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In the paper a formula for the chord length distribution function of a lens is 
obtained. In the special case of a regular lens the table of values of the chord 
length distribution function is given. 
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1. Introduction. Let G  be the space of all lines g  in the Euclidean plane 
2R , ( , )p   are the polar coordinates of the foot of the perpendicular to g  from the 

origin O , be standard coordinates for line g G . Let ( )   stand for locally finite 
measure on G  invariant with respect to the group M  of all Euclidean motions 
(translations and rotations). It is well-known that the element of the measure up to a 
constant factor (see [1, 2]) has the following form ( )dg dg dpd   , where dp  is 
the one dimensional Lebesgue measure, while d  is the normalised measure on the 
unit circle. 

For bounded convex domain D  denote by  [ ] :D g G g D      the set 
of lines that intersect D . Then (see [1, 3]) ([ ]) | |D D   , where D  is the 
boundary of D  and | |D  stands for the length of D . 

A random line in [ ]D  is one with distribution proportional to restriction of 
  to [ ]D , so,  

                                        ( )( )
| |

AP A
D





  for any Borel [ ]A D .                           (1) 

Furthermore, let y
DA   be the set of lines that intersect D  and produce a chord 

( )g g D    of length less than y : { [ ] : | ( ) | },z
DA g D g z z R    . 

Distribution function of the length of a random chord   of D  is defined as 

                                         1 1( ) ( )
| | | | z

D

z
D

A

F z A d dp
D D

  
   .                              (2) 

Therefore, to obtain chord length distribution function for a bounded convex 
domain D  we have to calculate the integral in the right-hand side of (2). Explicit 
formulae for the chord length distribution functions are known only for the cases of 
a disc, a rectangle and a regular n -gon (see [4–7]). 
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The main result of the paper is an expression for the chord length 
distribution function for a lens. 

2. The Case of a General Lens. Consider two discs 1D  and 2D  with centers 
(0, )a  and (0, )b  ( 0, 0a b  ) and radii r  and R  ( r R ) respectively. We 
consider a case, when the intersection D  of these discs is not empty. D  is called  a 
lens. We denote the boundary of D  by 1  2 , where 1  and 2  are arcs of the 
circles 1D  and 2D  respectively. The lengths of 1  and 2  are equal to 

2 arcsin ar
r

 and 2 arcsin bR
R

 respectively. It follows from (2) that we have to 

calculate the integral on the right-hand side of (2). For any lens the minimal chord 
length is 0, and maximal length is 2 22 r a  ( 2 2 2 2r a R b   ). 

For 2 20 2z r a    we split z
DA  into 3 parts by the following way:  

                            1 2 3
z z z z
DA A A A   ,    

1 1 1 2 1{ [ ]: | ( ) | and , }zA g D g z            , 

2 1 2 2 2{ [ ] : | ( ) | and , }zA g D g z            , 

3 1 1 2 2{ [ ]: | ( ) | and , }zA g D g z            , 
where | ( ) | | |1 2g P ,P   is the distance between 1  and 2 . 

It is obvious that z z
i jA A  , if i j , so 

1 2 3

1 2 3:
z z z z
DA A A A

d dp d dp d dp d dp I I I            . 

We consider the integral 1I . If 1 2 1,     , then (0, )  . We consider 

only the case 0,
2


   
 

, because for ,
2


   
 

 the situation is the same. It is 

easy to verify that the intersection points of ( , )g p  with lens can belong to 1 , 

only if arcsin a
r

  . For arcsin ,
2

a
r


   
 

 let’s find the values of p , for which 

those intersections belong to 1 . Note, that if 1 2 1,      and the p -coordinate of 

the chord ( , )p   belongs to the interval 1 2( , )p p , then 2 2
1 cosp r a   . Let us 

find 2p . The line 2( , )g p  has to be tangent to 1  at a point 0x , and the 
coefficient of that line is  cot . 

