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CHORD LENGTH DISTRIBUTION FUNCTION FOR LENS

H. S. HARUTYUNYAN"
Chair of Mathematical Analysis YSU, Armenia

In the paper a formula for the chord length distribution function of a lens is
obtained. In the special case of a regular lens the table of values of the chord
length distribution function is given.
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1. Introduction. Let G be the space of all lines g in the Euclidean plane

R*, (p,¢) are the polar coordinates of the foot of the perpendicular to g from the
origin O, be standard coordinates for line g€ G. Let u(-) stand for locally finite

measure on G invariant with respect to the group M of all Euclidean motions
(translations and rotations). It is well-known that the element of the measure up to a
constant factor (see [1, 2]) has the following form u(dg)=dg =dpde, where dp is

the one dimensional Lebesgue measure, while d¢ is the normalised measure on the
unit circle.

For bounded convex domain D denote by [D]={geG:gnD=#¢} the set
of lines that intersect D. Then (see [1, 3]) wu([D])= |0D|, where oD is the
boundary of D and | D | stands for the length of oD .

A random line in [D] is one with distribution proportional to restriction of
u to [D], so,

P(A)= HA) for any Borel 4 c[D]. (D
|D |

Furthermore, let 47, be the set of lines that intersect D and produce a chord

x(g)=gnND oflength less than y: 4, ={g€[D]:|x(g)I<z}, zeR.
Distribution function of the length of a random chord y of D is defined as

1 Z 1
F(z2) |6D‘IU(AD) 6D|£[{d¢dp- 2)
Therefore, to obtain chord length distribution function for a bounded convex
domain D we have to calculate the integral in the right-hand side of (2). Explicit
formulae for the chord length distribution functions are known only for the cases of
a disc, a rectangle and a regular n-gon (see [4—7]).
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The main result of the paper is an expression for the chord length
distribution function for a lens.

2. The Case of a General Lens. Consider two discs D, and D, with centers
(0,—-a) and (0,6) (a>0,6>0) and radii » and R (»<R) respectively. We
consider a case, when the intersection D of these discs is not empty. D is called a
lens. We denote the boundary of D by I, U I",, where I, and I, are arcs of the

circles 0D, and 0D, respectively. The lengths of I, and I, are equal to

. . b .
2rarcsin and 2Rarcs1n§ respectively. It follows from (2) that we have to
r

calculate the integral on the right-hand side of (2). For any lens the minimal chord
length is 0, and maximal length is 2\/r2 —-a’ (\/r2 —a’ = \/R2 -b*).
For 0<z<2+r*—a* wesplit 4; into 3 parts by the following way:
Ay =4 VA 04,
47 ={ge[D]:|x(g)|lszand P e, P,el'},
4; ={ge[D]:|x(g)|<zand Py el’,, P,el,},
45 ={ge[D]:|x(g)|szand P e, P,el,},
where |y(g)|= PP, | is the distance between P, and P, .

It is obvious that A’ ﬁAJZ- = ,ifi#j,so
[[dodp=|[dpdp+[[dpdp+[[dpdp:=1+I,+]I,.

Ap A 4 4

We consider the integral /,. If P,, P, eI, then ¢ (0,7). We consider
only the case ¢ e (O,%), because for ¢ e (%,ﬂj the situation is the same. It is

easy to verify that the intersection points of g =(¢,p) with lens can belong to I,

only if ¢ > arcsin . For Qe (arcsing,%) let’s find the values of p, for which
r r

those intersections belong to I7,. Note, that if P, P, € ', and the p -coordinate of

the chord y(¢, p) belongs to the interval (p,, p,), then p, =vr* —a® cos¢ . Let us
find p,. The line g=(¢,p,) has to be tangent to [/, at a point x,, and the
coefficient of that line is —cotg .

