EXPLICIT FACTORIZATION OF A (P, Q)-CIRCULANT MATRIX-FUNCTIONS

G. M. TOPIKYAN*

Chair of Differential Equations and Functional Analysis YSU, Armenia

The paper considers a factorization problem of a matrix-function, obtained from a circulant by a right and left multiplication by diagonal rational matrixfunctions. Formulas for partial indices are obtained by means of ranks of a finite number of explicit type matrices. A factorization construction of this matrixfunction based on factorization of finite number of functions is given as well.

Keywords: matrix-function, factorization, partial indices.

1. Let Γ be a Carleson contour, which bounds finitely connected bounded domain $\Omega_{+}\left(0 \in \Omega_{+}\right), \Omega_{-}=\bar{\square} \backslash \bar{\Omega}_{+}\left(\infty \in \Omega_{-}\right)$. It is known (see [1]) that the singular integral operator S, defined by the formula

$$
(S \varphi)(t)=\frac{1}{\pi i} \int_{\Gamma} \frac{1}{\tau-t} \varphi(\tau) d \tau, \quad t \in \Gamma
$$

where the integral is understood in a sense of a principal value, is a bounded operator in the space $L_{p}\left(=L_{p}(\Gamma)\right), 1<p<\infty$. We define projectors $P_{ \pm}=\frac{1}{2}(I \pm S)$ and classes of functions $L_{p}^{+}=\operatorname{Im} P_{+}, \quad \stackrel{0}{L_{p}^{-}}=\operatorname{Im} P_{-}, L_{p}^{-}=\stackrel{0}{L_{p}^{-}}+C$.

Everywhere below we denote the space of n-dimensional vector-columns ($n \times n$-order matrices) with elements from the linear space X by $X^{n}\left(X^{n \times n}\right)$. The abbreviations m.-f. and v.-f. will be used for matrix-function and vector-function respectively. By $\tau_{k}(k \in \mathbb{Z})$ we denote a function defined by $\tau_{k}(t)=t^{k}$.

By factorization of a m.-f. G of order $n \times n$ in the space L_{p} along the contour Γ we mean the representation $G=G_{-} \Lambda G_{+}^{-1}$, where a) $G_{ \pm} \in\left(L_{p}^{ \pm}\right)^{n \times n}$, $G_{ \pm}^{-1} \in\left(L_{q}^{ \pm}\right)^{n \times n}, q=\frac{p}{p-1} ;$ b) $\Lambda=\operatorname{diag}\left[\tau_{\kappa_{1}}, \ldots, \tau_{\kappa_{n}}\right]$, where $\kappa_{1} \leq \ldots \leq \kappa_{n}$ are numbers called partial indices. A factorization of m.-f. G satisfying to the condition $G^{ \pm 1} \in L_{\infty}^{n x n}$ is called generalized, if the operator $G_{-} P_{+} G_{-}^{-1} I$ is bounded in L_{p}^{n}.

[^0]Suppose that $\varphi_{i} \in L_{\infty}$, and $p_{i}, q_{i}(i=1, \ldots, n)$ are rational functions with poles lying outside the contour $\Gamma, P=\operatorname{diag}\left[p_{1}, \ldots, p_{n}\right], Q=\operatorname{diag}\left[q_{1}, \ldots, q_{n}\right]$ and $\Phi=\left(\varphi_{i j}\right)_{i, j=1}^{n}$, where $\varphi_{i j}=\varphi_{j-i+1}, i \leq j$, and $\varphi_{i j}=\varphi_{n+j-i+1}, i>j$. The m.-f. Φ is a circulant and, therefore, a m.-f. G, defined by the equality $G=P \Phi Q$, we will call (P, Q) circulant. The explicit representation of this m.-f. will be:

$$
G=\left(\begin{array}{cccc}
p_{1} q_{1} \varphi_{1} & p_{1} q_{2} \varphi_{2} & \cdots & p_{1} q_{n} \varphi_{n} \\
p_{2} q_{1} \varphi_{n} & p_{2} q_{2} \varphi_{1} & \cdots & p_{2} q_{n} \varphi_{n-1} \\
\vdots & \vdots & \vdots & \vdots \\
p_{n} q_{1} \varphi_{2} & p_{n} q_{2} \varphi_{3} & \cdots & p_{n} q_{n} \varphi_{1}
\end{array}\right) .
$$

The present paper suggests a method of an explicit factorization of the m.-f. G. By the explicit factorization we mean a reduction of a factorization problem of the m.-f. G to a finite number of factorizations of scalar functions and a finite number of solutions of linear algebraic problems. The suggested approach is based on algebraic properties of the Toeplitz operators' family (see [2, 3]) and extends the method developed in $[5,6]$.
2. We introduce functions $\psi_{j}=\sum_{s=1}^{n} \varepsilon^{(j-1)(s-1)} \varphi_{s}, j=1, \ldots, n$, where $\varepsilon=\exp \frac{2 \pi i}{n}$ and an m.-f. $\Psi=\operatorname{diag}\left[\psi_{1}, \ldots, \psi_{n}\right]$. It is known that $\Phi=E \Psi E^{-1}$, where $E=\left(\varepsilon^{(k-1)(s-1)}\right)_{k, s=1}^{n}, E^{-1}=\frac{1}{n}\left(\varepsilon^{-(k-1)(s-1)}\right)_{k, s=1}^{n}$. Consequently, $G=P E Y E^{-1} Q$. By the Theorem 3.10 from [4], we have that the m.-f. G admits a generalized factorization, iff the functions $\psi_{j}(j=1, . ., n)$ admit generalized factorization.

