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1о. Let  be a -order l 2n (n )∈ differential operation defined on the half-

line  by the formula   (0, )+ = ∞
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where the coeffici kp ( 0,1,...,2 2)k n=

                     
1
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− − + − <∫ ∫ ∞    0,...,2 2k n= − ,              (2) 

for some real constants . When ka 1n =  the second sum on the right side of (1) is 
assumed to be zero. For a function  defined on y +  an exact meaning of the ex-
pression  is defined by means of the quasi-derivatives ( )l y [ ]y ν , 0,...,2nν =  (see 
[1], as well as [2]). We will say that l y  makes sense, iff all the quasi-derivatives 
of y up to 

( )
(2 1)n − -th order exist and are absolutely continuous on each interval 

[ , ]α β +⊂ . By l y  we will always mean , i.e. . ( ) [2 ]ny [2 ]( ) nl y y=

Define a polynomial Q
2 2

2

0
( )

n
n

k
k

kaξ ξ ξ
−

=
= + ∑ , and denote by E  the set of all 

complex numbers μ , for which the equation Q( )ξ μ=  has complex multiple 
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roots. Let 1 2 ... mμ μ ′μ′ ′ ′< < <  be all real points of the set E . Assume that 

1 2 ... mμ μ< < < μ  are all real values of μ , for which the mentioned equation has 

real multiple roots. Let us also assume that 0 0 1 1, m mμ μ μ μ′+ +
′ ′= = −∞ = = ∞ . In 

each of the intervals 1( , ) ( 0,1,..., )k k k mμ μ + =  number of real roots of the equation 
( )Q ξ μ=  is constant. Denote this number by . We note that 2 kr 0 0, 1mr r= = . Fur-

ther, we fix 1,...,k m=  and for 1( , ) \k k Eμ μ μ +∈  denote by ( )νξ μ  ( 1,...,2 )nν =  
the roots of this equation. Choosing 0 0ε > , so that the strip 0 0{ ; Im }μ ε μ ε− ≤ ≤  
does not contain any non-real points of the set E , we assume that: for 

1( , ) ( , )s s k k 1μ μ μ μ μ+′ ′∈ ⊂ +  the functions νξ ( 1,...,2 )nν =  admit analytical conti-
nuation to the domain { ; 0 0 1Im , Re };s sμ ε μ ε μ μ μ +′ ′< < < < Im ( ) 0ν − ξ μ >

)
 

( 1,...,2nν =  and Im ( ) 0νξ μ <  ( 1,...,2 )n nν = +  as soon as 00 Im ;μ ε< <  for 
1,..., , 1,...,k kr n n rν = + +  the roots νξ  are real and admit analytical continuation to 

the domain 0 0{ ; Im , Re }.k 1kμ ε μ ε μ μ μ +− < < < <  Due to the construction, the 
functions  νξ  increase in the interval 1( , )k kμ μ +  for  1 krν≤ ≤  and decrease in the 
same interval for 1 kn n rν+ ≤ ≤ + .  

Suppose that  and  are, respectively, the maximal and minimal closed 
symmetric operators generated by differential operation , while 

′L 0L
l D′  and 0D  are 

their domains of definition.  

We use the following notation: 
2 1

[2 1 ] [ ]
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= ∑

 
for functions 

 and  such that  and  are defined. For any y z ( )l y ( )l z ,  y z D′∈  the finite limit 

0 0
[ , ] lim[ , ]xx
y z y z

→
=  exists. The definition domain of arbitrary self-adjoint extensions 

 of symmetric operator  consists of those and only those functions that satisfy 
the boundary conditions  
L 0L

                                             0[ , ] 0jy z = ,    1,2,..., ,j n=                 (3) 
where , , are some linearly independent by module jz 1,...,j = n 0D  functions of 
D′  such that ,  0[ , ] 0s jz z = , 1,...,s j n= . 

