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1. Introduction. Bilattices are algebraic structures that were introduced by
Ginsberg [1, 2] as a general and uniform framework for a diversity of applications
in artificial intelligence. In a series of papers it was shown that these structures may
serve as a foundation for many areas, such as logic programming [3—5].

A bilattice is an algebra (L;n,\,*,A) with four binary operations, for which

the following two reducts L, = (L;N,v) and L, =(L;*,A) are lattices.

The bilattice is called interlaced, if all the basic bilattice operations are order
preserving with respect to both orders.

In papers [1, 3, 6, 7] bounded distributive or interlaced bilattices were studi-
ed. In [8] interlaced bilattices without bounds were characterized (see also [9, 10]).

The algebra (L;n) is called a g-semilattice, if it satisfies the following
identities:

1. anb=bna;

2. an(bnc)=(anb)nc;

3. an(bnb)=anb.

The algebra (L;n,V) is called a g-lattice (see [11]), if the reducts (L;M)
and (L;U) are g-semilattices and the following identities an(bUa)=aNa,
avulbna)=ava, ana=aUa are valid.

For each ¢-semilattice (L;N) there is a corresponding quasiorder QO
(i.e. a reflexive and transitive relation), defined in the following manner:
aOb<>anb=ana. For each g-lattice (L;N,v), we have: aQb<>anb=
=ana<>aub=bub.

A g-bilattice is an algebraic structure (L;n,\,*,A) with two g-lattice

reducts L, =(L;n, V) and L, =(L;*,A), which also satisfies the following identity
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a*a=ana. (The quasiorder of the first reduct (L;",V) is denoted by <_, and
the quasiorder of the second reduct by <,

The operation * of the g-semilattice (L;*) is called interlaced with the
operations N and U of the g-lattice (L;,V), if the g-semilattice operation *
preserves the g-lattice quasiorder, and g-lattice operations N and U preserve the
g-semilattice quasiorder. Note that the operations of a g-lattice are interlaced with
each other.

The g-bilattice (L;N,u,* A) is called interlaced, if all the basic g-bilattice
operations are quasiorder preserving with respect to both quasiorders.

In the present work interlaced g-bilattices are studied.

We need the concept of a hyperidentity and a superproduct of algebras
[12, 13].

Let us recall that a hyperidentity is a second-ordered formula of the
following type:

VX, X, VX000, (W =wy),
where X|,...,X,, are functional variables and x,,...,x, are objective variables in the
words (terms) w,,w,. Hyperidentities are usually written without quantifiers:
w, =w, . We say that the hyperidentity w, = w, is satisfied in the algebra (Q;F), if
this equality is valid, when every objective variable and every functional variable
in it is replaced by any element of O and by any operation of the corresponding
arity from F (supposing the possibility of such replacement).

The reader is reffered to [14-16] for characterization of hyperidentities of
varieties of lattices, modular lattices, distributive lattices and Boolean algebras.
For hyperidentities in thermal (polynomial) algebras (see [17, 18].

For the categorical definition of a hyperidentity in [12] the (bi)homomorphisms
between two algebras (Q,F) and (Q';F') are defined as a pair (¢,7) of maps:

0:0— 0 F - F| Ay Al
with the following condition
qu(a],...,an) = (I/7A)(q0a],...,(0an)
for any AeF, |A|=n, a,,...,a, € Q. For an application of such morphisms in the
cryptography see [19].