X=rcosy,

The equation of the curve I, is y=+r’—x* —a or { where

y=rsiny —a,

.a AR .
v e[arcsm—,ﬂ—arcsm—j is the central angle of the circle 0D,. So, we have
r r

X, . . . .
—ﬁ =—cote, or x,=rcose. Comparing with equations of the line
rT—Xx,

g =(¢, p,) (the normal equation) and the tangent, we get p, =rsingp—a (we can
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also prove this easily using elementary geometrical rules). Therefore, P,, P, eI,
iff g=(p,p)e [arcsinﬁ’ﬂ - arcsinﬁj x (\/r2 —a’ |cosgo
r r

is symmetric with respect to y -axis. In order to find the coordinates of the inter-

,rsinqo—a), because I

section points of g = (¢, p) with curve I, we have to solve the system of equations

xcos@+ ysing—p=0, x=rcosy, y=rsiny—a. 3)
. + 1
From (3) we get rcos(p—w)=p+asing, y=¢= arccos 24P asme . Therefore,
r
+ asi +gsi
X =rcos (qo—arccosw), X, = rcos(qo+arccos—p as1n¢)’
r r
. and .
N =rsin(qo—arccosw)—a W= rsin(q0+arccos—p+asm¢j—a.
r r

Now we can find the value of p, for which | (@, p)|==z.

z= \/(x] —x2)2 +(n _y2)2 .
After simplification we obtain

. . . 2
z=r\/2—2c0s(2arccosw)=2rsin(arccoswj=2r 1—(mj .

r r r

2
Therefore, we get p=r1/1—%—asin¢. For qoe(arcsinﬁ,%) the line
r r

g=(@,p) for various values of p (p € (\/r2 —a’ cos@,rsing— a)) can make

chords from interval (0,21/ sin (go —arcsin ED .So, if 0<z<2yr? —a? , then
r

. a .z r
arcsin—+arcsin— r—asing P r—asing
I,=2 J do I dp + I do I dp |=
arcsin® Vr?=a® cosg arcsin & +arcsin— - ]—i—asingp 4
r r 2r 4,2 ( )

a z z? . a z
=2r| arccos———+,(1— — | arcsin——arccos— | |.
r 2r 4r r 2r

To find I, we can change a by b and r by R in (4), because measure
dodp is invariant with respect to M . Now we calculate /;. By symmetry, we
calculate integral /; only for ¢ €(0,7/2), because for ¢ € (-7 /2,0) the value of
I, can be obtained substituting 5 instead of a and R instead of 7. Let

@e(0,7/2). When qoe(o,arcsinﬁJ for all values of p from the interval
r

(0,4/r* —a* cosg) the intersection points lie on different curves.
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We have that P, eI}, P, el ,,iff g=(go,p)e(0,%)><(0, e cosgo).

To find the value of p, for which the line (¢, p) makes a chord of length z,
we have to solve the equation

p+asing

rsin(go + arccos j—Rsin ((o - arccos&;m(o) =zcosp+a+b. (5)

r

3. The Case of a Regular Lens. Consider a particular case, where a lens is
regular, that is » = R, a =b . In this case we can rewrite (5) in the following form:

. 2 . 2
\/1_(p+as1ngoj +\/1_(p—as1nqo) =z+2ac0sq)‘ ©)
r r r

Solution of (6) has the form

z 4r*
=| —+acos -1. 7
P: (2 ¢)\/4a2+z2+4azcosqo @

Note that for given ¢ the length of the chord arises by line (¢, p) is maximum

when p=0, and minimum when +r*—a”cose. Thus, if qoe(o,arcsinﬁ),

r

the minimum value of chord length is 0 (z_. (¢)=0), and the maximum value

. 2
asmqoj

r

is equal to <z, =2r 1—(

2i=u (ue(O, 1—12)), we obtain umax(qo)lel—ﬂ,zsinzgo—ﬂ,cosgo and

r
u. (p)=0. If ¢e (arcsin l,%) , than u_, (p)=41 —A*sin’ ¢ — Acoso,

u_. (¢)=~1-1%sing — Acos¢ =sin(¢p —arcsin 1) and the function

U (@) =41 —A*sin’ @ — Acosg is an increasing function in the interval (0,%) ,

U, (0)=1-A. Therefore, if u<1-1, we get

arcsin A r\/m cosp arcsin A-+arcsinu r\/m cosp
I,=4 j do _[ dp + _[ do dp
0

P- arcsin A P

—ﬁcosgo. Denoting -2 (A<1),
r r

arcsin A+arcsinu arcsin A+arcsinu
=4{ j|: V1-2? cospdp— jf (u+Acosp)

—ldp |=
0 0 \//12 +u’ +2A1c0osQ qo}

] u+At 1
— —1dt |.
iz ]—uz—lu\/l_tz A" +u” +2ut

Similarly, if 1-A1<u<+1-2% , we have

=41{\/1—ﬂ,2 (u\/l—ﬂ,z —ﬂ,\/l—uz)—



Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 3, p. 17-22. 21

arcsin A-+arcsinu arcsin A-+arcsinu 1
ddp=4 V1-22 A ~ldp|=
'['3[ bdp=ar '([ cosqp+ T (u+ COS(D)\/),2+u2+2ﬂucosqo ¢
2
1-A2—u?

