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In the present article logic programs (both with and without negation) that do 
not use functional symbols are studied. Three algorithmic problems for functional 
symbol-free programs are investigated: the existence of a solvable interpreter, the 
problem of Δ-equivalence and the problem of logical equivalence. The first two 
problems are known to be decidable for functional symbol-free definite programs. 
We show that the third one is also decidable for such programs. In contrast, all 
three problems are shown to be undedicable for functional symbol-free general 
programs. 
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§ 1. Introduction. For basic definitions in logic programming we refer the 

reader to [1]. We study logic programs that do not use functional symbols of arity 
 (henceforth referred as FSF programs). For general programs (i.e. programs 

with negation) we use Clark’s completion semantics from [2]. In logic program-
ming it is customary to consider only Herbrand interpretation. We follow this 
convention and consider only Herbrand interpretations. While for formulas without 
built-in predicates (such as definite programs) this does not make a difference, it 
makes a difference for formulas with built-in predicates (such as completions of 
general programs). 

1≥

Some of fundamental algorithmic problems for FSF programs (and indeed 
for any class of logic programs) are the following ones. 

• Is there a solvable interpreter? 
• Is Δ -equivalence decidable? (Two programs are called Δ -equivalent, if 

their semantics coincide for each permitted query, see [3]). 
• Is logical equivalence (on Herbrand interpretations) of such programs decidable? 
The first two problems are known to have positive answers for FSF definite 

programs (see [4]). In the present paper we show that the third one also has positive 
answer for such programs. We also show that in contrast to this, all three problems 
have negative answers for FSF general programs. 

Let us introduce some notation that will be used throughout the paper. We 
fix a first order language L with a countable set of constant symbols and countable 
sets of functional and predicate symbols of each arity. Programs and queries in L 
(both definite and general) will be denoted by P and Q respectively (possibly with 
some subscripts or superscripts). This will not cause confusion since we study 
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definite and general programs in different sections. All programs are assumed to be 
functional symbol-free. Occasionally, we will need to refer to the language 
consisting of constant, functional and predicate symbols used in some well-formed 
formula F. In this case the language in question is denoted by LF.  

§ 2. Definite Programs. In this section we study definite programs (i.e. 
programs without negation). Definite programs possess some nice properties. In 
particular, each definite program P is satisfiable and, moreover, has a least Herbrand 
model MP. This model is actually the set of ground atoms that logically follow 
from the program. The paper [4] characterizes least Herbrand models of definite 
programs through so called templates. Intuitively, a template K of MP is a set of 
atoms (with certain minimality properties) such that every atom PA M∈  is an instance 
of an atom .B K∈  It is shown in [4], that all templates of the least model of a defi-
nite program are congruent (i.e. can be obtained from one another through variable 
renaming). It turns out that least Herbrand models of FSF definite programs have 
finite templates (see [4]). The following theorem is a direct consequence of this. 

T h e o r e m  2 . 1 .  There is an algorithm for deciding, if a definite query 
follows from a definite FSF program. 

The technique of templates is also applicable to the problem of so called            
Δ-equivalence. Two definite programs P1 and P2 are called Δ-equivalent, if every 
query is a logical consequence of one program, iff it is a logical consequence of the 
other one. It follows that definite programs would be Δ-equivalent, iff the templa-
tes of their least models are congruent. This implies the next theorem. 

T h e o r e m  2 . 2 . The problem of Δ-equivalence is decidable for FSF 
definite programs (see [4]).  

Here we show that logical equivalence of FSF definite programs is also decidable. 
T h e o r e m  2 . 3 .  There is an algorithm for deciding, if two FSF definite 

programs are logically equivalent. 
Proof. Let P1 and P2 be FSF definite programs. The formula P1 ↔ P2 is logical-

ly valid, iff so are P1 → P2 and P2 →P1. By symmetry considerations we only show 
how to check the validity P1 → P2. The formula P1 → P2 is valid, iff 1 2P P∧¬  is un-
satisfiable. Now, P1 is a universal formula and  2P¬  is equivalent to an existential 
formula. Let P1 be 1 1 1,..., ( ,..., )n nx x F x x∀  and 2P¬  be equivalent to 1 2 1,..., ( ,..., ),m my y F y y∃  
where F1 and F2 are quantifier free. We can assume that x1,…,xn are different to 

 and then 1,..., ,my y 1 2P P∧¬  is logically equivalent to 1 1 2 1,..., ,..., ( ( ,..., )m n my y x x F y y∃ ∀ ∧  