Below, without loss of generality, we will assume that $q_{1}(0), \ldots, q_{n}(0) \in \bar{\square} \backslash\{0\}$.

Let the functions $\psi_{j}(j=1, \ldots, n)$ admit the generalized factorization $\psi_{j}=\psi_{j}^{-} t^{\chi_{j}}\left(\psi_{j}^{+}\right)^{-1}$. Then we have $G=P E \Psi^{-} \Lambda_{\chi}\left(\Psi^{+}\right)^{-1} E^{-1} Q$, where $\Psi^{-}=\operatorname{diag}\left[\psi_{1}^{-}, \ldots, \psi_{n}^{-}\right], \quad \Lambda_{\chi}=\operatorname{diag}\left[\tau_{\chi_{1}}, \ldots, \tau_{\chi_{n}}\right]$ and $\Psi^{+}=\operatorname{diag}\left[\psi_{1}^{+}, \ldots, \psi_{n}^{+}\right]$.

We define m.-f. $\tilde{A}=\tau_{-\chi_{\max }} P E \Psi \Lambda_{\chi} \quad$ and $\quad \tilde{B}=\left(\Psi^{+}\right)^{-1} E^{-1} Q$, where $\chi_{\text {max }}=\max \left\{\chi_{1}, \ldots, \chi_{n}\right\}$. Then $G=\tau_{\chi_{\text {max }}} \tilde{A} \tilde{B}$.

Let $p_{i}=\frac{p_{i 1}}{p_{i 2}}, q_{i}=\frac{q_{i 1}}{q_{i 2}}$. We write the polynomials $p_{i 1}, p_{i 2}, q_{i 1}, q_{i 2}$ as follows: $p_{i 1}=p_{i 1}^{-} p_{i 1}^{+}, \quad p_{i 2}=p_{i 2}^{-} p_{i 2}^{+}, \quad q_{i 1}=q_{i 1}^{-} q_{i 1}^{+}, \quad q_{i 2}=q_{i 2}^{-} q_{i 2}^{+}$, where $p_{i k}^{ \pm}, q_{i k}^{ \pm}$ $(k=1,2)$ are polynomials, whose zeros lie in Ω_{\mp} respectively. We denote by $p_{o k}^{ \pm}\left(q_{o k}^{ \pm}\right)(k=1,2)$ polynomials, which are the least common multiples of $\quad p_{1 k}^{ \pm}, \ldots, p_{n k}^{ \pm}\left(q_{1 k}^{ \pm}, \ldots, q_{n k}^{ \pm}\right)$. Let $\quad A=p_{02}^{+} \cdot \tau_{-v_{0}} \cdot \frac{1}{q_{02}^{-}} \tilde{A}, \quad B=\frac{q_{02}^{-}}{p_{02}^{+}} \tilde{B}$, where
$v_{0}=\max _{i=1, \ldots, n} \operatorname{deg} p_{i 1}+\operatorname{deg} p_{02}^{+}$. Then $G=\tau_{\chi_{0}} A B$, where $A \in\left(L_{p}^{-}\right)^{n x n}, B \in\left(L_{q}^{+}\right)^{n x n}$, $A^{-1} \in\left(M_{q}^{-}\right)^{n x n}, B^{-1} \in\left(M_{p}^{+}\right)^{n x n}, \chi_{0}=\chi_{\max }+v_{0}$. We define a number $v_{-}=v_{0}+\chi_{0}-$ $-\chi_{\text {min }}+\operatorname{deg} q_{02}^{-}+\operatorname{deg} p_{01}^{+}+\max _{i=1, \ldots, n} \operatorname{deg} p_{i 2}$, where $\chi_{\min }=\min \left\{\chi_{1}, \ldots, \chi_{n}\right\}$, and polynomial $q_{-}=q_{01}^{-} \cdot q_{02}^{-}$(we denote its degree by v_{+}). Further, we define a v.-f. $q_{+}=p_{01}^{+} p_{02}^{+}$and $n_{-}=\operatorname{deg} q_{+}$. Consider families of Hankel and Toeplitz operators $H_{j}^{-}: D_{p}^{-}\left(A^{-1}\right) \rightarrow L_{p}^{+}, H_{j}^{+}: D_{p}^{+}\left(B^{-1}\right) \rightarrow L_{p}^{-}, T_{j}: L_{p}^{+} \rightarrow L_{p}^{+}, p>1$, defined by formulas $H_{j}^{-} \varphi=P_{+}\left(\tau_{j^{+}} A^{-1} \varphi\right), H_{j}^{+} \varphi=P_{-}\left(\tau_{j^{\prime}} B^{-1} \varphi\right), T_{j} \varphi=P_{+}\left(\tau_{-j} A B \varphi\right)$, where $j^{ \pm}=\frac{j \pm|j|}{2}$, $D_{p}^{-}\left(A^{-1}\right)=\left\{\varphi \in\left(L_{p}^{-}\right)^{n}, A^{-1} \varphi \in\left(L_{p}\right)^{n}\right\} ; D_{p}^{+}\left(B^{-1}\right)=\left\{\varphi \in\left(L_{p}^{+}\right)^{n}, B^{-1} \varphi \in\left(L_{p}\right)^{n}\right\}$.