Algebras and their (bi)homomorphisms (@,7) (as morphisms) form a
category with a product. The product in this category is called a superproduct of
algebras and denoted by Q™ Q" for algebras Q and Q'. For example, a
superproduct of two g-lattices Q(+,) and Q'(+,) is the binary algebra
Ox0'((+,4),(-,"),(+,°),(,+)) with four binary operations, where the pairs of the
operations act component-wise, i.e.(A4,B)((x,y),(u,v))=(A(x,u),B(y,v)), and
omQ is a g-bilattice. In fact, let us show that OxQ'((+,+),(~-)) and
OxQ0'((+,),(-,+)) are g-lattices and satisfy the identity (+,+)((x,y),(x,y))=
=(+,)((x,»),(x,y)) . The commutativity and associativity are obvious. For other
identities we have:
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A. ((a,b)(+, D), d))(+,+H)c,d)=((a+c)+c,(b+d)+d)=(a+c,b+d)=
=(a,b)(+,+)(c,d);
(@, D)+, )e,d))(+)c,d) =((a+c)+c,(b-d)-d) =(a+c,b-d)=(a,b)(+,)(c,d);
((a, D), +)(c, ) +H)(e,d) =((a-¢)-c,(b+d) +d) =(a-c,b+d) = (a,b)(,+)(c,d);
((a,0)(, ) e, d)( e, d)=((a-c)-¢,(b-d)-d) = (a-c,b-d) =(a,b)(,")(c,d) ;
B.(a,b)(+,+)((c,d)(-,)(a,b))=(a+(c-a),b+(d-b))=(a+a,b+b)=
=(a,b)(+,+)(a,b) ;
(a,0)(>)(c,d)(+,+)(a,b)) = (a-(c+a),b-(d + b)) =(a-a,b-b) = (a,b)(-,’Na,b);
(a,b)(+,)(c,d)(,+)(a,b)) = (a+(c-a),b-(d + b)) =(a+a,b-b) = (a,b)(+,)(a,b);
(a,0)(,+)((c, d)(,+)(a, b)) =(a-(c+a),b+(d -b)) =(a-a,b+b) = (a,b)(-,+)(a,);
C. (a,b)(+,+)a,b)=(a+a,b+b)=(a-a,b-b)=(a,b)(-,’)a,b);
(a,b)(+,")a,b)=(a+a,b-b)=(a-a,b+b)=(a,b)(-,+)(a,b);
D.(a,b)(+,+)(a,b)=(a+a,b+b)=(a+a,b-b)=(a,b)(+,)(a,b).

It is easy to show that quasiorders on the g-lattices OxQ'((+,+),(-,-)) and
O0xQ'((+,"),(+)) , which are denoted by the symbols <; and <, correspondingly,
are defined by the following rules:

(a,b)<, (c,d)«>a<,c and b<,d;

(a,b)<y (c,d)«>a<,cand d<,b,

where < and <, are the quasiorders on the g-lattices Q(+,-) and Q'(+,") . So,

(@a,b) <, (c,d)& (e, f) <, (g,h)—>as,c&bs,d&es, g& <, h—>
—a+es ct+g,a-esc-g&b+f<,d+hb-f<,d h—>
—>(a+eb+ )< (c+g,d+h)&(a-eb-f)<,(c-g,d-h);
(a,b)<, (e, d)&(e, )< (g.h)—>as,c&dS, b&es, g&hs, f—
—a+es c+g,a-es;c-g&d+h<,b+f,d-h<,b-f—>
—>(a+eb+ f)<,(c+g,d+h)&(a-eb- f)<,;(c-g,d-h).

Hence, OxQO'((+,+),(-,),(+,"),(-,+)) is an interlaced g-bilattice.

2. Some Lemmas.

2.1. Congruence relations ®, @ of a g-lattice (L;n,V) satisfying to the

following conditions: a®@aNa and a®ana, commute iff for each a,bel,
a<b— aOdb is equivalent to ad@Ob

Proof. The condition is obviously necessary. Let’s show that it is sufficient
too. Suppose x,yel, x@z and z®y, hence,xNxOz, z@yny. Then
xNnynz®xnzOxnx, and it follows that there exists teL such that
xNyNzOt@xnx, so yuUyO@yuUt. Further, xNnynzOynz&®yny, then
yNz@OyUt, yNnzOPy Ut and tOy Nz ,s50 tODPy UL, x N xPDOy IOy Uy,
hence, x " x@®y N y . This shows that @D < PO so OD = PO . o

2.2. The operation * of a g-semilattice (L;*) is interlaced with the
operations N and U of the g-lattice (L;M,V), iff the following hyperidentity is
satisfied in the algebra (L;N,u,*):

X(Y(X(x,0),2), Y (1,2)) = X(Y(X (%, 1), 2), Y(X(x,7),2)) .
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Proof. Let us show, for example, that [(xNy)*z]Nn(y*z)=
=[(xNy)*z]N[(xN y)*z] follows from x< y > x*z<_ y*z and conversely.

(=) xny<.y for any x,yeL. Then (xny)*z<_. y=*z. So,
[(xAp)£z]A(y*2) = [(r0 ) *2]1A[(r A ) *2].