= 1=2 (wd1-27 =21 =u” ) - i u+lt\/ .
Nwe 1_u2_gu\/1—t2 A% +u+2ut

I + At 1
Denote G,,(x)= | \/ S— ~ldt.
| hoa? i = \/l—tz A% +u” +2Aut
Finally, for the chord length distribution function for regular lens we obtain
0, if u<0,
! [amcosﬂ,—ﬂfu+ 1= (W1=7 +arcsin-arceosu) G, u(l)], if 0<u<l—A,
’ | ®)
F(z)= 2 2
! arccos A —Au 41— (Ml—/lz +arcsin/l—arccosu)—@u 1= —u L if 1=A<u<y1-A2,
arccos A ) 2u
1, if u>v1-A%

It is not difficult to verify that F' is a continuous function. When A — 0, the lens
D is transformed to a disc of radius 7, and from (8) we have

0, if u<0,
F(z)={1-+1-u?, if 0<u<l,
1, if u>1,

which is chord length distribution function for the disc of radius 7.

X 0.00 0.1 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

0.00 | 0.000 | 0.00 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000
0.05 | 0.001 | 0.002 | 0.003 | 0.004 | 0.007 | 0.012 | 0.021 | 0.036 | 0.070 | 0.190
0.10 | 0.005 | 0.006 | 0.009 | 0.013 | 0.019 | 0.030 | 0.049 | 0.084 | 0.166 | 0.569
0.15 | 0.011 | 0.014 | 0.018 | 0.025 | 0.036 | 0.055 | 0.087 | 0.148 | 0.301 | 0.845
0.20 | 0.020 | 0.024 | 0.031 0.041 | 0.058 | 0.086 | 0.134 | 0.231 | 0.550 | 0.918
0.25 | 0.032 | 0.037 | 0.047 | 0.062 | 0.086 | 0.125 | 0.195 | 0.345 | 0.765 | 0.955
0.30 | 0.046 | 0.054 | 0.067 | 0.088 | 0.120 | 0.174 | 0.272 | 0.545 | 0.853 | 0.978
0.35 | 0.063 | 0.074 | 0.091 0.118 | 0.161 | 0.233 | 0.376 | 0.728 | 0.906 | 0.991
040 | 0.083 | 0.098 | 0.120 | 0.155 | 0.211 | 0.308 | 0.551 | 0.818 | 0.943 | 0.998
045 | 0.107 | 0.125 | 0.154 | 0.198 | 0.270 | 0.406 | 0.717 | 0.879 | 0.968
0.50 | 0.134 | 0.157 | 0.193 | 0.249 | 0.344 | 0.567 | 0.807 | 0.922 | 0.986
0.55 | 0.165 | 0.194 | 0.238 | 0.310 | 0.440 | 0.723 | 0.870 | 0.955 | 0.996
0.60 | 0.200 | 0.236 | 0.292 | 0385 | 0.594 | 0.813 | 0.917 | 0.978 | 1.000
0.65 | 0.240 | 0.284 | 0.355| 0.480 | 0.746 | 0.878 | 0.953 | 0.993
0.70 | 0.286 | 0.341 | 0.432 | 0.634 | 0.835 | 0.927 | 0.979 | 1.000
0.75 | 0339 | 0408 | 0.530 | 0.786 | 0.901 | 0.963 | 0.994
0.80 | 0.400 | 0.489 | 0.690 | 0.875 | 0.949 | 0.987 | 1.000
0.85 | 0473 | 0.595| 0.847 | 0939 | 0.982 | 0.999
090 | 0.564 | 0.773 | 0.935 | 0.981 | 0.999
0.95 | 0.688 | 0.943 | 0.988 1.000
1.00 | 1.000




22 Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2011, Ne 3, p. 17-22.

In Table values of chord length distribution function are given when A

varies from 0 to 0.9 by step 0.01 and u varies from 0 to v/I—A* by step 0.05.
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