We denote by \mathfrak{I}_{j} the space of vector polynomials $\sum_{k=0}^{j-1} \varphi_{k} z^{k}, \varphi_{k} \in \square^{n}$, in the case when $j>0 \quad(j \in \mathbb{Z})$, and the space of vector polynomials in z^{-1} of type $\sum_{k=j}^{-1} \varphi_{k} z^{k}$ in the case when $j<0(j \in \mathbb{Z})$. We will suppose that $\mathfrak{I}_{0}=\{0\}$. We define a family of finite-dimensional operators $K_{j}=\left.H_{j}^{+} H_{j}^{-}\right|_{\mathfrak{s}_{-\left(u+t^{+}\right)}}, j \in \mathbb{Z}$. Denote $N_{j}=\operatorname{ker} T_{j}$.

Lemma 1. A v.-f. φ belongs to N_{j}, iff there exists a v.-f. $\psi \in \operatorname{ker} K_{j}$, such that $\varphi=\tau_{j} B^{-1} H_{j}^{-}(\psi)$. Besides, the following equality is true:

$$
\begin{equation*}
\operatorname{dim} N_{j}=v_{-}+n j^{+}-\operatorname{dim} \operatorname{Im} K_{j}, j \in \mathbb{Z} . \tag{1}
\end{equation*}
$$

Proof. It is known that (see [7]) $\operatorname{Im} H_{j}^{-}=\left.\operatorname{Im} H_{j}^{-}\right|_{\tilde{z}_{-\left(0,+j^{+}\right)}}, j \in \mathbb{Z}$. Hence, we have the equality $H_{j}^{-}\left(\operatorname{ker} K_{j}\right)=\operatorname{ker}\left(\left.H_{j}^{+}\right|_{\operatorname{Im} H_{j}^{-}}\right)$. Therefore, to prove the first part of Lemma, it is enough to see that $\varphi \in N_{j}$, iff the v.-f. $\varphi_{0}=\tau_{-j^{-}} B \varphi \in \operatorname{ker}\left(\left.H_{j}^{+}\right|_{\operatorname{Im} H_{j}^{-}}\right)$.

Assume that $\varphi \in N_{j}$, then $\varphi \in\left(L_{p}^{+}\right)^{n} \quad$ and $\quad P_{+}\left(\tau_{-j} A B \varphi\right)=0$, i.e. $\tau_{-j} A B \varphi=f \in\left(L_{p}^{-}\right)^{n}$. We write the last equality in the form $\tau_{j^{+}} A^{-1} f=\tau_{-j^{-}} B \varphi=\varphi_{0}$.

We have $B \in\left(L_{q}^{+}\right)^{n \times n}$ and $\varphi \in\left(L_{p}^{+}\right)^{n}$, hence, $\tau_{j^{+}} A^{-1} f \in\left(L_{1}^{+}\right)^{n}$. Since $A^{-1} \in\left(M_{q}^{-}\right)^{n x n}, f \in\left(L_{p}^{-}\right)^{n}$, then $P_{+}\left(\tau_{j^{+}} A^{-1} f\right)$ is a rational function, and, therefore, $\tau_{j^{+}} A^{-1} f \in\left(L_{p}^{n} \bigcap\left(L_{1}^{+}\right)^{n}\right)$, i.e. $f \in \stackrel{0}{D_{p}^{-}}\left(A^{-1}\right)$. It is easy to see that $H_{j}^{-} f=\varphi_{0}$ and $B^{-1} \varphi_{0}=\tau_{-j}-\varphi \in\left(L_{p}\right)^{n}$, i.e. $\varphi_{0} \in D_{p}^{+}\left(B^{-1}\right)$ and $H_{j}^{+} \varphi_{0}=P_{-}\left(\tau_{j^{-}} B^{-1} \varphi_{0}\right)=P_{-}(\varphi)=0$. Thus, $\varphi_{0} \in \operatorname{ker}\left(\left.H_{j}^{+}\right|_{\operatorname{Im} H_{j}^{-}}\right)$.

Conversely, assume that $\varphi_{0}=\tau_{-j^{-}} B \varphi \in \operatorname{ker}\left(\left.H_{j}^{+}\right|_{\operatorname{Im} H_{j}}\right)$. The equality $\operatorname{Im} H_{j}^{-}=\left.\operatorname{Im} H_{j}^{-}\right|_{\mathfrak{I}_{-\left(v-j^{+}\right)}}$implies the existence of $f \in \mathfrak{I}_{-\left(v_{-}+j^{+}\right)}$, such that $\varphi_{0}=H_{j}^{-} f \in\left(L_{p}^{+}\right)^{n}$. Since $H_{j}^{+} \varphi_{0}=0$, then $0=P_{-}\left(\tau_{j^{-}} B^{-1} \varphi_{0}\right)=P_{-}\left(\tau_{j^{-}} B^{-1} \tau_{-j^{-}} B \varphi\right)$ $=P_{-}(\varphi)$ i.e. $\varphi \in\left(L_{p}^{+}\right)^{n}$.

