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The paper considers a factorization problem of a matrix-function, obtained 
from a circulant by a right and left multiplication by diagonal rational matrix-
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1. Let Г be a Carleson contour, which bounds finitely connected bounded 

domain (0 ), \ ( )          . It is known (see [1]) that the singular 
integral operator  S, defined by the formula  

1 1( )( ) ( ) ,S t d t
i t

   
 

 
 , 

where the integral is understood in a sense of a principal value, is a bounded 

operator in the space ( ( )), 1p pL L p     . We define projectors 1 ( )
2

I S    

and classes of functions Im ,pL P
  

0 0

Im , .p p pL P L L C  
    

Everywhere below we denote the space of n -dimensional vector-columns 
( n n -order matrices) with elements from the linear space X  by nX  ( n nX  ). The 
abbreviations m.-f. and v.-f. will be used for matrix-function and vector-function 
respectively. By ( )k k   we denote a function defined by ( ) k

k t t  . 
By factorization of a m.-f. G  of order n n  in the space pL  along the 

contour Г we mean the representation 1G G G 
  , where a) ( ) ,n n

pG L 
   

1 ( ) ,n n
qG L  

   
1

pq
p




; b) 
1

diag[ , , ]
n     , where 1 ... n    are numbers 

called partial indices. A factorization of m.-f. G satisfying to the condition 
1 nxnG L

  is called generalized, if the operator 1G P G I
    is bounded in n

pL . 
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Suppose that ,i L   and ,i ip q ( 1,..., )i n  are rational functions with poles lying 
outside the contour Г,  1diag[ , , ]nP p p  , 1diag[ , , ]nQ q q   and , 1( )n

ij i j   , 
where ij  1,j i i j    , and ij  1,n j i i j     . The m.-f.   is a circulant and, 
therefore, a m.-f. G , defined by the equality G P Q , we will call ( , )P Q -
circulant. The explicit representation of this m.-f. will be: 

1 1 1 1 2 2 1

2 1 2 2 1 2 1

1 2 2 3 1

...

...

...

n n

n n n

n n n n

p q p q p q
p q p q p q

G

p q p q p q

  
  

  



 
 
 
 
 
 

   
. 

The present paper suggests a method of an explicit factorization of the m.-f. 
G . By the explicit factorization we mean a reduction of a factorization problem of 
the m.-f. G  to a finite number of factorizations of scalar functions and a finite 
number of solutions of linear algebraic problems. The suggested approach is based 
on algebraic properties of the Toeplitz operators’ family (see [2, 3]) and extends 
the method developed in [5, 6].  

2. We introduce functions ( 1)( 1)

1
, 1,..., ,

n
j s

j s
s

j n   


   where 

2exp i
n
   and an m.-f. 1diag[ , , ]n    . It is known that 1,E E    

where    ( 1)( 1) 1 ( 1)( 1)
, 1 , 1

1,
n nk s k s
k s k s

E E
n

      

 
  . Consequently, 1G PE E Q  . 

By the Theorem 3.10 from [4], we have that the m.-f. G  admits a generalized 
factorization, iff the functions ( 1,.., )j j n   admit generalized factorization. 

Below, without loss of generality, we will assume that  

1(0),..., (0) \{0}nq q  .  
Let    the    functions   ( 1,..., )j j n      admit    the    generalized    factoriza-

tion  j 1( )j
j jt    . Then we have 1 1( )G PE E Q      , where 

1diag[ ,..., ],n    
1

diag[ ,..., ]
n       and  1diag[ ,..., ]n     . 

We define m.-f. 
max

A PЕ    and 1 1( ) ,B E Q     where 

max 1max{ , , }n    . Then  
max

G AB   . 

Let 1

2
,i

i
i

pp
p

  1

2

i
i

i

qq
q

 . We write the polynomials 1ip , 2ip , 1iq , 2iq  as 

follows: 1 1 1i i ip p p  , 2 2 2i i ip p p  , 1 1 1i i iq q q  , 2 2 2i i iq q q  , where ,ikp  ikq  
( 1,2)k   are polynomials, whose zeros lie in   respectively. We denote           

by ( )оk оkp q  ( 1,2)k   polynomials, which are the lеast common multiples                    

of 1 1, , ( , , )k nk k nkp p q q     . Let 
002

02

1A p A
q

     , 02

02

qB B
p



  , where 
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0 1 021, ,
max deg degii n

p p 


 


. Then 

0
G AB , where ( ) ,nxn

pA L  ( ) ,nxn
qB L  

1 ( ) ,nxn
qA M   1 ( )nxn

pB M  , 0 max 0    . We define a number 0 0       

min 02 01 21, ,
deg deg max deg ii n

q p p  


   


, where min 1min{ , , }n    , and polyno-

mial 01 02q q q 
    (we denote its degree by  ). Further, we define a v.-f. 