The point spectrum  of the operator  is bounded from below and has no 
finite accumulation points other than 

T L
, 1,2,...,j j mμ =   (see [2, 3]). The equation 

( )l y yμ=  has exactly  linearly independent bounded solutions satisfying the 
boundary conditions (3) for 

kr

1( , ) \k k Tμ μ μ +∈ . Such solutions are uniquely deter-
mined up to a special asymptotics at infinity. Below we will consider a system of 
linearly independent solutions 1 ,sϕ 2sϕ  ( 1,2,..., )ks r=  uniquely defined by the fol-
lowing asymptotics when x →∞ :  
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We note that unitary matrices 1 , , 1( ) kr
s n j s jB b + == 2 , , 1( ) kr, s j s jB b ==  are uniquely 

defined (see [2, 3]). Solutions isϕ  ( 1,2; 1,..., )ki s r= =  are called normalized gene-
ralized eigenfunctions of the operator  corresponding to the continuous spec-
trum. It is known (see [2, 3]), that these functions play an important role in the 
spectral decomposition of the operator  and, in particular, in formulas of the   
inversion by means of a minimum number of solutions of the equation 

,L

L
( )l y yμ= . 

These functions play an important role in the theory of solvability of integral 
equtions of -convolution (see [4–6]) as well. The present paper studies the  prob-
lem of a continuous dependence on the parameter 

L
μ  of the functions isϕ  

, as well as properties of the functions of a form  ( 1,2; 1,2,..., )ki s= = r

                      
1

( , ) ( ) ( , ) ( , ) ,
k

k

is isK x t c x t d
μ

μ
μ ϕ μ ϕ μ μ

+

= ∫                    (6) 0, 0,x t> >

playing important role in the abovementioned theory of integral operators of               
-convolution. L

2о. The following theorem is true: 
T h e o r e m  1 . For 1( , ) \ ( )k k E Tμ μ μ +∈ ∪  and  the functions 0x > 1 ( , ),s xϕ μ  

2 ( , )s xϕ μ ( 1,... )ks r= and their quasi-derivatives up to the order 2 1n −  are continuous. 
If, in addition, for some 0ν ∈  the following conditions are fulfilled: 

                            0

0
(1 ) ( ) ,k kt p t a dtν

∞

+ − <∫ 0,1,...,2 2,k n∞    = −    (7) 

then the functions 1 ( , ),s xϕ μ  2 ( , )s xϕ μ ( 1, 2,..., k )s r=  have continuous derivatives 
in μ  up to the order 0ν  for 1( , ) \ ( )k k E Tμ μ μ +∈ ∪ . 

Proof.  We use the following notation: 
0[ ][ ] ( 0,..., ),nix ixe eλ ν ν λλ ν= =

0[2 ] ( )ix n ixe Q e [ ]λ λλ= ,
 

0 2
[2 1 ] 2 1 1

2 1
2 2
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2
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As it is known (see [2, 3]), the equation ( )l y yμ=  has a fundamental system of 
solutions ( , )jy x μ  , whose quasi-derivatives have the following     
asymptotics as 

( 1,...,2 )j = n
x →∞ :  

                         
0( ) ( )[ ] [ ]( , ) ( ) ( ),j jix ix

jy x e o eξ μ ξ μν νμ = + 0,..., 1mν = − .              (8) 

Define functions sq , sA , sets ( )jM μ±

 and numbers 1 0 1, ,δ δ δ−  by the                 
following formulas:  

2 2 2kk kq p a= − , 2 1 2 1 2 1
1 ( )
2k kq p a+ += − ( 0,1,..., 1)k nk+  − , ;  1 0q− ==

( ) ,
( ( ))s

s

iA
Q

μ
ξ μ

=
′

    1,2,...,2s n= ; 

( ) { : Im( ( ) ( ) 0)}j j sM sμ ξ μ ξ μ+ = − ≥

<

;  

( ) { : Im( ( ) ( ) 0)}j j sM sμ ξ μ ξ μ− = − ;  



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2012, № 1, p. 3–9.  
  