According to the definition of $\varphi_{0}, \quad \tau_{j^{-}} B \varphi=H_{j}^{-} f=P_{+}\left(\tau_{j^{\prime}} A^{-1} f\right)=$ $=\tau_{j^{+}} A^{-1} f-P_{-}\left(\tau_{j^{+}} A^{-1} f\right)$. Consequently, $f-\tau_{j^{+}} A P_{-}\left(\tau_{j^{+}} A^{-1} f\right)=\tau_{-j} A B \varphi$. Taking into account that $f \in \mathfrak{J}_{-\left(v_{-}+j^{+}\right)}$and $A^{-1} \in\left(M_{q}^{-}\right)^{n x n}$, we get $\tau_{-j^{+}} A P_{-}\left(\tau_{j^{+}} A^{-1} f\right) \in\binom{0}{L_{1}^{-}}^{n}$, i.e. $T_{j} \varphi=P_{+}\left(f-\tau_{j^{+}} A P_{-}\left(\tau_{j^{+}} A^{-1} f\right)\right)=0$, which proves the first part of our Lemma.

It remains to observe that $\operatorname{dim} N_{j}=\operatorname{dim}\left(\operatorname{ker}\left(\left.H_{j}^{+}\right|_{\operatorname{Im} H_{j}^{-}}\right)\right)=\operatorname{dim} \operatorname{Im} H_{j}^{-}-$ $-\left.\operatorname{dim} \operatorname{Im} H_{j}^{+}\right|_{\operatorname{Im} H_{j}^{-}}=\operatorname{dim} \operatorname{Im} H_{j}^{-}-\operatorname{dim} \operatorname{Im} K_{j}$ and $\operatorname{dim} \operatorname{Im} H_{j}^{-}=v_{-}+n j^{+}$(see [7]) to complete the proof.

We define the m.-f. $U=\tau_{\nu_{-}} P_{-}\left(\tau_{-v_{-}} B^{-1}\right) P_{+}\left(\tau_{-v_{-}} A^{-1}\right)$ and square matrices $b_{m, k}^{(j)}, \quad a_{m, k}^{(j)}, \quad u_{m, k}^{(j)} \quad(m, k, j \in \mathbb{Z}), \quad$ given \quad by $\left.\quad b_{m, k}^{(j)}=<B^{-1}\right\rangle_{-(m+k)-1-j^{-j}}$, $a_{m, k}^{(j)}=\left\langle A^{-1}\right\rangle_{U_{-}+m-k}$ when $m<k$ and $a_{m, k}^{(j)}=0$ when $m \geq k, u_{m, k}^{(j)}=\langle U\rangle_{-(m+k)-1-j^{-}}$, where for a m.-f. Φ by $\langle\Phi\rangle_{k}$ we mean the following matrix: $\langle\Phi\rangle_{k}=\frac{1}{2 \pi i} \int_{\Gamma} t^{-k-1} \Phi(t) d t$. For $j>-v_{-}$we define the block matrices A_{j}, B_{j}, U_{j}, $\mathfrak{K}_{j} \quad$ by: $\quad B_{j}=\left\|b_{m, k}^{(j)}\right\|_{m=0, \ldots, \ldots j^{-j^{-}}}^{k=0, \ldots j^{+}}, \quad A_{j}=\left\|a_{m, k}^{(j)}\right\|_{m=0, \ldots, j^{+}+u_{-}-1}^{k=0, \ldots j^{+}+l^{-1}}, \quad U_{j}=\left\|u_{m, k}^{(j)}\right\|_{m=0, \ldots, j^{-j}-j^{-}}^{k=0, j^{+}}$, $\mathfrak{K}_{j}=U_{j}+B_{j} A_{j}$, where $j^{\prime}=\max \left\{j, v_{+}\right\}$. For $j \in \mathbb{Z} \quad$ we also define mappings $\psi_{j}: C^{n\left(v_{-}+j^{+}\right)} \rightarrow \mathfrak{J}_{-\left(v_{-}+j^{+}\right)}$by the formula $\psi_{j} q=\sum_{k=-\left(v_{-}+j^{+}\right)}^{-1} q_{k} t^{k}$, where $q=\left[q_{-\left(v_{-}+j^{+}\right)}, \ldots, q_{-1}\right], \quad q_{k} \in \square^{n}\left(k=-\left(v_{-}+j^{+}\right), \ldots,-1\right)$.

The following statement is true:
Lemma 2. If $j \leq-v_{-}$, then $\operatorname{dim} N_{j}=0$. If $j>-v_{-}$, then $\operatorname{dim} N_{j}=v_{-}+n j^{+}-r_{j}, \quad$ where $\quad r_{j}=\operatorname{rang} \mathfrak{K}_{j} . \quad$ Besides, if $j \geq v_{+}$, then $\operatorname{dim} N_{j}=v_{-}+n j-n \operatorname{deg} q_{02}^{-}-\sum_{i=1}^{n}\left(\operatorname{deg} q_{i 1}^{-}-\operatorname{deg} q_{i 2}^{-}\right)$.