01 02q p p 
   and degn q  . Consider families of Hankel and Toeplitz operators 

0 0
1 1: ( ) , : ( ) , :j p p j p p j p pH D A L H D B L T L L            , 1p  , defined by formulas 

1 1( ), ( ), ( )j j j jj jH P A H P B T P AB         
   

      , where | | ,
2

j jj 
  

0
1 1( ) { ( ) , ( ) }n n

p p pD A L A L       ; 1 1( ) { ( ) , ( ) }n n
p p pD B L B L       . 

We denote by j  the space of vector polynomials 
1

0

j
k

k
k

z



 , n

k  , in the 

case when j >0 ( )j , and the space of vector polynomials in z -1 of type 
1

k
k

k j
z




  in the case when j <0 ( )j . We will suppose that 0 {0}  . We define a 

family of finite-dimensional operators 
( )

,
j

j j jH H j



 

 


  . Denote kerj jN T .  

L e m ma  1 . A v.-f.   belongs to jN , iff there exists a v.-f. ker j  , 

such that 1 ( ).j jB H     Besides, the following equality is true: 

                                      dim dimIm ,j jN nj j 
    .                              (1) 

Proof. It is known that (see [7]) 
( )

Im Im | ,
j

j jH H j
  

 
  . Hence, we 

have the equality  Im(ker ) ker |
j

j j j HH H 
  . Therefore, to prove the first part of 

Lemma, it is enough to see that jN , iff the v.-f.  0 Imker |
j

jj HB H   



  . 

Assume that jN , then ( )n
pL   and ( ) 0jP AB    , i.e. 

0

( )n
j pAB f L  

   . We write the last equality in the form 1
0j jA f B    




  . 

We have ( )nxn
qB L  and ( )n

pL  , hence, 1
1( )n

j A f L 
  . Since 

1 ( ) ,nxn
qA M   

0

( )n
pf L , then 1( )jP A f 


  is a rational function, and, therefore, 

1
1( ( ) )n n

pj A f L L 
   , i.e. 

0
1( )pf D A  . It is easy to see that 0jН f    and 

1
0 ( )n

pjB L  


  , i.e. 1
0 ( )pD B    and 1

0 0( ) ( ) 0j jН P B P   
 

    . 

Thus, 0 ker   Im|
j

j HH 
 . 
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Conversely, assume that 0 kerj B  
  Im( | )

j
j HH 
 . The equality 

( )
Im Im |

j
j jH H

  

 
  implies the existence of ( )jf  

 
 , such that  

0 ( )n
j pH f L    . Since 0 0jН   , then 1

00 ( )jP B 


  1( )j jP B B   


 
 

( )P   i.e. ( )n
pL   . 

According to the definition of 0 , 1( )jj jB H f P A f   
 

    
1 1( )j jA f P A f  
 

  . Consequently, 1( ) jj jf AP A f AB    


   . Taking into 

account that ( )jf  
 

  and 1 ( )nxn
qА М  , we get 

0
1

1( )
n

j jАP А f L  
 



 
 
 

, i.e. 

1( ( )) 0j j jT P f AP A f   


    ,  which  proves  the  first  part  of  our  Lemma. 

It remains to observe that dim jN  Imdim(ker( | ))
j

j HH 
 = dimIm jH    

ImdimIm |
j

j HH 
  dimIm dimImj jH    and dimIm jH nj 

   (see [7]) to 

complete the proof. 
We define the m.-f. 1 1( ) ( )U P B P A    

  

 
     and square matrices 

( )
, ,j

m kb  ( )
, ,j

m ka  ( )
,
j

m ku  ( , , )m k j , given by ( ) 1
, ( ) 1
j

m k m k jb B 


   
  , 

( ) 1
,
j

m k m ka A 


    when m k  and ( )
, 0j

m ka   when ,m k  ( )
, ( ) 1
j

m k m k ju U    
  , 

where for a m.-f. Ф by k   we mean the following  matrix: 

11 ( )
2

k
k t t dt

i 
 


     . For j    we define the block matrices j , j , jU , 

jK  by: '
0,..., 1( )

, 0,...,
|| ||k jj

j m k m j j
b 





  
 

 , 0,..., 1( )
, 0,..., 1

|| ||k jj
j m k m j

a 










  
  

 , '
0,..., 1( )

, 0,...,
|| ||k jj

j m k m j j
U u 




  
 

 , 

j j j jU   K ,   where   ' max{ , }j j  .   For   j    we   also   define 

mappings ( )
( ): n j

j jC 











 

  by the formula 
1

( )

k
j k

k j
q q t









 
  , where 

1( )[ ,..., ],jq q q 


 
   n

kq   ( ( ), , 1)k j 
    . 