The equation of the curve 1  is 2 2y r x a    or 
cos ,
sin ,

x r
y r a





  

 where 

arcsin , arcsina a
r r

    
 

 is the central angle of the circle 1D . So, we have  

0
2 2

0

cotx
r x

  


, or  0 cosx r  . Comparing with equations of the line 

2( , )g p  (the normal equation) and the tangent, we get 2 sinp r a   (we can 
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also prove this easily using elementary geometrical rules). Therefore, 1 2 1,     , 

iff  2 2( , ) arcsin , arcsin cos , sina ag p r a r a
r r

          
 

, because 1  

is symmetric with respect to y -axis. In order to find the coordinates of the inter-
section points of ( , )g p  with curve 1  we have to solve the system of equations 
                         cos sin 0, cos , sinx y p x r y r a         .                  (3) 

From (3) we get cos( ) sinr p a     ,  sinarccos p a
r

  
  . Therefore, 

1

1

sincos arccos ,

sinsin arccos

p ax r
r

p ay r a
r





      


       

  and  
2

2

sincos arccos ,

sinsin arccos .

p ax r
r

p ay r a
r





      


       

 

Now we can find the value of p , for which | ( , ) |p z   . 
2 2

1 2 1 2( ) ( )z x x y y    . 
After simplification we obtain 

2sin sin sin2 2cos 2arccos 2 sin arccos 2 1 .p a p a p az r r r
r r r

                  
     

 

Therefore, we get 
2

21 sin
4
zp r a
r

   . For arcsin ,
2

a
r


   
 

 the line 

( , )g p  for various values of p   2 2 cos , sinp r a r a     can make 

chords from interval 0,2 sin arcsin ar
r

    
  

. So, if 2 20 2z r a   , then 

            
2 2 2

2

arcsin arcsin sin sin2 2

1
cosarcsin arcsin arcsin 1 sin2 4

2

2

2

2 arccos 1 arcsin arccos .
2 24

a z
r a r ar r

a a zr a zr ar r r r

I d dp d dp

a z z a zr
r r r rr


 

 

 
  

   

 
 

   
 
  

           

   
       (4) 

To find 2I  we can change a  by b  and r  by R  in (4), because measure 
d dp  is  invariant with respect to M . Now we calculate 3I . By symmetry, we 
calculate integral 3I  only for (0, / 2)  , because for ( / 2,0)    the value of 

3I  can be obtained substituting b  instead of a  and R  instead of r . Let 

(0, / 2)  . When 0,arcsin a
r

   
 

 for all values of p  from the interval 

2 2(0, cos )r a   the intersection points lie on different curves. 
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We have that 1 1 2 2,       , iff  2 2( , ) 0, 0, cos
2

g p r a
      

 
. 

To find the value of p , for which the line ( , )p  makes a chord of length z , 
we have to solve the equation 

    sin sinsin arccos sin arccos cosp a p br R z a b
r R

 
  

            
   

.   (5) 

3. The Case of a Regular Lens. Consider a particular case, where a lens is 
regular, that is ,r R  a b  . In this case we can rewrite (5) in the following form: 

                        
2 2sin sin 2 cos1 1p a p a z a

r r r
             

   
.               (6) 

Solution of (6) has the form 

                                 
2

2 2
4cos 1

2 4 4 cosz
z rp a

a z az



       

.                        (7) 

Note that for given   the length of the chord arises by line ( , )p  is maximum 

when 0p  , and minimum when 2 2 cosr a  . Thus, if 0,arcsin a
r

   
 

,        

the minimum value of chord length is 0 ( min ( ) 0z   ), and the maximum value       

is equal to 
2

max
sin2 1 cosa az r
r r
 

         
. Denoting a

r
  ( 1  ),          

2
z u
r
    20, 1u   ,  we  obtain  2 2

max ( ) 1 sin cosu         and  

min ( ) 0u   . If arcsin ,
2


   
 

, than 2 2
max ( ) 1 sin cosu        , 

2
min ( ) 1 sin cos sin( arcsin )u             and the function 

2 2
max ( ) 1 sin cosu         is an increasing function in the interval 0,

2
 

 
 

, 

max (0) 1u   . Therefore, if 1u   , we get 
2 21 cos 1 cosarcsin arcsin arcsin

3
0 arcsin

4
z z

r ru

p p
I d dp d dp

    



 
  

   
  
      

 
arcsin arcsin arcsin arcsin

2
2 2

0 0

14 1 cos cos 1
2 cos

u u
r d u d

u u

 

     
  

  
        

 

 

 
2 2

1
2 2 2

2 22
1 1

14 1 1 1 1
21u u

u tr u u dt
u utt 

  
 

  

 
       

   
 . 