Proof. Since $p_{01}^{+} \cdot p_{02}^{+} \cdot \tau_{-v_{-}} \cdot A^{-1} \in\left(L_{q}^{-}\right)^{n x n}$ and $q_{-} B^{-1} \in\left(L_{p}^{+}\right)^{n x n}$, the following equalities are true:

$$
\begin{equation*}
\left.\sum_{k=0}^{n}\left\langle A^{-1}\right\rangle_{m-k}<q_{+}\right\rangle_{k}=0, m=v_{-}+1, \ldots \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{k=0}^{v+}\left\langle B^{-1}\right\rangle_{m-k}\left\langle q_{-}\right\rangle_{k}=0, m=-1,-2, \ldots \tag{3}
\end{equation*}
$$

Let $j \leq-v_{-}, \quad q \in \operatorname{ker} K_{j}$ and $\varphi=H_{j}^{-} q$. Then it is obvious, that $\varphi \in \mathfrak{R}^{n} \bigcap\left(L_{p}^{+}\right)^{n}$. According to Lemma 1, a v.-f. $\psi=\tau_{j} B^{-1} \varphi \in N_{j}$ and $\psi \in\left(L_{p}^{+}\right)^{n}$. Since $\varphi=\tau_{-j} B \psi$, then $\langle\varphi\rangle_{0}=\ldots=\langle\varphi\rangle_{-j-1}=0$. The last equalities mean that $\sum_{k=0}^{v_{-}}<A^{-1}>_{m+k}<q>_{-k}=0\left(m=0, \ldots, v_{-}-1\right)$, since $\varphi=\sum_{m=-j-1}^{-\infty} z^{m} \sum_{k=1}^{v_{-}}<A^{-1}>_{m+k}<q>_{-k}$. Hence, using (2) and observing that $\left\langle q_{+}\right\rangle_{0} \neq 0$ and $n_{-} \leq v_{-}$, we obtain

$$
\begin{gathered}
<\varphi>_{-j}=\sum_{k=1}^{v_{-}}<A^{-1}>_{-j+k}\langle q\rangle_{-k}=-\sum_{k=1}^{v_{-}} \sum_{i=1}^{n_{-}} \frac{\left\langle q_{+}\right\rangle_{i}}{\left\langle q_{+}>_{0}\right.}<A^{-1}>_{-j+k-i}<q>_{-k}= \\
=-\sum_{k=1}^{n-} \frac{\left\langle q_{+}>_{i}\right.}{\left\langle q_{+}\right\rangle_{0}} \sum_{k=1}^{v_{-}}<A^{-1}>_{-j+k-i}<q>_{-k}=0 .
\end{gathered}
$$

Similarly we get $\langle\varphi\rangle_{-j+1}=\langle\varphi\rangle_{-j+2}=\ldots=0$, i.e. $\varphi=0$. The Lemma 1 implies that $N_{j}=\{0\}$.

Let now $j>-v_{-}$while $q \in \mathfrak{J}_{-\left(v_{-}+j^{+}\right)}$. Using $\tau \cdot P_{-}\left(\tau_{j^{+}-1} A^{-1}\right) q \in\binom{0}{L_{q}^{-}}^{n}$, $\tau_{j^{+}+v_{-}} P_{+}\left(\tau_{-v_{-}} A^{-1}\right) q \in\left(L_{q}^{+}\right)^{n}$ and equality $A^{-1}=\tau_{-j^{+}+1} P_{-}\left(\tau_{j^{+}-1} A^{-1}\right)+\tau_{\nu_{-}} P_{-}\left(\tau_{-j^{+}+1-v_{-}} P_{+}\left(\tau_{j^{+}-1} A^{-1}\right)\right)+$ $+\tau_{v_{-}} P_{+}\left(\tau_{-v_{-}} A^{-1}\right)$, we obtain that $H_{j}^{-} q=\tau_{j^{+}+v_{-}} P_{+}\left(\tau_{-v_{-}} A^{-1}\right) q+g$, where

$$
g(t)=P_{+}\left(\tau_{j^{+}} \cdot \tau_{v_{-}} P_{-}\left(\tau_{-j^{+}+1-v_{-}} P_{+}\left(\tau_{j^{+}-1} A^{-1}\right)\right) q\right)=\sum_{k=0}^{v_{-}^{+} j^{+}-2}\left\langle g>_{k} t^{k}\right.
$$

$\left.<g\rangle_{k}=\sum_{m=k-\left(v_{-}+j^{+}\right)+1}^{-1}<A^{-1}\right\rangle_{k-m-j^{+}}\langle q\rangle_{m}$. Hence, taking into account that $\tau_{j} \tau_{v_{-}} P_{+}\left(\tau_{-v_{-}} B^{-1}\right) \tau_{v_{-}} P_{+}\left(\tau_{-v_{-}} A^{-1}\right) q \in\left(L_{1}^{+}\right)^{n}$, we get that $H_{j}^{+} H_{j}^{-} q=P_{-}\left(\tau_{j} U h\right)+H_{j}^{+} g$, where $h=\tau_{v_{-}+j^{+}} q$. Consequently, the condition $K_{j} q=0$ is equivalent to the following infinite system of equalities:

$$
\sum_{k=0}^{v_{-}+j^{+}-1}\left\langle U>_{m-k-j^{-}}<h>_{k}+\sum_{k=0}^{v_{-}+j^{+}-2}\left\langle B^{-1}\right\rangle_{m-k-j^{-}}\left\langle g>_{k}=0, \quad m=-1,-2, \ldots\right.\right.
$$