The following statement is true: 
L e m ma  2 . If ,j    then dim jN =0. If j   , then 

dim j jN nj r 
   , where rangj jr  K . Besides, if j  , then 

02 1 2
1

dim deg (deg deg )
n

j i i
i

N nj n q q q   



     . 

Proof. Since 1
01 02 ( )nxn

qp p A L


   
     and 1 ( )nxn

pq B L 
  , the following 

equalities are true: 

                                      1

0
0

n

m k k
k

A q
 

 

     , 1,m    ,                          (2) 
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                                      1

0
0m k k

k
B q




 

     , 1, 2,m                               (3) 

Let  ,j    ker jq   and jН q  . Then it is obvious, that 

( )n n
pL   . According to Lemma 1, a v.-f. 1

j jB N     and ( )n
pL  . 

Since j B   , then 0 1... 0j         . The last equalities mean that 

1

0
0 ( 0,..., 1)m k k

k
A q m




 
  


       , since 1

1 1

m
m k k

m j k
z A q







 
  

      . 

Hence, using (2) and observing  that 0 0q    and ,n    we  obtain  

1 1

1 1 1 0

n
i

j j k k j k i k
k k i

qA q A q
q

 


  
 

       
   

              
  

1

1 10
0

n
i

j k i k
k k

q A q
q




   
 

       
   . 

Similarly we get 1 2 0,j j           i.e. 0  . The Lemma 1 

implies  that {0}jN  . 

Let now j    while ( )jq  
 

 . Using 
0

1
1( )

n

qjP A q L  
 

 

 
  

 
, 

1( ) ( )n
qj P A q L 



 
 

  and equality 1 1 1
1 1 1 1( ) ( ( ))j j j jA P A P P A        

 

  
        

    
1( )P A  

 


  , we  obtain  that 1( )j jH q P A q g

 


 
 

  , where  

( )g t 
2

1
1 1

0
( ( ( )) )

j
k

kj j j
k

P P P A q g t


    




  
 

 


     


    , 

1
1

( ) 1
k mk m j

m k j
g A q










 
   

       . Hence, taking into account that 

1( )j P B   
 


 

1
1( ) ( )nP A q L  

 

 
   , we get that ( )j j jjH H q P Uh H g 

  
  , 

where .jh q 


 Consequently, the condition 0jq   is equivalent to the follow-

ing infinite system of equalities: 
1 2

1

0 0
0,

j j

k km k j m k j
k k

U h B g
  
 

 

   


   
 

            1, 2,...m     

It is easy to see that 1
0 1( , , )T T T

jjh h q






 

      and 
1

0 2( ,..., ,0)T T T
j jjg g A q







 

     . The remark above implies that the condition 

ker jq   is equivalent to the equality 1 1 0j j j j jU q A q     . By writing the 

last  equality  in  the following  form 1 0j j q  K , we finally obtain that 0jq  ,  

iff 1 0j j q  K . Consequently, dimker dim kerj jK  K . In view of (1) the 
following equality is true: 
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dim dimIm ( ( ) dimker )j j j jN nj nj n j nj r        
              . 

It remains to prove the last statement of our Lemma 2. Let j   and 

jq , then 
0

( )n
j pAq L  

  , 
0

1( )pD A   and jH q  . Consequently, 

Imj jH   . A v.-f. 1( )qy D B  we write as follows 0 ,y q q y   where 
1

0 ( ),qy D B   while q  is a vector polynomial, whose degree does not exceed 

1  .   We   have   1
0 1( )n n

qq B y L L 
      (i.e. 1

0 ( )n
qq B y L 

  ),   and,   there-

fore, the equality 1 1 1
0B y B q q B y  

   implies that 0 0H y H q   , i.e. 

 0 0Im Im |H H


 
 . 

The operator 
0 0

' : ( ) ( )n
q qT D B L   is defined by formula ( )T y P By  . We 

prove that 0ker ' ImT H  . Assume that 0Im H  . Then there exists y 
  such 

that 1
0 ( )H y P B y  

  . Now 1( )B y BP B y 
  , 1

1( ) ( )nBP B y L 
   implies 

1( )n n
qB L L   , i.e. kerT  . Conversely, if 

0

ker , ( )n
qT L     and 

( )n
qB L    ,  i.e. 1 1

0( )B P B H     
   . B  admits a left factorization in 

qL (see [4]), and, as it is known, dimkerT   coincides with the sum of positive 
partial indices of B . Since B  is analytic inside the circle, then its partial indices 
are nonnegative (see [4]). Therefore, dimkerT   coincides with total index of B . On 
the other hand, total index of B  is equal to the number of zeros inside   (by 
taking into account their multiplicities) of function det B . Thus, 