1 1( ,..., )).nF x x∧  But by Skolem’s Theorem the latter is satisfiable, iff so is 

1 2 1 1 1,..., ( ( ,..., ) ( ,..., )),n m nx x F c c F x x∀ ∧  where  are new constant symbols. 
Denote the last formula by G. Now G is a universal formula and, hence, has a Herbrand 
model in  if satisfiable. But since G does not use functional symbols, the Herbrand 
universe of  is finite and, hence, there are finitely many Herbrand interpretations. So, 
we can check all Herbrand interpretations and see, if any of them satisfies G.                □ 

1,..., nc c

GL

GL

§ 3. General Programs. Theorems 2.1, 2.2 and 2.3 of the previous section 
demonstrate that all three algorithmic problems are decidable for FSF definite 
programs. This means that definite logic programs become significantly less expres-
sive, if the usage of functional symbols is forbidden. In contrast, first-order logic 
does not lose its expressiveness without functional symbols. So, the special form of 
definite clauses becomes crucial in the decidability results of the previous section. 
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In this section we study the above mentioned algorithmic problems for FSF general 
programs. We show that in contrast to definite programs all three problems are 
undecidable for FSF general programs. 

As stated before, we employ Clark’s completion semantics for general 
programs (see [2]). In addition we impose the restriction to Herbrand models of 
completion. This means that a query Q (or its negation) is considered to be a 
consequence of the completion comp(P) of a general program P, if Q is true in all 
Herbrand models of comp(P).  

However, for FSF programs the restriction to Herbrand models can be 
simplified. 

Proposition 3.1. Let F be a first-order formula without functional symbols, 
possibly using equality. Then F has a Herbrand model, if it has a countable model, 
where each constant symbol is interpreted by a distinct element. 

Proof. Let M be a countable model of F. Denote by D the domain of M. Let f 
be a bijection between the Herbrand universe of L and D taking the constant 
symbols used in F into their interpretations in M. Define a Herbrand interpretation 
by assigning to the atom  the truth value of 1( ,..., )np t t 1( ( ),..., ( )).M

np f t f t  It is 
routine to check that this interpretation is a model of F.                                    □ 

It is shown in [5], that the expressiveness of general programs is not extended, if 
we allow arbitrary formulas in bodies of clauses. To make this precise, recall the way 
comp(P) is obtained from  First we rewrite each clause  in the 
general form  where 

.P 1( ,..., )np t t S←

1 1 1 1( ,..., ) ,..., ( ... ),n m n np x x y y t x t x S←∃ = ∧ ∧ = ∧ 1,..., nx x  are 
new variables and  are the variables of the original clause. If  1,..., my y

p(x1,…,xn) ← E1    
   

p(x1,…,xn) ← Ek 
are all the general forms of clauses with p in their heads, then the definition of p 
would be the formula 1 1 1,..., ( ( ,..., ) ... ).n n kx x p x x E E∀ ↔ ∨ ∨  As usual, the empty 
disjunction is understood as a logical falsehood. The completion comp(P) of P is 
the set of definitions of predicate symbols that occur in P. 

This process does not, in any way, depend on the bodies of programs being 
conjunctions of literals. It is tempting to generalize general programs even further 
by allowing arbitrary formulas in their bodies. However, as shown in [5], given 
such a program  P, we can construct a general program ,P′  such that comp(P') is a 
conservative extension of comp(P). Recall the construction presented in [5]. Let F 
be a formula of first-order logic without equality. We can assume that F is built 
using  and  Let A be an atom, whose variables are different to bound 
variables of  F. Transform the clause A←F using the following rules: 

,¬ ∨ .∃

•  Replace 1 2A F F← ∨  by two clauses A ← F1 and A ← F2. 
•  Replace A xF←∃  by A ← F. 
•  Replace A←¬F by two clauses 1( ,..., )nA p x x←¬  and p(x1,…, xn)←F,  

where  x1,…, xn  are the free variables of  F  and  p  is a new predicate symbol. 
Let P be a program with arbitrary formulas in bodies of clauses, and let P' be 

obtained from P by repeatedly applying the above transformation. It is shown in 
[5], that each model of comp(P') is a model of comp(P) and further each model of 
comp(P') is obtained from a model of comp(P) by uniquely defining interpretations 
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of extra predicate symbols. We will refer to this transformation as Lloyd-Topor 
transformation. 