It is easy to see that $\left.\left(\langle h>\rangle_{0}^{T}, \ldots,<h\right\rangle_{v_{-}+j^{+}-1}^{T}\right)^{T}=\psi_{j}^{-1} q \quad$ and $\left(<g>_{0}^{T}, \ldots,<g>_{\nu_{-}+j^{+}-2}^{T}, 0\right)^{T}=A_{j} \psi_{j}^{-1} q$. The remark above implies that the condition $q \in \operatorname{ker} K_{j}$ is equivalent to the equality $U_{j} \psi_{j}^{-1} q+B_{j} A_{j} \psi_{j}^{-1} q=0$. By writing the last equality in the following form $\mathfrak{K}_{j} \psi_{j}^{-1} q=0$, we finally obtain that $K_{j} q=0$, iff $\mathfrak{K}_{j} \psi_{j}^{-1} q=0$. Consequently, $\operatorname{dim} \operatorname{ker} K_{j}=\operatorname{dim} \operatorname{ker} \mathfrak{K}_{j}$. In view of (1) the following equality is true:
$\operatorname{dim} N_{j}=v_{-}+n j^{+}-\operatorname{dim} \operatorname{Im} K_{j}=v_{-}+n j^{+}-\left(n\left(v_{-}+j^{+}\right)-\operatorname{dim} \operatorname{ker} K_{j}\right)=v_{-}+n j^{+}-r_{j}$.
It remains to prove the last statement of our Lemma 2. Let $j \geq v_{+}$and $q \in \mathfrak{I}_{j}$, then $\varphi=\tau_{-j} A q \in\left(L_{p}^{-}\right)^{n}, \quad \varphi \in D_{p}^{-}\left(A^{-1}\right)$ and $H_{j}^{-} \varphi=q$. Consequently, $\mathfrak{J}_{j} \subset \operatorname{Im} H_{j}^{-}$. A v.-f. $y \in D_{q}^{+}\left(B^{-1}\right)$ we write as follows $y=\tilde{q}+q_{-} y_{0}$, where $y_{0} \in D_{q}^{+}\left(B^{-1}\right)$, while \tilde{q} is a vector polynomial, whose degree does not exceed $v_{+}-1$. We have $q_{-} B^{-1} y_{0} \in\left(L_{1}^{+}\right)^{n} \bigcap L_{q}^{n} \quad$ (i.e. $q_{-} B^{-1} y_{0} \in\left(L_{q}^{+}\right)^{n}$), and, therefore, the equality $B^{-1} y=B^{-1} \tilde{q}+q_{-} B^{-1} y_{0}$ implies that $H_{0}^{+} y=H_{0}^{+} \tilde{q}$, i.e. $\operatorname{Im} H_{0}^{+}=\operatorname{Im}\left(\left.H_{0}^{+}\right|_{\mathfrak{v}_{\nu_{+}}}\right)$.

The operator $T^{\prime}: D_{q}^{-}(B) \rightarrow\left(L_{q}^{-}\right)^{n}$ is defined by formula $T^{\prime} y=P_{-}(B y)$. We prove that $\operatorname{ker} T^{\prime}=\operatorname{Im} H_{0}^{+}$. Assume that $\varphi \in \operatorname{Im} H_{0}^{+}$. Then there exists $y \in \mathfrak{J}_{{v_{+}}}$such that $\varphi=H_{0}^{+} y=P_{-}\left(B^{-1} y\right)$. Now $B \varphi=y-B P_{+}\left(B^{-1} y\right), B P_{+}\left(B^{-1} y\right) \in\left(L_{1}^{+}\right)^{n}$ implies $B \varphi \in\left(L_{1}^{+}\right)^{n} \bigcap L_{q}^{n}, \quad$ i.e. $\quad \varphi \in \operatorname{ker} T^{\prime}$. Conversely, if $\quad \varphi \in \operatorname{ker} T^{\prime}, \varphi \in\left(L_{q}^{-}\right)^{n} \quad$ and $B \varphi=\psi \in\left(L_{q}^{+}\right)^{n}$, i.e. $\varphi=B^{-1} \psi=P_{-}\left(B^{-1} \psi\right)=H_{0}^{+} \psi . B$ admits a left factorization in L_{q} (see [4]), and, as it is known, $\operatorname{dim} \operatorname{ker} T^{\prime}$ coincides with the sum of positive partial indices of B. Since B is analytic inside the circle, then its partial indices are nonnegative (see [4]). Therefore, dimker T^{\prime} coincides with total index of B. On the other hand, total index of B is equal to the number of zeros inside Ω_{+}(by taking into account their multiplicities) of function $\operatorname{det} B$. Thus, $\operatorname{dim} \operatorname{Im} H_{0}^{+}=n \operatorname{deg} q_{02}^{-}+\sum_{i=1}^{n}\left(\operatorname{deg} q_{i 1}^{-}-\operatorname{deg} q_{i 2}^{-}\right)$. For $j \geq 0$ we obtain

$$
\operatorname{Im} H_{0}^{+} \supset \operatorname{Im} K_{j}=\operatorname{Im}\left(\left.H_{0}^{+}\right|_{H_{j}\left(\mathfrak{I}_{-\left(0_{-}+j\right)}\right)}\right)=\operatorname{Im}\left(\left.H_{0}^{+}\right|_{\operatorname{Im} H_{0}^{-}}\right) \supset \operatorname{Im}\left(\left.H_{0}^{+}\right|_{\mathfrak{J}_{j}}\right)
$$

and for $j \geq v_{+}$we get $\operatorname{Im} H_{0}^{+} \supset \operatorname{Im} K_{j} \supseteq \operatorname{Im} H_{0}^{+}$. Consequently, we have $\operatorname{dim} \operatorname{Im} K_{j}=\operatorname{dim} \operatorname{Im} H_{0}^{+}, j \geq v_{+}$, and the Lemma is proved.