6 

( ) ( ) {1,2,...,2 }j jM M nμ μ+ −∪ = ; 1 1δ− = , 0 1 0δ δ= = .  

Quasi-derivatives [ ]
jy ν  ( 0,1,...,2 1nν = −

j μ −

) can be restored from the equalities 

0 0

0
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∑ ∑ ∑ ∫

∑ ∑ ∑ ∫
(9) 

where 0α > .  
It is easy to obtain from here systems of integral equations for the functions 

[ ]
,

jix
j jz e yξ ν
ν

−=  when  and 1,2,...,2j n= 0,1,...,nν = . Taking into account that for 

 the sets 1,..., , 1,...,k kj r n n= + r+ ( )jM μ±  in (9) and in the mentioned systems do 

not change on the intervals 1[ , ] ( , ) \k k Eμ μ μ μ +′ ′′ ⊂  as functions of μ , it is not dif-
ficult to see that for x  large enough the successive approximations method is ap-
plicable to these systems, that leads to the continuous solution in [ , ]μ μ μ′ ′′∈ . Con-

sequently, the functions 
[ ]

jy
ν

 ( 0,...,nν = ) are also continuous for x  large enough 

and [ , ]μ μ μ′ ′′∈ . The formula (9) implies the continuity of the functions 
[ ]

jy
ν

on this 
set when 1,...,2n nν = +  as well. By similar arguments it is easily seen that when 
the conditions (7) are satisfied, the functions 

[ ]

jy
ν

 are continuously differentiable 

with respect to [ , ]μ μ μ′ ′′∈  up to the order 0ν . By virtue of Lemma 1.1.4 [2], the  
proved assertions remain valid for all . It is known (see Lemma 1.1.5 [2]), 
that the equation 

0x >
( )l y yμ=  possesses linearly independent solutions ( , )jh x μ  

( 1,..., )kj r= + n , whose quasi-derivatives are analytical in some neighborhood of 
interval [ , ]μ μ′ ′′  as soon as 1[ , ] ( , ) \k k Eμ μ μ μ +′ ′′ ⊂  and have the asymptotics 

, [ ] ( , ) (1) bx
jh x o eν μ −= x →∞ , where 

[ , ] 1
min min {Im ( )} 0.

k
sr s n

b
μ μ μ

ξ μ
′ ′′∈ + ≤ ≤

= >  Since 

, then, redenoting  1span{ ,..., }
kj rh y +∈ ny j r n n rjy ( 1,..., , 1,..., )k k= + + jh by , we 

obtain that the set of bounded solutions of the equation ( )l y yμ=  coincides with 
. Therefore, there exist functions span{ ; 1,..., }jh j n r= + k ( )sjc μ  ( , 1,..., )ks j n= + r  

such that 2
1

( , ) ( ) ( , )
kn r

s sj j
j

x c h xϕ μ μ
+

=
= ∑ μ s jz. Requirements

 2 0[ , ] 0ϕ =   

along with formula (5) for each 

( 1,..., )j n=

1,..., ks r=  lead to the following system of linear 
algebraic equations with respect to coefficients sjc : 

0 0
1

( )[ , ] ( )[ , ] ,
n

sj j r s n s n r
j

c h z h zμ ξ μ+ +
=

= − −∑ 0,1, ..., .r n=  
   

It is easy to see that the determinant of the matrix  is not zero 
as soon as 

0 , 1([ , ] )n
j r j rh z =

Tμ∈ . Hence, the statement for functions 2sϕ  of the Theorem follows. 
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Formulas (4), (5) imply ,
1
2sj j s jc bξ
π

′= ( , 1,..., )k s j r=  and 2 ,
1

kr

1s s j s
j

bϕ ϕ
=

= ∑  

( 1,..., )ks r= . Taking into account nonsingularity of the matrix 2B , we obtain the 
assertion of the Theorem also for functions 1sϕ . The proof is completed. 