It is widely known that completions of general programs may be inconsis-
tent. For example, the completion of the program consisting of the single clause 

( ) ( )p x p←¬ x  is the formula ( ( ) ( )),x p x p x∀ ↔¬  which does not have a Herbrand 
model (or any other model). Such programs present a little interest, since any query 
is a consequence of their completions. The next theorem shows that there is no 
algorithm for deciding this property of FSF general programs. 

T h e o r e m  3 . 1 .  There is no algorithm for deciding, if comp(P) has a 
Herbrand model for a given FSF general program  P. 

Proof. Let F be a closed formula of pure first-order logic (i.e. without 
functional and constant symbols and without equality). Let p be a new predicate 
symbol and a be a new constant symbol. Denote by P the general program obtained 
from  q is n-ary predicate symbol 
used in F} by Lloyd-Topor transformation. Then comp(P) has a Herbrand model 

comp(P) has a countable model (since comp(P) does not use functional and 
constant symbols other than a ) 

1 1{ ( ) ( )} { ( ,..., ) ( ,..., ) :np a F p a q x x q x x← ∨¬ ∪ ← n

⇔
⇔ ( ) ( ( ))p a F p a↔ ∨¬  has a countable model (by 

Lloyd-Topor transformation) ⇔ ( )p a F∧ has a countable model (since the latter is 
logically equivalent to the former) ⇔ F has a countable model (since F does not 
use p and a) F is consistent (by Löwenheim–Skolem Theorem). Thus, by having 
an algorithm for deciding, if  has a Herbrand model, we can decide pure 
first-order logic. But this is not possible by Church’s Theorem.                              □ 

⇔
comp( )P

This result in itself guaranties that it is algorithmically impossible to decide, 
if a query is a consequence of the completion of a FSF general program. Indeed, 
comp(P) would have a Herbrand model, iff the query ( ) ( )p a p a∧¬  is not a logical 
consequence of it. However, this kind of undecidability is not very practical, since 
in practice one often writes programs with consistent completions. Thus, one can 
pose the question of deciding, if a query (or the negation of a query) is a conesquence 
of the completion of FSF general program with an additional assumption that the 
completion is consistent. However, this problem also turns out to be undecidable. 

T h e o r e m  3 . 2 . There is no algorithm that takes as input FSF general 
program P and a general query Q with the following properties: 

• if comp(P) has a Herbrand model and comp( ) |P Q=  holds on Herbrand 
interpretations, then the algorithm halts with the answer “Yes”; 

• if comp(P) has a Herbrand model and comp( ) |P Q≠  holds on Herbrand 
interpretations, then the algorithm halts with the answer “No”. 

Proof. Consider Robinson arithmetic [6], which is a finitely axiomatizable 
and Σ1-complete∗ subtheory of Peano Arithmetic in the language with equality, 
constant symbol 0 and functional symbols s, + and ×  for the successor, addition 
and multiplication respectively. Denote by R the conjunction of axioms of Robinson 
arithmetic∗∗. Let F(x) denote the Σ1 formula representing the predicate “the Turing 
machine with number x halts on its number”. Since R is Σ1-complete, the Turing 

                                                 
∗    Σ1-completness means that every true Σ1 formula is provable. The formula is called Σ1, if there is 

only one unbounded ∃  quantifier. Bounded quantifier are quantifiers of the form x y∃ ≤  and .x y∀ ≤  
∗∗   Robinson arithmetic is often denoted by Q, but we have reserved this letter for queries. 
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machine with number n halts on its number, iff R|=F(sn(0)). Now we want to 
encode  R  and  F as a functional  symbol-free  general  program. 

