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ON CONVERGENCE IN L,[0,1]] NORM OF SOME IRREGULAR
LINEAR MEANS OF WALSH-FOURIER SERIES

L.N. GALOYAN"
Russian-Armenian (Slavonic) University, Armenia

In this paper the convergence in L,[0,1] of some irregular linear means of
Fourier—Walsh series of integrable functions after correcting these functions on
sets of small measure is studied.
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Introduction. First recall the definition of linear triangular methods of
summation for arbitrary numerical series. Consider the following numerical series

> u,. (1)
k=0

By S,, k=0,1,..., we denote the partial sums of this series. Let 7 =||a,, || be any

infinite triangular matrix, i.e. matrix satisfying a,, =0, k>m, m=0,1,... The

series (1) is said to be summable by the method defined by matrix 7, or shorter,

T-summable to the value S, if

lim7,=8, T,=>a,S. )
k=0

m—>0

T is called the T-mean of the series (1). Summation method is called regular, if

m

every convergent series is summable by this method to its sum. The following

theorem is well known:
Theorem (Teoplitz). The conditions
1) lima,, =0 for any fixed k;

2) limYa, =1

m—w ;o

3) 3H>0 st Y |a,, |<H forall m
k=0
are necessary and sufficient for the regularity of the 7-method.
In [2] D.E. Menshov introduced the following class of irregular in general

summation methods.
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Definition. Let f>0.Triangular method of summation 7" is called of

R” -type, if the elements of the matrix 7 satisfy the conditions 1), 2) of the
Mm”
(m—ky
0 <k <m. For the trigonometric system Menshov proved the following:
Theorem (D.E. Menshov). Let T be a triangular method of summation of
the type R” . For any integrable function f(x) and for any perfect nowhere dense

previous Theorem and 3M >0 such that |a, |<Mm”, |a,, |<

mm

set P c[-m, 7] there exists an integrable function g(x) and a sequence of natural
numbers m; such that

D /(=g xeP:i ) lmT, (r.g)= gl

Now we will give the definition of the Walsh system (see [1]). The Walsh system
{w, }1_, consists of the following functions:

k k
wy() =1, w,(x)=][]r, (), n=32", m>m>.>m,
s=1 s=1
where {r,(x)};_, isthe Rademacher system, defined by
1 x€[0,1/2), i
1 (x)= @) =nx+D, r(x)=r2"%), k=12,..

-1, xe[l/2,1),

We will call the 7-method to be of R-type, if it satisfies conditions 1), 2) of the
Teoplitz’s Theorem. In this paper we prove the following:
Theorem. Let T be a triangular method of summation of the type R. Let

{M;}7., and {@;}7., be given increasing sequences of naturals. Then for any

£>0 there exists a set £ with measure | E|>1—¢ such that for any integrable
function f(x) there exist an integrable function g(x) coinciding with f(x) on E

and a sequence of natural numbers {g, };:1 such that

1 0
lim [16,(x.g)—g(x)dx=0, where Q=J[M, —a,,M,].
meg2; m—oo 0 o1 v v

Auxiliary Results. We use the constructions introduced by M.G. Grigorian
in [3, 4] to prove the following lemmas.
Lemma 1. Let numbers N,>1, y=#0,v,, dyadic interval

-1 j . . .
A:A_(/.p ) :[j—,ij and a triangular matrix 7 =||a,, || are given. Then there

27 2F
exist a set £ — A and a polynomial in the Walsh system of the form
N
O(x)= 2. ¢w(x) 3)
k=N,
such that

7, x€E,

D [EHAIQ-27), 2 Q(X)={0 re A
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3) max
Ny<q<N

<2y IN2" AL B o), <21711AL

5) the T-means &, (x, Q) of the Fourier—Walsh series of polynomial Q(x)
satisfy the following inequality:

N-1 m
6,,(x.0) -0, <[ow), (21; [y llogy (k+4)+| 2.0 —u], m>N.
=N, =

Z Ce Wy (x)

k=N,

Proof. Let s = [log2 NO] + p. Consider the function

1, xe[0,1)\AM,
L, (x)=
1-2"%,  xeAl.
Extend this function from [0,1) to the real axis as a periodic function with period 1.
We define the function Q(x) in the following manner

O(x) =71, (2°x) 7, (x). (6]
It is easy to verify that Q(x) is a polynomial in Walsh system, which spectrum lies

to the right of 2°, i.e. Q(x) has the form (3) with N =max{n; c¢,(Q) # 0}, where
c,(Q), n=l, are Fourier-Walsh coefficients of the polynomial QO(x). Let

E={x:0(x)=y}. It is easy to see that |E|=|A|(1-2""). The validity of 4)
follows immediately from (4) and (5). Let us prove the assertion 3). We have

1/2
N
S ) e =

According to the definition, 7-means of Fourier series of Q(x) for any m>N

4

max
Ny<q<N

Z W (x)

k=N,

k=N, No<q<

Z W (X)
L

have the following form
G, (x,0)= Zamk S (x,0) = Z Ay S (%, 9) + O(x) Z Qi » (6)
k=N,
where S, (x,0), k=0,1,..., are the partial sums of Fourier series of O(x). Using
(6) and the property of convolution operator (see [1], (2.1.6), (2.1.7)), we can write

N-1
[6,(x.0) -0, <| X 4,48 (x.0) +
k=N, L
-1 N-1
k| S 0 dx"‘”Q(x)”Ll mk| T (7
=0 k=0
1000, |80 1| <100, |10l [ S+ [E] |