Note that, particularly, the following statement is proved:
Corollary 1. For $j>-v_{-}$the following equality is true: $\operatorname{ker} K_{j}=\psi_{j} \operatorname{ker} \mathfrak{K}_{j}$.
Theorem 1. The partial indices of m.-f. G can be calculated by formulas:

$$
\begin{equation*}
\left.\kappa_{i}=-v_{-}+\chi_{0}+\operatorname{card}\left\{j: n \theta_{j}-r_{j}+r_{j-1}<i, \quad j=-v_{-}+1, \ldots, v_{+}+2\right)\right\} \tag{4}
\end{equation*}
$$

where $r_{-v_{-}}=v_{-}, r_{j}=\operatorname{rang} \mathfrak{K}_{j}\left(j>-v_{-}\right)$and $\theta_{j}=1, j>0, \theta_{j}=0, j \leq 0$.
Proof. It is known that $\operatorname{dim} N_{j}$ is equal to the sum of negative partial indices of the m.-f. $\tau_{-\left(\chi_{0}+j\right)} G$ with the minus sign. The partial indices of the m.-f. $\tau_{-\left(\chi_{0}+j\right)} G$ are equal to $\kappa_{i}-\chi_{0}-j(i=1, \ldots, n)$. As we have $j>\kappa_{1}-\chi_{0}$, then $\operatorname{dim} N_{j}>0$. Consequently, $-v_{-} \leq \kappa_{1}-\chi_{0}$. Similarly (see [5]), it is not difficult to see that

$$
\kappa_{i}-\chi_{0}=\eta_{-}+\operatorname{card}\left\{j \mid \operatorname{dim} N_{j}-\operatorname{dim} N_{j-1}<i, \quad j=\eta_{-}+1, \ldots, \eta_{+}\right\},
$$

where η_{-}, η_{+}are arbitrary integer numbers satisfying to $\eta_{-} \leq \kappa_{1}-\chi_{0} \leq \ldots$ $\ldots \leq \kappa_{n}-\chi_{0} \leq \eta_{+}$. We can take η_{-}to be equal to $-v_{-}$, while by Lemma 2 we can choose η_{+}to be the number $v_{+}+2$. Taking into account also the equality $\operatorname{dim} N_{j}-\operatorname{dim} N_{j-1}=n \theta_{j}+r_{j-1}-r_{j}$, we get (4).

Lemmas 1 and 2 imply that $N_{j}=\left\{\tau_{j-} B^{-1} P_{+}\left(\tau_{j+} A^{-1} \psi_{j} q\right), \quad q \in \operatorname{ker} \mathfrak{K}_{j}\right\}, \quad j>-v_{-}$. We denote $\hat{N}_{j}=N_{j}+\tau N_{j}=\left\{\varphi+\tau \psi ; \varphi, \psi \in N_{j}\right\}$ and $N_{j}(0)=\left\{\varphi(0), \varphi \in N_{j}\right\}$. It is known (see [3]) that $\widehat{N}_{j} \subset N_{j+1}, j \in \mathbb{Z}$. We denote by M_{j} some direct complement of \hat{N}_{j} in N_{j+1}. Spaces M_{j} (see [2]) are called (p, j)-index subspaces. We denote $\xi_{i}=\kappa_{i}-\chi_{0}+1(i=1, \ldots, n)$. It is known that $N_{j}=\{0\}$ for $j \leq \xi_{1}-1$ and $N_{j}=\widehat{N}_{j-1}$ for all $j \in \mathbb{Z} \backslash\left\{\xi_{1}, \ldots, \xi_{n}\right\}$. The following statement follows from [3]:

Proposition 1. Assume $\varphi_{i 1}, \ldots, \varphi_{i m_{i}}\left(i=1, \ldots, n, m_{i} \in \square\right)$ are bases in the space $M_{\xi_{i}-1}$. Then $\tau_{-\chi_{0}} G=G_{-} \Lambda G_{+}^{-1}$, where $G_{+}=\left[\varphi_{11}, \ldots, \varphi_{1 m_{1}}, \varphi_{2}, \ldots, \varphi_{2 m_{2}}, \ldots, \varphi_{n 1}, \ldots, \varphi_{n m_{n}}\right]$, $\Lambda=\operatorname{diag}\left[\tau_{\xi_{1}-1}, \ldots, \tau_{\xi_{n}-1}\right]$ and $G_{-}=G_{0} G_{+} \Lambda^{-1}$ is a factorization of a m.-f. $\tau_{-\chi_{0}} G$.