() x*z< (xNx)*z<_ x*z forany x,y,z € L, then [(xNx)*z]N[(xNx)*z]=
=(x*z)N(x*z). Let x<_ y, then xNny=xNx. In that case (x*z)N(y*z)=
= (x#2) N (x*2) N(r#2) =[(x D) <] [ A3 £2] A *2) =[(x ) * 2] A (% 2) =
=[(xny)ezln[(xny)*z]=[(xNx)*z]N[(xNx)*z]=(x*z)N(x*z). Hence,
X*¥z<_ y*z. o

2.3. The operation * of a g-semilattice (L;*) is interlaced with the
operations N and U of the g-lattice (L;n,v), for which x*x=xnx, iff the
algebra (L;N,\,*) satisfies the following hyperidentity:

X(Y(X(%,3),2),Y (7,2)) = V(X (x,9),2) . 0

In the propositions 2.4—2.17 we suppose that (L;N,V) is a g-lattice, (L;*)
is a g-semilattice and the operation * is interlaced with the operations M, and
satisfies the identity aNa=a*a.

24, xNy<_ x*y< xUP,x* S XNy, x*y<, xUY.

2.5. X(Y(x,»),Y(x,y))=Y(x,y), where X,Y €{n,U,*} forany x,yeL.

26 as_ x<_ b&as,b—a< x<, b;as x< b&b<L,a—>b< x<,a.

Proof. 1If we supposea <, b, then anx<,bnx and aux <, bux. Since,
a<, x<. b, then ana<,xnx and xNx<,bNb, hence, a<, x<,b. The
second statement can be proved analogously. |

27 us x&us y&us, x&us,y>xNy=x*y;

xS u&y<S u&u, x&us, y>xuy=x*y.

Proof. We have unu<_xny<,x*y, u<,x and u<,y, hence,
uNnu=u*us, x*y, then xNny< x*y. Similarly, x*y<,xNny, so,
x*y<, xNy<, x*y, hence, xNy=x*y. o

2.8. Let the g-semilattice (L;*) forms a g-lattice (L;*,A). Then

a<. b—o>a<_ aAb<_b.

Proof. By 2.4, ana=a*a=a*(aAb)<, au(aAb), then from a<_ b

weget a*a=ana=bna=bn(ana)<, bNn[au(aAb)], hence,
a*a<,bnlav(aAb)]. (1)
From b <, aAb and a <_ b we obtain bnb=aUb<, au(aAb), hence,
bxb=bNnb=(bNb)Nb<, bNn[au(aAb)],so,
bxb <, bnlav(aAb)]. 2)
From (1) and (2) it follows that
(a*a)A(b*b)<, (bn[au((aAb))DA(bN[a U (aAb)]) =
=(bNav(arb))N(bN[av(aAb)])=bNa (aAb)].
Then aAb <, bN[au(aAb)].
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Further, from a <, aAb it follows that

a U (aAb) <, (aAb) U (aAb) = alAb, an(aAb) <, (aAb) N (alAb) = aAb.

From b <, aAb we deduce that b\ (aAb) <, aAb, b N (aAb) <, aAb.

So, aAb <, bn[aw(aAb)] <L, b (aAb) <, aAb, hence,

[6 N (aAb)]*[b N (aAb)] = (aAb)* (aAb).
[b N (aAb)]*[b N (aAb)]=[b N (aAb)]N[b N (aAb)]=b N (aAb),
(aAb)*(aAb) = (aAb) N (aAb) , hence, b (aAb)=(aAb) " (aAb).
So, aAb<_ b. The second part of the inequality can be proved the same way. |
Define the relations 6, and 6, in (L;N,U,*) as follows:
abb <> axb=aub; ab,b<>axb=anb.

2.9. 0, is an equivalence relation in (L;N,V).

Proof. Reflexivity and symmetry are clear. Let a6,b and bO,c, then a*b =
=anb and bxc=bnc.Hence, anb<,b and bnc <, b. Then anbne <L, bne
and anbnc<,anb, hence, (anbnc)mn(anbne)L, (anb)*(bnc)=
=(axb)*(bxc)=a*(b*b)*c=a*b+*c. On the other hand, a*b*c<, anbnc.
So, anbnc=ax*bx*c, hence, anbnc<,a, anbnec<,c, anbNc<_ a, and
anbnc<_. c Then, by2.7, anc=a%*c,which shows that gives ab,c . O

2.10. 0, is a congruence relation in (L;N,V).

