y \leq_{*} x \cap y, x * y \leq_{*} x \cup y.$

2.5. X(Y(x, y), Y(x, y)) = Y(x, y), where $X, Y \in \{\cap, \cup, *\}$ for any $x, y \in L$.

2.6. $a \leq x \leq b \& a \leq b \Rightarrow a \leq x \leq b; a \leq x \leq b \& b \leq a \Rightarrow b \leq x \leq a$.

Proof. If we suppose $a \leq_* b$, then $a \cap x \leq_* b \cap x$ and $a \cup x \leq_* b \cup x$. Since, $a \leq_{\cap} x \leq_{\cap} b$, then $a \cap a \leq_* x \cap x$ and $x \cap x \leq_* b \cap b$, hence, $a \leq_* x \leq_* b$. The second statement can be proved analogously.

2.7. $u \leq x \& u \leq y \& u \leq x \& u \leq y \to x \cap y = x * y;$

 $x \leq_{\bigcirc} u \& y \leq_{\bigcirc} u \& u \leq_{*} x \& u \leq_{*} y \to x \cup y = x * y.$

Proof. We have $u \cap u \leq_{\cap} x \cap y \leq_{*} x * y$, $u \leq_{*} x$ and $u \leq_{*} y$, hence, $u \cap u = u * u \leq_{*} x * y$, then $x \cap y \leq_{*} x * y$. Similarly, $x * y \leq_{*} x \cap y$, so, $x * y \leq_{*} x \cap y \leq_{*} x * y$, hence, $x \cap y = x * y$.

2.8. Let the q-semilattice (L;*) forms a q-lattice $(L;*,\Delta)$. Then

$$a \leq b \to a \leq a \Delta b \leq b$$
.

Proof. By 2.4, $a \cap a = a * a = a * (a\Delta b) \leq_* a \cup (a\Delta b)$, then from $a \leq_{\cap} b$ we get $a * a = a \cap a = b \cap (a \cap a) \leq_* b \cap [a \cup (a\Delta b)]$, hence,

$$*a \leq_* b \cap [a \cup (a\Delta b)]. \tag{1}$$

From $b \leq_* a\Delta b$ and $a \leq_{\frown} b$ we obtain $b \cap b = a \cup b \leq_* a \cup (a\Delta b)$, hence, $b * b = b \cap b = (b \cap b) \cap b \leq_* b \cap [a \cup (a\Delta b)]$, so,

$$b * b \leq_* b \cap [a \cup (a\Delta b)]. \tag{2}$$

From (1) and (2) it follows that

 $(a*a)\Delta(b*b) \leq_* (b \cap [a \cup ((a\Delta b))])\Delta(b \cap [a \cup (a\Delta b)]) =$

 $= (b \cap [a \cup (a\Delta b)]) \cap (b \cap [a \cup (a\Delta b)]) = b \cap [a \cup (a\Delta b)].$

Then $a\Delta b \leq_* b \cap [a \cup (a\Delta b)]$.

Further, from $a \leq_* a\Delta b$ it follows that $a \cup (a\Delta b) \leq_* (a\Delta b) \cup (a\Delta b) = a\Delta b, a \cap (a\Delta b) \leq_* (a\Delta b) \cap (a\Delta b) = a\Delta b.$ From $b \leq_* a\Delta b$ we deduce that $b \cup (a\Delta b) \leq_* a\Delta b, b \cap (a\Delta b) \leq_* a\Delta b.$ So, $a\Delta b \leq_* b \cap [a \cup (a\Delta b)] \leq_* b \cap (a\Delta b) \leq_* a\Delta b$, hence, $[b \cap (a\Delta b)] * [b \cap (a\Delta b)] = (a\Delta b) * (a\Delta b).$ $[b \cap (a\Delta b)] * [b \cap (a\Delta b)] = [b \cap (a\Delta b)] \cap [b \cap (a\Delta b)] = b \cap (a\Delta b),$

 $(a\Delta b)*(a\Delta b) = (a\Delta b) \cap (a\Delta b)$, hence, $b \cap (a\Delta b) = (a\Delta b) \cap (a\Delta b)$.

