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In this paper independence numbers of the powers of C5  graph is investigated. 
Independence number of the 3rd degree of C5 is calculated and a method is given 
that can help calculate independence numbers of higher degrees of C5. Indepen-
dence number of the 3rd degree of C5 is also calculated by the given method. 
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Introduction. Strong product of given two graphs  and  is defined as a 

graph  that has a vertex set 
1G 2G

G 1( ) ( )V G V G2×  and two distinct vertices , 
 are connected iff they are adjacent or equal in each coordinate. Since the 

strong product is associative and commutative we can naturally define . In [1] 

Shannon introduced the parameter 

1 2( , )v v

1 2( , )u u
kG

( ) sup ( )kk

k
c G Gα= , the Shannon capacity of 

graph G , where  is the independence number of . ( kGα ) kG
Calculating the Shannon capacity (motivated by Information Theory) is 

considered very difficult and the problem remains open even for such a simple 
graph as . The best known upper bounds on the Shannon capacities of graphs 
are given by the Lovasz theta function [2]. The upper bound suffices to establish 
the Shannon capacity of  without actually determining independence numbers of 
its powers 

7C

5C

5( ) 5c C = . In this paper we go from the opposite side trying to 
calculate independence numbers of powers of  with the hope that it will also 
have some contribution in finding independence numbers of powers of odd cycles 
in general (particularly for ) and, therefore, in calculating the Shannon capacity 
for odd cycles. 

5C

7C

The Shannon capacities of odd cycles on seven or more vertices remain 
unknown. Currently, the best known lower bound [3] for  is achieved 
by constructing an independent set of 108 vertices in the 4th power of  
(i.e. 

7( )c C

7C
4

7( ) 108c C ≥ ). 
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Preliminary Facts. We will picture  graph as a table, 
cells of which represent graph vertices. In Fig. 1 is the  
graph with one of its maximal independent sets marked. 

5
nC

2
5C

The 25 cells correspond to the graph vertices and two 
vertices are adjacent, iff corresponding cells are in adjacent 
(or the same) rows and columns (note that the table is cyclic, 
i.e. first and last rows/columns are considered adjacent). Fig. 1. 

Let’s prove the following facts: 
1. 5( ) 2Cα = , 2

5( ) 5Cα = . 
Proof. The first equality is straightforward, let’s prove the second. Since 

, it’s enough to prove that 2
5( ) 5Cα ≥ 2

5( ) 5Cα ≤ . Assume the opposite:  
and consider any maximal independent set. In that case there is a row that contains 
at least 2 vertices of the maximal independent set and, therefore, there can be no 
vertices of the maximal independent set in the adjacent rows. The remaining 2 rows 
can contain no more than 2 vertices of the independent set.  

2
5( ) 5Cα >

Thus, the Statement is proved. 
2. Any two maximal independent sets in 2

5C  have at most one common vertex. 
Proof. From the proof of the previous Statement it follows that any maximal 

independent set of  has exactly one vertex in each row (column). Having in 
mind this observation, it can be easily seen that any two vertices of maximal 
independent set uniquely determine next vertices of the independent set. 

2
5C

3. For each vertex of 2
5C  there are exactly two maximal independent sets 

passing through that vertex. 
Proof. For the given vertex there are two vertices in the next row that are not 

adjacent with the initial vertex. The given vertex with each of those two vertices 
uniquely identifies a maximal independent set in . 2

5C

4. 5.5 ( )nCα . 5 5 52 ( ) ( ) 2n nC C Cα α≤ × ≤

)
Proof. The first inequality is clear. The second one follows from the 

following inequality obtained by Hales [4]: ( ) ( ) (G H G Hα ρ α× ≤ , where ( )Gρ  
is the Rosenfeld number [5] of graph  (note that G 5( ) 2.5Cρ = ). 

5. 2
5 )nC×  and, therefore, 2

5 . 5 55 ( ) (nC Cα α≤

)

( ) 5n nCα ≥
Proof. The inequality is a direct consequence of the following: 

( ) ( ) (G H G Hα α α× ≥ . 