Proof. Let ab,b, hence, a*b=anb. So, anb<,a and anb<,b. Then
for any ce L it follows that anbnc<, anc and anbnc <, bne and since
anbnc<_ . anc and anbnc<. bne, we get by 2.7 that (anc)n(bnc)=
=(anb)*(bnc),hence,a Nch,bNc. Similarly we get that a U ch,bUc. |

2.11. 6, is a congruence relation in (L;N,U).

2.12. 6, and O, are congruence relations in (L;*).

Proof. Let aBb, ie. axb=aub, then a<_ a*b and b<_ a*b. So,
ax*c<_. a*b*c and b*c<_ a*b=*c.Since, a*b*c<,a*c and a*b*c<, b*c,
then from 2.7 we obtain (a*c)*(b*c)=(a*c)U(b*c), hence a*cOb*c.

In the same way we can show that a*c6,b*c follows from a6,b . O

2.13. a(6,nO)b<>ana=bnb.

Proof. a(6,n6,)b<>abb and ab,b<>axb=aub and ax*b=
=anbeoaub=anboana=bnb. ]

2.14. anbbBax*b, axbb,ab.

Proof. (anb)*(a*b)=a*b=(anb)U(a*b), hence, anbba*b. By
2.4, we have (auUb)*(a*b)=a*b=(aub)n(a*b), hence, aubb,a*b. |

2.15. a<_ b—ab0,b.

Proof. By 2.14, anbBa*b and a*bb,aub, giving us anbbb,ab,
hence, amab0,bNb,so ab,6,b.
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2.16. a<_b—ab,0)b. o

Proof. Using 2.8 we get af,aAbOb. o

2.17. L/6, and L/0, are lattices.

Proof. Note that ab.ama and ab,a Ua, for i=12. Hence, the elements of
quantient-algebras, L/6, and L/6,, are idempotent. o

3. Theorems.
Theorem 1. Let (L;n,U) be a g-lattice, (L;*) be a g-semilattice, the

operation of which is interlaced with the operations U and M, and satisfy the
identity ama=a*a. Then there exists a pair of congruences (6,,6,) in the
g-lattice (L;n,V), satisfying the following conditions:

l. a(,NnbB,)b<>ana=bnb;

2. a<. b—>abb,b;

3. XY (X(x,),2),Y(»,2)0,Y(X(x,y),z) fori=12, 3)
where X,Y e {"n,U}, x,y,ze L.

Conversely, each pair of congruences (6,,6,) in (L;n,U) satistying the
conditions 1-3, corresponds to a g-semilattice (L;*), the operation of which is
interlaced with the operations U and M and satisfies the identity a "a=a*a.

Proof. Define the relations 6, and 6, as above. From 2.10, 2.11, 2.13 and
2.15 we get that 6,0, are congruences in (L;N,V) satisfying conditions 1 and 2.
The condition 3 is valid, since any g-lattice is interlaced.

Conversely, let 6, and 6,are congruences satisfying the conditions of

Theorem 1. Define the operation * by the following rule:
a*b=dnd <> dbanb and dO,aLb.

The existence of such d € L follows from the Condition 2. Obviously, the
operation * is commutative, and the following identities are true: a*(b*b)=ax*b,

ana=axa.Theelements d, =(a*b)*c, d,=a*(b*c) satisfy d,"d,8anbnc
and d,nd6,aubuc, d,nd,0lanbnc and d,Nd,0,aubuUc consequently,
d6d, and d,0,d,, hence, d,"d, =d, Nd,, so by 2.5, (a*b)*c=ax*(b*c).

To prove that the operation * is interlaced with the operations M, , we use
the definition of the operation * and the fact that the g-lattices L/6, are
interlaced (i=1,2). For example, the elements u, =(x*y)nz and u,=
=[(x*y)Nz]*(yNz) satisfy xNnyNzGu6,(xUy)nz and xNyNzBu,b,(xUy)Nz,
then u, Nu, =u, N"u, = (x*y)Nz=[(x*y)Nz]*(ynz) (by2.5). |

Theorem 2. Let (L;n,uU) be a g-lattice. There exists a bijective

correspondence between the g-semilattice operations * in L, which are interlaced
with the operations M, U and satisfy the identity ama=a*a, and the

epimorphism ¢ acting from (L;,U) to the subdirect product of two lattices,

satisfying @(x)=@(y) <> xNx=ynNy. Moreover, if (a,b),(a’,b") are elements of
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this subdirect product and (a,b) <. (a',b") , then (a,b") belongs to this subdirect
product too, and if ¢(x)=(a,b), @(y)=(a',b"), then p(x*y)=(ana',bUb’).