So, $a\Delta b \leq_{\bigcirc} b$. The second part of the inequality can be proved the same way. \Box

Define the relations θ_1 and θ_2 in $(L; \cap, \cup, *)$ as follows:

 $a\theta_1 b \leftrightarrow a * b = a \cup b; \ a\theta_2 b \leftrightarrow a * b = a \cap b.$

2.9. θ_2 is an equivalence relation in $(L; \cap, \cup)$.

Proof. Reflexivity and symmetry are clear. Let $a\theta_2 b$ and $b\theta_2 c$, then $a * b = a \cap b$ and $b * c = b \cap c$. Hence, $a \cap b \leq_* b$ and $b \cap c \leq_* b$. Then $a \cap b \cap c \leq_* b \cap c$ and $a \cap b \cap c \leq_* a \cap b$, hence, $(a \cap b \cap c) \cap (a \cap b \cap c) \leq_* (a \cap b) * (b \cap c) = (a * b) * (b * c) = a * (b * b) * c = a * b * c$. On the other hand, $a * b * c \leq_* a \cap b \cap c$. So, $a \cap b \cap c = a * b * c$, hence, $a \cap b \cap c \leq_* a$, $a \cap b \cap c \leq_* c$, $a \cap b \cap c \leq_\circ a$, and $a \cap b \cap c \leq_\circ c$. Then, by 2.7, $a \cap c = a * c$, which shows that gives $a\theta_2 c$.

2.10. θ_2 is a congruence relation in $(L; \cap, \cup)$.

Proof. Let $a\theta_2 b$, hence, $a * b = a \cap b$. So, $a \cap b \leq_* a$ and $a \cap b \leq_* b$. Then for any $c \in L$ it follows that $a \cap b \cap c \leq_* a \cap c$ and $a \cap b \cap c \leq_* b \cap c$ and since $a \cap b \cap c \leq_\circ a \cap c$ and $a \cap b \cap c \leq_\circ b \cap c$, we get by 2.7 that $(a \cap c) \cap (b \cap c) =$ $= (a \cap b) * (b \cap c)$, hence, $a \cap c\theta_2 b \cap c$. Similarly we get that $a \cup c\theta_2 b \cup c$.

2.11. θ_1 is a congruence relation in $(L; \cap, \cup)$.

2.12. θ_1 and θ_2 are congruence relations in (L;*).

Proof. Let $a\theta_1 b$, i.e. $a * b = a \cup b$, then $a \leq a * b$ and $b \leq a * b$. So, $a * c \leq a * b * c$ and $b * c \leq a * b * c$. Since, $a * b * c \leq a * c$ and $a * b * c \leq b * c$, then from 2.7 we obtain $(a * c) * (b * c) = (a * c) \cup (b * c)$, hence $a * c\theta_1 b * c$.

In the same way we can show that $a * c\theta_2 b * c$ follows from $a\theta_2 b$. **2.13.** $a(\theta_1 \cap \theta_2)b \leftrightarrow a \cap a = b \cap b$.

Proof. $a(\theta_1 \cap \theta_2)b \leftrightarrow a\theta_1 b$ and $a\theta_2 b \leftrightarrow a * b = a \cup b$ and $a * b = a \cap b \leftrightarrow a \cup b = a \cap b \leftrightarrow a \cap a = b \cap b$.

2.14. $a \cap b\theta_1 a * b$, $a * b\theta_2 a \cup b$.

Proof. $(a \cap b) * (a * b) = a * b = (a \cap b) \cup (a * b)$, hence, $a \cap b\theta_1 a * b$. By 2.4, we have $(a \cup b) * (a * b) = a * b = (a \cup b) \cap (a * b)$, hence, $a \cup b\theta_2 a * b$. \Box 2.15. $a \leq_{\bigcirc} b \rightarrow a\theta_1\theta_2 b$.

Proof. By 2.14, $a \cap b\theta_1 a * b$ and $a * b\theta_2 a \cup b$, giving us $a \cap b\theta_1 \theta_2 a \cup b$, hence, $a \cap a\theta_1 \theta_2 b \cap b$, so $a\theta_1 \theta_2 b$.

2.16. $a \leq_{\frown} b \rightarrow a\theta_2\theta_1 b$.

Proof. Using 2.8 we get $a\theta_2 a \Delta b \theta_1 b$.

2.17. L/θ_1 and L/θ_2 are lattices.

Proof. Note that $a\theta_i a \cap a$ and $a\theta_i a \cup a$, for i = 1, 2. Hence, the elements of quantient-algebras, L/θ_1 and L/θ_2 , are idempotent.