Similarly, if 21 1u     , we have 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2011, № 3, p. 17–22.  
  

21 

 
2 2

3

arcsin arcsin arcsin arcsin
2

2 2
0 1arccos

2

14 1 cos cos 1
2 cosz

u u

A u
u

d dp r d u d
u u

 




      
  

 

 

 
 

        
 

  

 
2 2

2 2

1
2

2 2 2
2 22

1 1

14 1 1 1 1
21

u
u

u u

u tr u u dt
u utt




 

  
 

 

  

 
 

         
 

 . 

Denote  
2 2

, 2 22
1 1

1( ) 1
21

x

u
u u

u tG x dt
u utt


 


 

  

 
 

 . 

Finally, for the chord length distribution function for regular lens we obtain 

 
 

2 2 2
,

2 2
2 2 2 2

,

2

0, if 0,
1 arccos 1 1 arcsin arccos (1) , if 0 1 ,

arccos
( ) 1 1arccos 1 1 arcsin arccos , if 1 1 ,

arccos 2

1, if 1 .

u

u

u

u u u G u

F z uu u u G u
u

u





     


      
 






                              
   

  

(8) 

It is not difficult to verify that F  is a continuous function. When 0 , the lens 
D  is transformed to a disc of radius r , and from (8) we have 

2

0, if 0,

( ) 1 1 , if 0 1,
1, if 1,

u

F z u u
u


    
 

 

which is chord length distribution function for the disc of radius r . 
 

    Λ 
u 0.00 0.1 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

  0.00 0.000 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
0.05 0.001 0.002 0.003 0.004 0.007 0.012 0.021 0.036 0.070 0.190 
0.10 0.005 0.006 0.009 0.013 0.019 0.030 0.049 0.084 0.166 0.569 
0.15 0.011 0.014 0.018 0.025 0.036 0.055 0.087 0.148 0.301 0.845 
0.20 0.020 0.024 0.031 0.041 0.058 0.086 0.134 0.231 0.550 0.918 
0.25 0.032 0.037 0.047 0.062 0.086 0.125 0.195 0.345 0.765 0.955 
0.30 0.046 0.054 0.067 0.088 0.120 0.174 0.272 0.545 0.853 0.978 
0.35 0.063 0.074 0.091 0.118 0.161 0.233 0.376 0.728 0.906 0.991 
0.40 0.083 0.098 0.120 0.155 0.211 0.308 0.551 0.818 0.943 0.998 
0.45 0.107 0.125 0.154 0.198 0.270 0.406 0.717 0.879 0.968   
0.50 0.134 0.157 0.193 0.249 0.344 0.567 0.807 0.922 0.986   
0.55 0.165 0.194 0.238 0.310 0.440 0.723 0.870 0.955 0.996   
0.60 0.200 0.236 0.292 0.385 0.594 0.813 0.917 0.978 1.000   
0.65 0.240 0.284 0.355 0.480 0.746 0.878 0.953 0.993     
0.70 0.286 0.341 0.432 0.634 0.835 0.927 0.979 1.000     
0.75 0.339 0.408 0.530 0.786 0.901 0.963 0.994       
0.80 0.400 0.489 0.690 0.875 0.949 0.987 1.000       
0.85 0.473 0.595 0.847 0.939 0.982 0.999         
0.90 0.564 0.773 0.935 0.981 0.999           
0.95 0.688 0.943 0.988 1.000             
1.00 1.000                   
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In Table values of chord length distribution function are given when   
varies from 0 to 0.9 by step 0.01 and u  varies from 0 to 21   by step 0.05. 
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