N-1
where K, (N,N,,t)= z a,, D,(t), and D (t), s=0,1,.., are the Dirichlet
k=N,

kernels. Using the estimate for L, norms of Dirichlet kernels, we easily obtain

N-1
|, (N N0, < 3 | [log, (k +4).
k=N,
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From this inequality and (7) we finally obtain
N-1 m
|6, (x.0)- 0], <o), (2 > |y [log, (k+4)+] Y. a, —1 |J.
k=N, k=0

This completes the proof of Lemma 1.
Lemma 2. Let numbers k, >1, &< (0,1), Walsh polynomial f(x) (such
that f(x)#0,xe(0,1)) and triangular matrix 7 =||a,, || are given. Then there exist
k
aset £c[0,1] and a polynomial Q(x) of the form Q(x)= > ¢,w,(x) such that

k=ky+1
) [EP1-e, 2) O()=/f(x), x€k;
D a3 con 8 o], <2]rw|,

L

k m
5) 16,0:0-00, <2100l (25 logs k4141 £ -1
m>N.

M
Proof. Let f (x)=27/j Xa (x), where A, is a dyadic interval and
A

M
UA; =[0,1). Take v, =1+[log,1/&]. Without loss of generality we can assume

1
max |y, [(2" |A; N2 < min{8/2;j| f(x)|dx/2}. ()
1<j<M 0
Successively applying Lemma 1, we determine some sets £; and polynomials O, (x),
N;-1
0= 3 c,(g)wk(x), J=12.,M, Ny=ky+1, 9)
k=N

which satisfy the following conditions:

|E; [HA; | (1-27"), (10)
Vi, X€EE, .
=1,2,..,.M, 11
0,(0= { 0 ven, an
N,rln<?1)<(N, kZN: ¢ W, (x) <2|}/j| 2V°|Aj|, L132|7.;||Aj l, (12)

N;-1 m
|6, (0 -0, < HQj @), [2k % @y 1og -+ 4+ Y, —1 |J, 03

mZNj.
Let

2

M -1

; k _
O(x) = ZQ =2 2 ¢’w ()= ; we(x), k =Ny —1, (14)
= k=ky+1

J=lk=N;_
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M
and E=UEJ.. Then obviously we get 1) and 2) (see (10), (11)). Let

J=1

N, £g< N, -1, then from (8) and (12) we have

S0
Z ¢ Wi (%)

k=N;

< +

3w () <3|, -

k=ky

i—1
2.0;(x)
I L L

This proves the validity of 3).
Further, for all m >k we have (see (12), (14))

19, 0)-0Wl,, = 26, (%)= 0,9, <

M N/*1 m
<Xo,e|, [2% [ty g (+ 41 3 —u] <

k m
<2 f), [2}% A, 110g, (k+4)+]| gamk -1 |}.

This completes the proof of Lemma 2.

The Proof of Theorem. Let ¢>0, and let {f,(x)},_, be the sequence of
polynomials in the Walsh system with rational coefficients enumerated in some
order. Successively applying Lemma 2, we can choose an increasing sequence of
positive integers {j,}._,, the sequence of sets {E,} ., and polynomials

M’I
Qn (x): z Cre W (X), Mjl :Mlv SatiSfying

s=M;,
0,x)=1,(x), xekE, (15)
|E, |>1-g27", (16)
q
lo.l, <21l max | 3 qone) <3140, a7
Jn L

M, m _
LG, [2k20| e log, (6 + 4+ Ya —1|J,m S,

M, >2M, M, >20,, k=12,

|6, (x.0)-0,(x), <2

(18)

max {|a,, |lo (r+4)}<L v>% k=12
refour, U OS2 WA

Let E=()E,. In the light of (16) we obtain | E[>1—¢. Let f €L, (0,1). Choose

n=1

a subsequence { fn,, (%)}~ such that

N
Iym =0, Al/im > [ (x)=f(x), a.e. on (0,1)
—>0 _)gopzl r

ilfnp @)= /()

L

H fi (x)HLI <2 p>2. (19)
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Let A={xe[0,1]: )] f”p (x)# f(x)}. Consider the following functions

p=1
e [, x4,
g(X)—;QnP(X), g(X)—{f(x), ced (20)

It follows that g(x) and g(x) are integrable. Let M, =M , p=12,.. Finally

o0
we consider the series Y &,c,w, (x), where
k=1

5 - 1, for kegl(qu,an], e
0, otherwise,
now we show that partial sums of the series (21) converge in L, norm to the
function g(x), implying that the series (21) is the Fourier—Walsh series of g(x).
Let M g = N<M . Using (17) and (19) we obtain

kZ O, Wi (x) — g(x)
-1

M, <isM, |

i 0
< max || X gw (x| + 2
M, » k=p

0, )| .
I

Ll
whence, by (15)—(18), we have what we need.
Let 2= [qu —a)p,qu] Af me (M, —oy.M, ], then, using (17)—~(21) and

p=1
the fact that series (21) is the Fourier—Walsh series of g(x), we have

[16,(60) sk < X |6,0,)-0, ], + o, ] <
0 p=1 k=N L

N-1
<>2
p=l1

Theorem is proved.

M”p m 0
Sy, | 22 10 lloga (k4141 X, 11 [+ X [0, (0] 0.
L k=0 k=0 k=N L
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