3. Theorems.

Theorem 1. Let $(L; \cap, \cup)$ be a q-lattice, (L; *) be a q-semilattice, the operation of which is interlaced with the operations \cup and \cap , and satisfy the identity $a \cap a = a * a$. Then there exists a pair of congruences (θ_1, θ_2) in the q-lattice $(L; \cap, \cup)$, satisfying the following conditions:

- 1. $a(\theta_1 \cap \theta_2)b \leftrightarrow a \cap a = b \cap b;$
- 2. $a \leq b \rightarrow a\theta_1\theta_2 b$;

3. $X(Y(X(x,y),z),Y(y,z))\theta_i Y(X(x,y),z)$ for i = 1,2, (3) where $X, Y \in \{\cap, \cup\}, x, y, z \in L$.

Conversely, each pair of congruences (θ_1, θ_2) in $(L; \cap, \cup)$ satisfying the conditions 1–3, corresponds to a *q*-semilattice (L; *), the operation of which is interlaced with the operations \cup and \cap and satisfies the identity $a \cap a = a * a$.

Proof. Define the relations θ_1 and θ_2 as above. From 2.10, 2.11, 2.13 and 2.15 we get that θ_1, θ_2 are congruences in $(L; \cap, \cup)$ satisfying conditions 1 and 2. The condition 3 is valid, since any *q*-lattice is interlaced.

Conversely, let θ_1 and θ_2 are congruences satisfying the conditions of Theorem 1. Define the operation * by the following rule:

 $a * b = d \cap d \leftrightarrow d\theta_1 a \cap b$ and $d\theta_2 a \cup b$.

The existence of such $d \in L$ follows from the Condition 2. Obviously, the operation * is commutative, and the following identities are true: a*(b*b) = a*b, $a \cap a = a*a$. The elements $d_1 = (a*b)*c$, $d_2 = a*(b*c)$ satisfy $d_1 \cap d_1\theta_1 a \cap b \cap c$ and $d_1 \cap d_1\theta_2 a \cup b \cup c$, $d_2 \cap d_2\theta_1 a \cap b \cap c$ and $d_2 \cap d_2\theta_1 a \cup b \cup c$ consequently, $d_1\theta_1 d_2$ and $d_1\theta_2 d_2$, hence, $d_1 \cap d_1 = d_2 \cap d_2$, so by 2.5, (a*b)*c = a*(b*c).

To prove that the operation * is interlaced with the operations \cap, \cup , we use the definition of the operation * and the fact that the *q*-lattices L/θ_i are interlaced (i=1,2). For example, the elements $u_1 = (x*y) \cap z$ and $u_2 =$ $=[(x*y) \cap z]*(y \cap z)$ satisfy $x \cap y \cap z\theta_1 u_1 \theta_2(x \cup y) \cap z$ and $x \cap y \cap z\theta_1 u_2 \theta_2(x \cup y) \cap z$, then $u_1 \cap u_1 = u_2 \cap u_2 \rightarrow (x*y) \cap z = [(x*y) \cap z]*(y \cap z)$ (by 2.5). \Box

Theorem 2. Let $(L; \cap, \cup)$ be a q-lattice. There exists a bijective correspondence between the q-semilattice operations * in L, which are interlaced with the operations \cap, \cup and satisfy the identity $a \cap a = a * a$, and the epimorphism φ acting from $(L; \cap, \cup)$ to the subdirect product of two lattices, satisfying $\varphi(x) = \varphi(y) \leftrightarrow x \cap x = y \cap y$. Moreover, if (a,b), (a',b') are elements of

this subdirect product and $(a,b) \leq_{\cap} (a',b')$, then (a,b') belongs to this subdirect product too, and if $\varphi(x) = (a,b)$, $\varphi(y) = (a',b')$, then $\varphi(x * y) = (a \cap a', b \cup b')$.

Proof. Let (L;*) be a *q*-semilattice satisfying the theorem's conditions, and θ_1 and θ_2 are the congruence relations from Theorem 1. Then the *q*-lattice $(L;\cap,\cup)$ is epimorphically mapped to the subdirect product of the two lattices L/θ_1 and L/θ_2 , $\varphi: x \to ([x]_{\theta_1}, [x]_{\theta_2})$, such that $\varphi(x) = \varphi(y) \leftrightarrow x \cap x = y \cap y$.