Assume that $K_{j}^{\prime}=\left[\left\langle A^{-1}\right\rangle_{v_{-}-j^{-}}, \ldots,\left\langle A^{-1}\right\rangle_{1-j}\right]$. We call the vectors $q_{i}=\left[q_{i}^{1}, \ldots, q_{i}^{v_{-}+\xi_{i}^{+}}\right]\left(q_{i}^{k} \in \square^{n}, i=1, \ldots, n ; k=1, \ldots, v+\xi_{i}^{+}\right)$a factorization collection for the m.-f. G, if $\mathfrak{K}_{\xi_{i}} q_{i}=0, i=1, \ldots, n$, while vectors $K_{\xi_{1}}^{\prime} q_{1}, \ldots, K_{\xi_{n}}^{\prime} q_{n}$ are linearly independent.

Proposition 2. A m.-f. G possesses a factorization collection.
Proof. Let $\varphi \in N_{j}$, then there exists a vector $q=\left[q_{-\left(v_{-}+j^{+}\right)}, \ldots, q_{-1}\right] \in \operatorname{ker} \mathfrak{K}_{j}$, $q_{s} \in \square^{n}, s=\left(-v_{-}+j^{+}, \ldots,-1\right)$, such that $\varphi(t)=t^{-j^{-}} B^{-1}(t) P_{+}\left(\tau_{j^{+}} A^{-1} \psi_{j} q\right)$.

$$
\begin{gathered}
<\tau_{j^{+}} A^{-1} \psi_{j} q>_{m}=\frac{1}{2 \pi i} \int_{\Gamma} t^{j^{+}} A^{-1}(t) \sum_{k=-v_{-}+j^{+}}^{-1} q_{k} t^{k} t^{-m-1} d t=\sum_{k=-v_{-}+j^{+}}^{-1} \frac{q_{k}}{2 \pi i} \int_{\Gamma} A^{-1}(t) t^{j^{+}+k-m-1} d t= \\
=\sum_{k=-v_{-}+j^{+}}^{-1}<A^{-1}>_{m-k-j^{+}} q_{k} .
\end{gathered}
$$

The v.-f. φ is analytic in Ω_{+}, and hence, it can be de expanded into the series $\varphi(t)=B^{-1}(t) \sum_{m=0}^{\infty}\left(\sum_{k=-v_{-}+j^{+}}^{-1}<A^{-1}>_{m-k-j^{+}} q_{k}\right) t^{m+j^{-}}$in a neighborhood of 0. Besides, $N_{j}(0)=\left\{B^{-1}(0) K_{j}^{\prime} q, q \in \operatorname{ker} \mathfrak{K}_{j}\right\}$, since the m.-f. $B(0)$ is invertible. The existence of a factorization collection follows now from properties of spaces $N_{j}(0)$ (see [3]). Proof is completed.

Theorem 2. Let $q_{i}(i=1, \ldots, n)$ be a factorization collection for the m.-f. G and $\varphi_{i}=\tau_{\xi_{i}^{-}} B^{-1} H_{\xi_{i}}^{-} \psi_{\xi_{i}} q_{i}, i=1, \ldots n$, then $G_{+}=\left[\varphi_{1}, \ldots, \varphi_{n}\right], \quad \Lambda=\operatorname{diag}\left[t^{\kappa_{1}}, \ldots, \tau^{\tau_{n}}\right]$,
$G_{-}=G G_{+} \Lambda^{-1}$ is a factorization of m.-f. G.
Proof. Lemma 1 and Corollary 1 imply that $\varphi_{i} \in N_{\xi_{i}}(i=1, \ldots, n)$. Since $\varphi_{1}(0), \ldots, \varphi_{n}(0)$ are linearly independent, then φ_{i} does not belong to $\hat{N}_{\xi_{i}-1}$. Consequently, $\varphi_{i} \in M_{\xi_{i}-1}(i=1, \ldots, n)$. Taking into account linear independence of a v.-f. $\varphi_{i}(i=1, \ldots, n)$ we deduce the proof of our Theorem from the Proposition 1.

Received 24.01.2011

REFERENCES

1. Dinkin E.M. and Osilenker B.P. Matematicheskii Analiz (Itogi Nauki i Tekhniki). M.: VINITI, 1983, p. 42-129 (in Russian).
2. Kamalyan A.G. Dokladi NAN Armenii, 2007, v. 107, № 4, p. 316-322 (in Russian).
3. Kamalyan A.G. Dokladi NAN Armenii, 2008, v. 108, № 1, p. 5-11 (in Russian).
4. Litvinchuk G.S. and Spitkovskii I.M. Factorization of Matrix-Functions. Berlin: Akademie Verlag, 1987.
5. Kamalyan A.G. and Sargsyan A.V. Izv. NAN Armenii. Matematika. Journal of Contemporary Mathematical Analysis, 2007, v. 42, № 3, p. 39-48.
6. Sargsyan A.V. Proceedings of the YSU. Phys. and Mathem. Sciences, 2010, № 1, p. 9-15.
7. Kamalyan A.G. Izv. NAN Armenii. Matematika. Journal of Contemporary Mathematical Analysis, 1997, v. 32, № 2, p. 19-38.

[^0]: * E-mail: gevorg.topikyan@gmail.com