0 02 1 2
1

dimIm deg (deg deg )
n

i i
i

H n q q q   


   . For 0j   we obtain 

     
( ) 0

0 0 0 0( ) ImIm Im Im | Im | Im |
jj j

j H HH H H H


  
 

   


    , 

and for j   we get 0 0Im Im Im .jH H    Consequently, we have 

0dimIm dimImj H  , j  , and  the  Lemma  is  proved. 
Note  that, particularly, the  following statement  is proved: 
Corollary 1. For j    the following equality is true: ker kerj j j  K . 
T h eo r e m 1 .  The partial indices of m.-f. G can be calculated by formulas: 
   0 1card{ : , 1, , 2)}i j j jj n r r i j                   ,        (4) 

where r  
  , rang ( )j jr j   K and 1, 0, 0, 0j jj j     . 

Proof. It is known that dim jN  is equal to the sum of negative partial indices 
of the m.-f. 

0( )j G    with the minus sign. The partial indices of the m.-f. 
0( )j G    

are equal to 0 ( 1, , )i j i n     . As we have 1 0j    , then dim 0jN  . 
Consequently, 1 0     . Similarly (see [5]), it is not difficult to see that  
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0 1card{ dim dim , 1, , }i j jj N N i j               , 

where ,    are arbitrary integer numbers satisfying to 1 0 ...       

0... n     . We can take   to be equal to  , while by Lemma 2 we can 
choose   to be the number 2.   Taking into account also the equality   

1 1dim dimj j j j jN N n r r     , we get (4). 

Lemmas 1 and 2 imply that 1 1{ ( ),j j jjN B P A q  
 

   ker },jq K  j   . 

We denote { ; , }j j j jN N N N        


 and (0) { (0), }j jN N   .  It is 

known (see [3]) that  1, .j jN N j 
   We denote by jM  some direct complement 

of jN


 in 1jN  . Spaces jM  (see [2]) are called  (p,j)-index subspaces. We denote 

0 1 ( 1, , )i i i n       . It is known that  0jN   for 1 1j    and 1j jN N 


 

for all 1\{ , , }nj    . The following statement follows from [3]: 
Proposition 1. Assume 1,..., ( 1, , , )

ii im ii n m     are bases in the space 

1i
M  . Then 

0

1G G G  
   , where 

1 211 1 2 2 1[ ,..., , ,..., ,..., ,..., ],
nm m n nmG         

1 1 1diag[ , , ]
n       and 1

0G G G 
  is a factorization of a m.-f. 

0
G  . 

Assume that 1 1
1[ ,..., ]j jjK A A

 


 


      . We call the vectors 

1[ ,..., ]i
i i iq q q  

  ( , 1, , ; 1, , )k n
i iq i n k         a factorization collection 

for the m.-f. G, if 0, 1, ,
i iq i n   K , while vectors 

1 1,...,
n nK q K q    are linearly 

independent. 
Proposition 2. A  m.-f. G possesses a factorization collection. 
Proof. Let jN , then there exists a vector 1( )[ ,..., ] ker jjq q q 


 

  K , 

, ( ,..., 1)n
sq s j 

     , such that 1 1( ) ( ) ( )j
jjt t B t P A q  




  

 . 
1 1

1 1 1 1 1

1
1

1 ( ) ( )
2 2

.

j k m j k mk
j m kj

k j k j

km k j
k j

qA q t A t q t t dt A t t dt
i i

A q

  



 
 

 


 

 






 
       

   




 
 

    

  

  


 

The v.-f.   is analytic in  , and hence, it can be de expanded into the 

series 
1

1 1

0
( ) ( ) m j

km k j
m k j

t B t A q t










 
  

 
  

 
    

 
  in a neighborhood of 0. 

Besides, 1(0) { (0) , ker }j j jN B K q q   K , since the m.-f. (0)B  is invertible. The 
existence of a factorization collection follows now from properties of spaces 

(0)jN  (see [3]). Proof is completed. 

T h eo r e m 2 .  Let ( 1, , )iq i n   be a factorization collection for the m.-f. G  
and  1 , 1, ,

i ii
i iB H q i n 

  
      then 1[ ,..., ],nG     1diag[ ,..., ],nt     
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1G GG 
  is a factorization of m.-f. G. 

Proof.  Lemma 1 and Corollary 1 imply that ( 1, , )
ii N i n    . Since 

1(0), , (0)n   are linearly independent, then i  does not belong to 1i
N 


. 

Consequently, 1( 1, , )
ii M i n    . Taking into account linear independence of   

a v.-f. ( 1, , )i i n    we deduce the proof of our Theorem from the Proposition 1. 
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