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In this paper the convergence in  of some irregular linear means of 
Fourier–Walsh series of integrable functions after correcting these functions on 
sets of small measure is studied.   
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Introduction. First recall the definition of linear triangular methods of 
summation for  arbitrary numerical series. Consider the following numerical series 
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By    we denote the partial sums of this series. Let ,kS 0,1,...,k = || ||mkT a=  be any 
infinite triangular matrix, i.e. matrix satisfying 0, , 0,1,...mka k m m= > =  The 
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mT  is  called the T-mean of the series (1). Summation method is called regular, if 
every convergent series is summable by this method to its sum. The following 
theorem is well known: 
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are necessary and sufficient for the regularity of the T-method.  
In [2] D.E. Menshov introduced the following class of irregular in general 

summation methods.  
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Definition. Let 0.β > Triangular method of summation T is called of               

Rβ -type, if the elements of the matrix T satisfy the conditions 1), 2) of the 

previous Theorem and  such that | |0M∃ > ,mma Mmβ<
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 For the trigonometric system Menshov proved the following: 0 k m≤ <
T h e o r e m  (D.E. Menshov). Let T be a triangular method of summation of 

the type Rβ . For any integrable function ( )f x  and for any perfect nowhere dense 
set [ , ]P π π⊂ −  there exists an integrable function ( )g x  and a sequence of natural 
numbers  such that        jm

. .
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Now we will give the definition of the Walsh system (see [1]). The Walsh system 
 consists of the following functions:  0{ }k kw ∞
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We will call the T-method to be of R-type, if it satisfies conditions 1), 2) of the 
Teoplitz’s Theorem. In this paper we prove the following: 

T h e o r e m .  Let T be a triangular method of summation of the type R. Let 
 and   be given increasing sequences of naturals. Then for any 1{ }j jM ∞
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function ( )f x  there exist an integrable function ( )g x   coinciding with ( )f x  on E  
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Auxiliary Results. We use the constructions introduced by M.G. Grigorian 
in [3, 4] to prove the following lemmas. 

L e m m a  1 .  Let numbers  0 1,N > 00, ,γ ν≠  dyadic interval 

( ) 1,
2 2

p
j p p

j j−⎡Δ = Δ = ⎟⎢⎣ ⎠
⎞  and a triangular matrix || ||mkT a=  are given. Then there 

exist a set E ⊂ Δ  and a polynomial in the Walsh system of the form  
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Proof. Let [ ]2 0log .s N= p+  Consider the function  
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Extend this function from [0,1) to the real axis as a periodic function with period 1. 
We define the function  in the following manner ( )Q x
                                                                                         (5)                                         

0
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It is easy to verify that  is a polynomial in Walsh system, which spectrum lies 
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where    are the partial sums of Fourier series of  Using 
(6) and the property of convolution operator (see [1], (2.1.6), (2.1.7)), we can write  
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From this inequality and (7) we finally obtain 
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This completes the proof of  Lemma 1. 
L e m m a  2 .  Let numbers  0 1,k > (0,1),ε ∈  Walsh polynomial ( )f x  (such 

that , x∈(0,1)) and triangular matrix ( ) 0f x ≠ || ||mkT a=  are given. Then there exist 

a set  and a polynomial  of the form  [0,1]E ⊂ ( )Q x
0 1

( ) ( )
k

k k
k k

Q x c w x
= +

= ∑
  

such that 

1) | | 1 , 2) ( ) ( ), ;E Q x f x x Eε> − = ∈  

1 1 1L
0 0

1

3) max ( ) 3 ( ) , 4) ( ) 2 ( ) ;
q

k k L Lk q k k k L

c w x f x Q x f x
< < =

≤ ≤∑
     

 

11
2

0 0
5) ( , ) ( ) 2 ( ) 2 | |log ( 4) | 1| ,

.

k m

m mkLL
k k

x Q Q x f x a k a

m N

σ
= =

⎛ ⎞
− ≤ + + −⎜ ⎟

⎝ ⎠
>

∑ ∑� mk  

Proof. Let 
1

( ) ( )
j

M

j
j

f x xγ χΔ
=

= ∑ , where jΔ  is a dyadic interval and   

 Take [ )
1

0,1 .
M

j
j=
Δ =∪ 0 21 [log 1/ ].ν ε= +  Without  loss of generality we can assume  

                             

0

1
1/ 2

1 0
max | | (2 | |) min / 2; | ( ) | / 2 .j jj M

f x dxνγ ε
≤ ≤

⎧ ⎫
Δ < ⎨ ⎬

⎩ ⎭
∫                   (8) 

Successively applying Lemma 1, we determine some sets jE  and polynomials                      ( ),jQ x

                       
                (9)       

1

1
( )

0 0( ) ( ), 1,2,..., , 1,
j

j

N
j

j k k
k N

Q x c w x j M N k
−

−

=
= =∑ = +

,
which satisfy the following conditions:                                   
                                                                                             (10)     0| | | | (1 2 )j jE ν−= Δ −

                                                               (11)     
, ,

( ) 1,2,..., ,
0, ,

j j
j

j

x E
Q x j M

x
γ ∈⎧⎪= =⎨ ∉Δ⎪⎩

        

0

1 1
1

max ( ) 2 | | 2 | |,
j j j

q

k k j jN q N k N L

c w x νγ
− −
≤ < =

≤ Δ∑  
1

( ) 2 | | | |,j jL
Q x γ j≤ Δ         (12) 

      1 1
1

1

2
0

( , ) ( ) ( ) 2 | |log ( 4) | 1| ,

.

j

j

N m

m j j j mk mkL L k N k

j

x Q Q x Q x a k a

m N

σ
−

−

= =

⎛ ⎞
− ≤ + + −⎜ ⎟⎜ ⎟

⎝ ⎠
≥

∑ ∑�
   (13) 

Let         

              
1 0

1
( )

1 1 1
( ) ( ) ( ) ( ), 1,

j

j

NM M k
j

j k k k k
j j k N k k

Q x Q x c w x c w x k N
−

−

= = = = +
M= = = =∑ ∑ ∑ ∑ −          (14) 



Proc. of the Yerevan State Univ.  Phys. and Mathem. Sci., 2012, № 1, p. 10–15.  
  
14 

and 
1

.
M

j
j

E E
=

= ∪  Then obviously we get 1) and 2) (see (10), (11)). Let 

 then from  (8) and (12) we have 1 1,i iN q N− ≤ ≤ −

1
0 111 1

1
( )

1
( ) ( ) ( ) 3 ( ) .

i

q qi
i

k k j k k L
k k j k NLL L

c w x Q x c w x f x
−

−

= = =
≤ + ≤∑ ∑ ∑  

This proves the validity of  3).  
 Further, for all m k>  we have (see (12), (14)) 
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 This completes the proof of  Lemma 2. 

The Proof of Theorem. Let  0,ε >   and let 1{ ( )}n nf x ∞
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now we show that partial sums of the series (21) converge in  norm to the 
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whence, by (15)–(18), we have what we need.  
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Theorem is proved. 
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