Proof. Let (L;*) be a g-semilattice satisfying the theorem’s conditions, and
6, and 6, are the congruence relations from Theorem 1. Then the g-lattice
(L;n,V) is epimorphically mapped to the subdirect product of the two lattices
L/6 and L/6,, ¢:x—([x],.[x]y), suchthat p(x)=@(y) >xNx=yNy.

Let (a,b) and (a’,b") belong to this subdirect product and (a,b) <. (a',d").
Then there exist u,ve L such that o(u)=(a,b),p(v)=(a',b’) and u<_ v. Then
by the Theorem Ithere exists ¢ € L with the property u6,t0,v, hence, ¢(t) = (a,b’).

Conversely, let ¢ be an epimorphism between L and the subdirect product

of lattices A4 and B satisfying the Theorem’s conditions. Then there exist
congruence relations 6, and 6, such that a(6, "6,)b<>ana=bnb, and L/6,,

L/6, areisomorphic to 4 and B respectively. So, L/0, satisfy the condition (1).
If abeLl and a<_ b, then p(a)<. ¢(b), so, by our assumption we get
that ([a],,[b]y,) belongs to the subdirect product, hence there exists # e L such

that ¢(¢) =([al, ,[0]s,) —> a6yt and 10,b — a6,6,b . Hence, the pair of congruences

(6,,0,) in L satisfies the conditions of Theorem 1, and it follows that there exists a
g-semilattice operation, *, which is interlaced with the operations N and v, and
satisfies the identity a ma =a*a . The last statement of the theorem can be proved
with the help of the relation a "bO,a*bb,a Ub. o

Theorem 3. a) The g-semilattice (L;*) from Theorem 1 can be
transformed into a lattice (L;*,A) (moreover, in the unique way), iff the
corresponding congruences 6, and 6, commute.

b) The g-semilattice (L;*) of Theorem 2 can be transformed into a g-lattice
(L;*,A), iff the subdirect product turns out to be a direct.

Proof. a) If the lattice (L;*,A) exists, then 6,6, =6,0, by 2.1, 2.15 and 2.16.
Conversely, let 6,6, =6,6,. Then for a<_ b we get by Theorem 1 a6,0,b, hence,
a0,0,b, too. By Theorem 1 there exists a g-semilattice operation A in L
corresponding to the pair (6,,6,), which is interlaced with the operations M and
U, and satisfies the identities aAa=ana, anbb,(aAb)faub. Hence,
(aAb)*ab,(anb)*ab,(anb)yua=ava and (aAb)*ab(awb)*ab(ab)Nna=
=ana—(aAb)*a(6,N6,)ana—>a*a=(aAb)*a. Similarly, we get (a*b)Aa=ala.
Hence, (L;*,A) is a g-lattice.

b) Let a,beL then by 2.14 and 2.4 anbba*bb,aub and anb<_ a*
*h<_auUb,then 6,00, =i [20]. So, the subdirect product is a direct product, iff
0,6, = 6,0, [20]. By a), this is equivalent to the condition that (L;*) forms a g-lattice. O

Theorem 4. Let (L;n,0) and (L;*,A) be g-lattices. If the operation *
is interlaced with the operations N and U, and satisfies the identity a na=a*a
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then the operation A is interlaced with the operations M and U too.

Proof. The proof follows from Theorems 1 and 3. |

Theorem 5. Let L, =(L;n,v)and L, =(L;*A) be g-lattices with the
following identity: x N x =x*x. The operation * is interlaced with the operations
N, U, iff there exists an epimorphism ¢ from the g-bilattice (L;N,U,*,A) to the
superproduct of the two lattices L, ¥ L,, such that the epimorphism ¢ satisfies the
following condition: @(x)=¢@(y)<>xNx=ynNy. Hence, the epimorphism ¢ is
an isomorphism on the bilattice of the idempotent elements of the g-bilattice.

Proof. By the Theorems 2 and 3b), there exists an epimorphism
¢:L—> AxB between the g-lattice (L;n,) and the subdirect product of two

lattices 4 and B, which satisfying the condition @(x)=@(y) > xNx=yNy.

The map ¢ can be continued to the epimorphism between the g-bilattice

(L;n,u,*,A) and the superproduct 4 ! B in the following manner:
o(x*y)=(and,bub), e(xAy)=(avad,bnb"),

where @(x)=(a,b), ¢(y)=(d.b"). o
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