Let (a,b) and (a',b') belong to this subdirect product and $(a,b) \leq_{\frown} (a',b')$. Then there exist $u, v \in L$ such that $\varphi(u) = (a,b), \varphi(v) = (a',b')$ and $u \leq_{\frown} v$. Then by the Theorem 1 there exists $t \in L$ with the property $u\theta_1 t\theta_2 v$, hence, $\varphi(t) = (a,b')$.

Conversely, let φ be an epimorphism between L and the subdirect product of lattices A and B satisfying the Theorem's conditions. Then there exist congruence relations θ_1 and θ_2 such that $a(\theta_1 \cap \theta_2)b \leftrightarrow a \cap a = b \cap b$, and L/θ_1 , L/θ_2 are isomorphic to A and B respectively. So, L/θ_i satisfy the condition (1).

If $a, b \in L$ and $a \leq b$, then $\varphi(a) \leq \varphi(b)$, so, by our assumption we get that $([a]_{\theta_1}, [b]_{\theta_2})$ belongs to the subdirect product, hence there exists $t \in L$ such that $\varphi(t) = ([a]_{\theta_1}, [b]_{\theta_2}) \rightarrow a\theta_1 t$ and $t\theta_2 b \rightarrow a\theta_1 \theta_2 b$. Hence, the pair of congruences (θ_1, θ_2) in *L* satisfies the conditions of Theorem 1, and it follows that there exists a *q*-semilattice operation, *, which is interlaced with the operations \cap and \cup , and satisfies the identity $a \cap a = a * a$. The last statement of the theorem can be proved with the help of the relation $a \cap b\theta_1 a * b\theta_2 a \cup b$.

Theorem 3. a) The q-semilattice (L;*) from Theorem 1 can be transformed into a lattice $(L;*,\Delta)$ (moreover, in the unique way), iff the corresponding congruences θ_1 and θ_2 commute.

b) The q-semilattice (L;*) of Theorem 2 can be transformed into a q-lattice $(L;*,\Delta)$, iff the subdirect product turns out to be a direct.

Proof. a) If the lattice $(L;*,\Delta)$ exists, then $\theta_1\theta_2 = \theta_2\theta_1$ by 2.1, 2.15 and 2.16. Conversely, let $\theta_1\theta_2 = \theta_2\theta_1$. Then for $a \leq_{\bigcirc} b$ we get by Theorem 1 $a\theta_1\theta_2b$, hence, $a\theta_2\theta_1b$, too. By Theorem 1 there exists a *q*-semilattice operation Δ in *L* corresponding to the pair (θ_2, θ_1) , which is interlaced with the operations \bigcirc and \cup , and satisfies the identities $a\Delta a = a \cap a$, $a \cap b\theta_2(a\Delta b)\theta_1a \cup b$. Hence, $(a\Delta b)*a\theta_2(a\cap b)*a\theta_2(a\cap b)\cup a = a \cup a$ and $(a\Delta b)*a\theta_1(a\cup b)*a\theta_1(a\cup b)\cap a = a \cap a \to (a\Delta b)*a(\theta_1 \cap \theta_2)a \cap a \to a*a = (a\Delta b)*a$. Similarly, we get $(a*b)\Delta a = a\Delta a$. Hence, $(L;*,\Delta)$ is a *q*-lattice.

b) Let $a, b \in L$ then by 2.14 and 2.4 $a \cap b\theta_1 a * b\theta_2 a \cup b$ and $a \cap b \leq a * *b \leq a \cup b$, then $\theta_1 \cup \theta_2 = i$ [20]. So, the subdirect product is a direct product, iff $\theta_2 \theta_1 = \theta_1 \theta_2$ [20]. By a), this is equivalent to the condition that (*L*;*) forms a *q*-lattice. \Box

Theorem 4. Let $(L; \cap, \cup)$ and $(L; *, \Delta)$ be q-lattices. If the operation * is interlaced with the operations \cap and \cup , and satisfies the identity $a \cap a = a * a$

then the operation Δ is interlaced with the operations \cap and \cup too.

Proof. The proof follows from Theorems 1 and 3.