3о.  Next, we give some properties of the functions of the form (6), assuming 
 and i s  are fixed ( 1 .  , 2; 1,..., )ki s= = r

T h e o r e m  2 . Suppose ( )c μ  is continuous on the interval 1[ , ]k kμ μ +  and 
vanishes in some neighborhood of the set 1( ) [ ,k kE T ]μ μ +∪ ∩ . Then the function 

 defined by the formula (6) has the following properties: K
a) operation  is applicable to  in each variable and 

 where  is the differential operation defined by formula 
l ( , )K x t

#( ( , )) ( ( , )),x tl K x t l K x t= #l
# ( ) ( )l y l y= , while an index at l  and  indicates the variable, with respect to 

which the corresponding differential operation acts;  

#l

b) for each  0x > ( , )K x t , as a function of , belongs to the domain of defi-
nition of the operator .   

t
L

If, in addition, the conditions (8) are satisfied with 0 2ν = , ( )c μ  is a twice 
continuously differentiable function, and the functions  

( ) ,k k
x

p t a dt
∞

−∫    0,1,...,2 2k n= − , 

belong to 1(L )+ , then the following assertions are true as well:  
c) quasi-derivatives  in the variable 

[ ] ( , )xK x tν x  ( 0,...,2 )nν =  are continuous 
in both variables, while integrals 

                                          [ ]

0
( , ) ,xK x t dtν

∞

∫        0,...,2nν = ,               (10) 

converge uniformly in x  on each interval [ , ]α β +⊂ ; 
d) the following relations are fulfilled: 

0 0
lim [ ( , ), ( )] 0,j xx

K x t z x dt
∞

→
=∫

    

1,2,...,j

                                

n= ,                          (11) 

zwhere  are the functions appearing in (3); j

e) for any 0β >    

                                                   
0

lim ( , ) 0
x

K x t dt
β

→∞
=∫ .              (12) 

Proof.  Properties  a)  and  b)  can be verified directly. 
We denote 

[ , ]
min min {Im( ( ) ( ))}

j
j s j

s M μ μ μ
ξ μ ξ μ

− ′ ′′∈∈
= ( 1,...,2 )j n−

 
β = . It is obvious 

that 0jβ > , and for , 1,..., , 1,...,k kj r n n r+= + r n≤ , js M −∈  we have   
/ 2

( ) ( ) [ ] / 2
2 2( ) ( ) ( )s

x x
i x t r x j

r j re q t y t dt Me q tξ μ β
τ τ

α α

− −
+ +≤∫ ∫ dt   
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for some constant M . Hence, by virtue of (8), (9), one can see that the following 
representation is valid: 

           ( )[ ]

1 1
( , ) ( ) ( , ),

k k
j

r n r
ix

is sj s
j j n

x g e G xξ μν
ν νμ μ

+

= = +

⎛ ⎞
= + +⎜ ⎟
⎝ ⎠
∑ ∑ 0,...,2 1,nμ   = −        (13) νϕ

where ( )sjgν μ , ( , )sG xν μ  are twice continuously differentiable with respect to μ  

functions and the function ( , )G x μ  belongs to 1(L )+  for each fixed μ . Besides, 

0( , ) const ( ),G x G xμ ≤  where 1
0 (G L )+∈  and  0lim ( ) 0

x
G x

→∞
= . 

Using (13) and denoting , ( )k j j kλ ξ μ= , 1, 1(k j j k )λ ξ μ+ += , we obtain 

 
1

[ ] [ ]
0( , ) ( ) ( , ) ( , )

k

k

x isK x t c x G t d
μ

ν ν

μ
μ ϕ μ μ μ

+

= +∫  

1,

,

[ ]

1 1
( ( )) ( , ( )) ( ( )) ( ) .

k jk k

k j

r n r
it

is sj
j j n

c Q x Q g Q Q e d
λ

ν λ
ν

λ
λ ϕ λ λ λ

++
−

= = +

⎛ ⎞
′+ +⎜ ⎟

⎝ ⎠
∑ ∑ ∫ λ

 
Obviously, the functions [ ]

xK ν
 are continuous in both variables. The sum-

mands in the first two sums for each  are the Fourier transform of twice con-
tinuously differentiable finite functions and, therefore, as functions of , belong to 

 The last quantity is estimated in absolute value by means of function 

0x >
t

1( )L + .