The following result is obtained in [2]: ( )5sup ( ) 5nn

n
Cα = . Taking into 

account the 5th property above, we get 2
5( ) 5nCα n= . Thus: 

6. 2
5 . ( ) 5n nCα =

7. 5≥ ⋅ . 2 1
5( ) 2n nCα +

It is proved in [6], that 3
5( ) 10Cα = . Below we give a proof similar to the one 

in [6], while in the end we use a new method for calculating . The method            3
5(Cα )
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can be helpful for finding independence numbers of higher degrees of . 
Independence numbers for odd cycles of  starting from 5th power are not 
known. It has been conjectured by different authors that 

5C

5C
2 1
5( ) 2nCα + 5n= ⋅  (see, for 

example, [6]). 
Independence Number of . Since 3

5C 3 2
5 5C C C5= × , we can imagine it as a 

“5-cycle” of  graphs, where the subgraph induced by 2 adjacent  graphs is 
. Thus, mentioned  subgraphs can be enumerated, so that “adjacent”  

subgraphs take consecutive numbers (except first and last subgraphs, which are 
also adjacent). 

2
5C 2

5C
2
5C K× 2

2
5C 2

5C

Let’s determine . Clearly, each maximal independent set S of  will 
be divided between above mentioned 5 subgraphs. Denote corresponding 
independent sets in  subgraphs: , ,..., . It’s clear that . We’ll 
prove that . Suppose, there is an independent set S with cardinal number 
greater than 10. In that case one of the following observations takes place: 

3
5( )Cα 3

5C

2
5C 1S 2S 5S 3

5( ) 10Cα ≥
3
5( ) 10Cα =

• i∃ (without loss of generality i=1) 1| | 5S = . In that case  and 
| | 10S ≤ . 

2 5| | | | 0S S= =

• i∃ (without loss of generality i=1) 1| | 4S = . Since | | 10S > , then 
| | 1= =  and by the second property above 2 5S S2 5| |S S = . Therefore, 4  

is an independent set in 2
5C  graph. Thus, | | | | 5

2 3S S S∪ ∪

3 4S S+ <  and | | 10S ≤ . 
• For 3 consecutive independent components (without loss of generality 

assume first 3 components) takes place: 1| | 2,S = 2| | 3,S = 3| | 2S = . According to the 
second property above 1 3S S= . In that case  is an independent set 
and, therefore, | | | | 3+ ≤ . Thus, | | 10S

1 3 4 5S S∪S S∪ ∪
S S4 5 ≤ . 

• For 4 consecutive independent components (without loss of generality 
assume first 4 components) takes place: 1| | 3,S = 2| | 2,S = 3| | 2,S = 4| | 3S = . It can be 
seen that each vertex of S5 is adjacent to each vertex in S2 and S3 (considered in  

graph). Indeed, if any vertex v  of 5S  is not adjacent to any 
vertex of S2 (S3), then substituting the other vertex of S2 (S3) 
with v  in maximal independent set S1∪ S2  (S3∪ S4) would 
result in another maximal independent set having more than 
one vertex in common with S1∪ S2, which contradicts to the 
second property mentioned above. Thus, every vertex of S5 is 
adjacent to every vertex of S2 and S3 and, therefore, there is at 
most one vertex in S5, which has the following disposition 

with the vertices of S2 and S3 (the vertex of S5 is in the center) (Fig. 2). It is not 
difficult to see that there is no an independent set of cardinality 5 in 2

5C  containing 
any two of mentioned 5 vertices. This contradicts to the fact that S3∪ S4 is an 
independent set. Therefore, 5S

2
5C

= ∅  and | | 10S ≤ .  

Fig. 2. 

Thus, . 3
5( ) 10Cα =
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On a Method of Finding Independence Numbers of Powers of C5 in           
the General Case. Assume graph G is given. Let S1,S1,...,Sn be any partitioning of 
vertices of G into any independent sets. Consider graph S with vertices S1,S1,...,Sn 
and two vertices Si, Sj are adjacent, iff there is an edge in G connecting any vertex 
of  Si  to any vertex of  . Let's call  G  an independent extension of graph  S. jS

T h e o r e m  1 . For every independent set of 2 1
5

nC +  there is a subgraph in 
 with the same cardinality, which is an independent extension for some 

subgraph of C5. 