Theorem 5. Let $L_1 = (L; \cap, \cup)$ and $L_2 = (L; *, \Delta)$ be q-lattices with the following identity: $x \cap x = x * x$. The operation * is interlaced with the operations \cap, \cup , iff there exists an epimorphism φ from the q-bilattice $(L; \cap, \cup, *, \Delta)$ to the superproduct of the two lattices $L_1 \bowtie L_2$, such that the epimorphism φ satisfies the following condition: $\varphi(x) = \varphi(y) \leftrightarrow x \cap x = y \cap y$. Hence, the epimorphism φ is an isomorphism on the bilattice of the idempotent elements of the q-bilattice.

Proof. By the Theorems 2 and 3b), there exists an epimorphism $\varphi: L \to A \times B$ between the q-lattice $(L; \cap, \cup)$ and the subdirect product of two lattices A and B, which satisfying the condition $\varphi(x) = \varphi(y) \leftrightarrow x \cap x = y \cap y$. The map φ can be continued to the epimorphism between the q-bilattice $(L; \cap, \cup, *, \Delta)$ and the superproduct $A \bowtie B$ in the following manner:

$$\varphi(x * y) = (a \cap a', b \cup b'); \qquad \varphi(x \Delta y) = (a \cup a', b \cap b'),$$

where $\varphi(x) = (a,b), \quad \varphi(y) = (a',b').$

Received 25.02.2011

П

REFERENCES

- 1. Ginsberg M.L. Computational Intelligence, 1988, v. 4, p. 265–316.
- Ginsberg M.L. Multi-Valued Logics, Proc. AAA-186. Fifth National Conference on Artificial Intelligence. Morgan Kaufman Pablishers, 1986, p. 243–247.
- 3. Fitting M.C. Bilattices in Logic Programming. In: G. Epstain ed., proc. 20th Internat. Symp. on Multiple-Valued Logic, IEEE, New York, 1990, p. 63–70.
- 4. Fitting M.C. Journal of Logic Programming, 1991, v. 11, p. 91–116.
- 5. Mobasher B., Pigozzi D., Slutski G. Theoretical Computer Science, 1997, v. 171, p. 77–109.
- 6. Romanowska A.B., Trakul A. On the Structure of Some Bilattices. Universal and Applied Algebra. World Scientific, 1989, p. 235–253.
- Avron A. Math. Struct. in Comp. Science. Cambridge University Press., 1996, v. 6, p. 287–289.
 Movsisyan Yu.M., Romanowska A.B., Smith J.D.H. Comb. Math.and Comb. Comp., 2006, v. 58, p. 101–111.
- 9. Movsisyan Yu M. Armenian Journal of Mathematics, 2008, v. 1, p. 7–13.
- 10. Movsisyan Yu.M. Proceedings of the Steclov Inst. of Math., 2011, v. 274, p. 174-192.
- 11. Chajda I. Acta Polacky University, 1992, v. 31, p. 6-12.
- 12. Movsisyan Yu.M. Introduction to Theory of Algebras with Hyperidentities. Yer.: YSU Press, 1986 (in Russian).
- 13. Movsisyan Yu.M. Hyperidentities and Hypervarieties in Algebras. Yer.: YSU Press, 1990 (in Russian).
- 14. Movsisyan Yu.M. Uspekhi Mat. Nauk, 1998, v. 53, № 1, p. 61–114; English transl. in Russ. Math. Surveys, 1998, v. 53.
- Movsisyan Yu.M. Izv. Ross. Acad. Nauk. Ser. Mat., 1992, v. 56, p. 654–672; English transl. in Russ. Acad. Sci Izv. Math., 1992, v. 56.
- Movsisyan Yu.M. Izv. Ross. Acad. Nauk. Ser. Mat., 1996, v.60, p. 127–168; English transl. in Russ. Acad. Sci Izv. Math., 1996, v. 60.
- 17. Denecke K., Wismath S.L. Hyperidentities and Clones. Gordon and Breach Science Publishers, 2000.
- Denecke K., Koppitz J. M-Solid Varieties of Algebras. Advances in Mathematic. New York: Spriger–Science+Business Media, 2006, v.10.
- 19. Anosov A.D. Discrete Mathematics and Applications, 2007, v. 17, № 4, p. 331–347.
- 20. Gratzer G. General Lattice Theory. Berlin: Springer-Verlag, 1978.