0 ( , )G t μ  and, therefore, as a function of t , also belongs to 1( )L .+  Consequently, 

the integrals [ ]( , ) ( , )xI x K x t dtν
ν

α
α

∞

= ∫
 

( 0,...,2 )nν =  are continuous functions in              

the variables ,x α ( 0, 0x )α> >  and monotonically decreasing in α  with 
lim ( , ) 0I xνα

α
→∞

=  for each . This immediately implies the uniform conver-

gence of the integrals (11), which proves c). 

0x >

It is easy to see that 

( , ) [ ( , ) ( )]j j xA x t K x t z x= =
1

( )[ ( , ) ( )] ( , ) .
k

k

is j x isc x z x t
μ

μ
dμ ϕ μ ϕ μ

+

∫
 

μ

Since the integrand is continuous with respect to μ , , t α  ( 0, 0t )α> >  and 
lim[ ( , ) ( )] 0is j xx

x z xϕ μ
→∞

= , then the function ( , )jA x t  ( 1,..., )j n=  is continuous for 

 and  and . Similarly to the previous paragraph one can prove 

that  belongs to  with respect to the variable  for each fixed , 

while the integrals 

0x ≥ 0t ≥ (0, ) 0A t ≡

( , )A x t 1(L + ) t 0x ≥

0
( ) ( , )J x A x t dtν ν

∞

= ∫ ( 1,2,..., )n ν =  converge uniformly when 

. Thus, [0,1]x∈ ( )J xν  is a continuous function and 
0

lim ( ) 0
x

J xν→
= .  

This proves the assertion  d). 
Using (13) we easily obtain the following representation: 
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1

1,

,

0
1 1

( , ) ( , ) ( ) ( , )
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k

k

k jk k

k j

i is

r n r
ix

is sj
j j n

K x t G x c t d

e c Q t Q g Q Q d

μ

μ

λ
λ

λ

μ μ ϕ μ μ

λ ϕ λ λ λ

+

++

= = +

= +

⎛ ⎞
′+ +⎜ ⎟
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∫

∑ ∑ ∫ λ
           (14)

 

Obviously,  as 0 ( ) 0G x → x →∞  implies 
1

0
lim ( , ) ( ) ( , ) 0

k

k

isx
G x c t d dt

μβ

μ
μ μ ϕ μ μ

+

→∞
=∫ ∫ .

 

Each of the terms in the last two sums of (14) has a form ( , )ixe Y t d
λ

λ

λ
λ λ

′′

′
∫ , 

where  ( , )Y t λ   is  continuous  in  the  rectangle  [0, ] [ , ]β λ λ′ ′′× .  By  fixing             
0ε >  and choosing partition 0 1 ... nλ λ λ λ λ′ ′ ′ ′ ′′= < < < = , so that  

( , ) ( , ) / 2( )Y t Y tλ λ ε λ λ′ ′′ ′− < −  1(0 , , 1,2,..., ),j jt j nβ λ λ λ−′ ′≤ ≤ ≤ ≤ =  following 

[7] (see Chap. 3, § 5) it is easy to see that  0

0

2( , )
2

ix M ne Y t d dt
x

β λ
λ

λ

ελ λ β
′′

′

⎛ ⎞≤ +⎜ ⎟
⎝ ⎠

∫ ∫ , 

where 0 max ( , ) .M Y t λ=  Hence, the integral on the right side of the last inequality 
tends to zero.  

Thus, the assertion e) is proved. 
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