2
5

nC K× 2

Proof. Assume S is any independent set in 2 1
5

nC + . As mentioned above, 
 can be represented as a “5-cycle” of  graphs. Denote intersections of S 

with those subgraphs S1,S1,...,S5 correspondingly. We will consider vertices of Si in 
the context of  graph. Now, let's construct corresponding subgraph of 

, which is an independent extension for some subgraph of C5. It’s 
sufficient to indicate corresponding two components of the subgraph in  graph, 
since vertex set of  is a combination of vertices of two  graphs. As 
such components consider subgraphs in  induced by  
and . One can check that 
indicated subgraph satisfies conditions of the Theorem.  

2 1
5

nC + 2
5

nC

2
5

nC
2
5

nC K× 2

2

)

2

2
5

nC
2
5

nC K× 2
5

nC
2
5

nC 1 2 3 4 5S S S S S∪ ∪ ∪ ∪

1 3 2 4 3 5 4 1 5 2( ) ( ) ( ) ( ) (S S S S S S S S S S∩ ∪ ∩ ∪ ∩ ∪ ∩ ∪ ∩

The Theorem is proved. 
Analogously it can be obtained that the opposite statement is also true, i.e. 

for each subgraph of , satisfying the conditions of the Theorem, there is 
an independent set in  with the same cardinality. It means, in order to find 
maximal independent set (or independence number) of 

2
5

nC K×
2 1
5

nC +

2 1
5

nC +  it suffices to find corres-
ponding maximal subgraph (number of vertices of the subgraph) of . 2

5 2
nC K×

According to the 7th property above . The following 
statement is true: 

2 1
5( ) 2nCα + ≥ ⋅5n

T h e o r e m  2 . If S is an independent set of 2 1
5

nC +  and | | , then any 
subgraph in  corresponding to S is not an independent extension of any 
proper subgraph of C5. 

2 5nS > ⋅
2
5

nC K× 2

2

5n

Proof. Assume the opposite and consider any subgraph G in  
corresponding to S. Since it is an independent extension for some proper subgraph 
of C5, then it doesn’t contain odd cycles. Therefore, it is a bipartite graph, each 
partition of which is an independent set in . Taking into account 

, we get | |

2
5 2

nC K×

2
5

nC K×
2 2
5 2 5( ) ( )n nC K Cα α× = = 2 5nS ≤ ⋅ , which contradicts to the condition 

of the Theorem.  
The Theorem is thus proved. 
Thus, it makes sense to find maximal subgraph of , which is an 

independent extension of C5 (which necessarily contains an odd cycle). 

2
5

nC K× 2
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Let’s prove that 3
5( ) 10Cα =  making use of this method. 

Assume , in that case there exists a subgraph S of , 
which is an independent extension of C5 with cardinal number greater than 10. The 
fact that cardinal number of S is greater than 10 implies that there exist 2 adjacent 
rows in  (denote  the subgraph induced by the vertices of the rows), so that S 
has 5 vertices in  (note that it can’t have more than 5 vertices in , 
since S is an independent extension of C5). Analogously there exist 2 adjacent 
columns (denote C2) in  satisfying the mentioned conditions. Taking into 
account that  is an independent extension of C5 in  graph, we get 
(without loss of generality) the following 4 possible ways vertices of S can be 
distributed into above mentioned 2 columns and rows (for simplicity only  is 
pictured instead of ) (Fig. 3). 

3
5( ) 10Cα > 2

5 2C K×

2
5C 2L

2L K× 2

2

2

2 2L K×

2
5C

S 2
5C K×

2
5C

2
5C K×

 
x   x x  x    x  x   x x  x    x 
 x x     x x x    x x     x x x  
x   ?   x      x   ? ?  x    ? 
x  ? ?   x  ? ?    x  ? ?   x  ? ? 
 x ?     x ? ?    x      x  ?  

                a                                        b                                        c                                      d 
 

Fig. 3. 
 

The remaining vertices of S can be placed only in the cells with question 
marks. It can be checked that no 3 vertices of S can be placed in those cells, so that 
S remains an independent extension of C5. Therefore, 3

5( ) 10Cα = . 
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