In Lloyd-Topor transformation bodies of clauses are not allowed to contain 
equality. But this is easy to workaround. We substitute atoms t1=t2 with eq(t1,t2), 
where eq is a new binary predicate symbol. Later we will add to the program the 
clause eq(x,x). Then the completion of the program will contain , ( ( , )y z eq y z∀ ↔  

( )),x x y x z↔∃ = ∧ =  which means that eq  is interpreted as the equality. Next to 
get rid of functional symbols we use a well-known technique of substituting 
functional symbols with predicate symbols representing their graphs. For an n-ary 
functional symbol f we peak a new 1n + -ary predicate symbol pf, which satisfies  

1 1,..., ( ( ,..., , )),n f nx x y p x x y∀ ∃  

1 1 1,..., , , ( ( ,..., , ) ( ,..., , ) ( , )).n f n f nx x y z p x x y p x x z eq y z∀ ∧ →  
Denote the conjunction of these two formulas as Def ( ).f  Then we can replace atoms 

1( ( ,..., ))nA f t t  with 1( ( ,..., , ) ( ))f nx p t t x A x∃ ∧  until no functional symbol  is left. 
Denote by R'  and F'  the formulas obtained from R and F respectively, by 

replacing equality with  and functional symbols s, + and eq ×  with  ps, p+ and  
Let Def(R) denote the conjunction of Def(ps), Def(p+) and 

.p×
Def ( p ).×  Then, the Turing 

machine with number n halts on its number, iff Def ( ) , ( ( , )R R x y eq x y x′ ∧ ∧∀ ↔ =  
) |y= 1 1,..., ( (0, ) ... ( , ) ( )).n s s n n nx x p x p x x F x−= ∃ ∧ ∧ ∧                                 

Let  p  and  q  be new unary predicate symbols and  P  be obtained from 
(0) ( Def ( )) (0)p R R p′← ∧ ∨ ¬ ,    

( ) ( )q x F x′← ,    
( , )eq x x ← , 

( , ) ( , )s sp x y p x y← , 
( , , ) ( , , )p x y z p x y z+ +← , 
( , , ) ( , , )p x y z p x y z× ×←  

by Lloyd-Topor transformation. Then comp(P) is a conservative extension of 
 It is clear that 

comp(P) has a model (natural numbers with appropriate interpretations of predicate 
symbols) and even a Herbrand model (since this model is countable and there is 
only one constant symbol used). Let Q denote the query 

(0) Def ( ) ( ( ) ( )) , ( ( , ) ).p R R x q x F x x y eq x y x y′ ′∧ ∧ ∧∀ ↔ ∧∀ ↔ =

1 1 1,..., ( (0, ) ... ( , ) ( )).n s s n n nx x p x p x x q x−∃ ∧ ∧ ∧  
Now, if the Turing machine with number n halts on its number, then c  
on all models and, in particular, on Herbrand models. On the other hand, if the 
Turing machine with number n does not halt on its number, then the set of natural 
numbers (with appropriate interpretations of predicate symbols) is a model of 

. But then 

omp( ) |P Q=

comp( )P ∧¬Q Qcomp( )P ∧¬  has a Herbrand model, since there is 
only one constant symbol used. It follows that having an algorithm with desired 
properties we can solve the halting problem, which is impossible.    □ 

Corollary 1 from Theorem 3.2. There is no algorithm that takes as input FSF 
general program P and a general query Q with the following properties: 

• if comp(P) has a Herbrand model and comp(P) | Q= ¬  holds on Herbrand 
interpretations, then the algorithm halts with the answer “Yes”; 
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• if comp(P) has a Herbrand model and c Qomp( ) |P ≠ ¬  holds on Herbrand 
interpretations, then the algorithm halts with the answer “No”. 

Proof. Let P be a FSF general program, whose completion has a Herbrand 
model and Q be a general query. Denote by P′  the program obtained from P by 
adding the clause ( ) ,p a Q←  where p is a new predicate symbol and a is a new 
constant symbol. Denote by Q′  the query ( ).p a¬  It is easy to see that comp(P') 
has a Herbrand model and comp( ) |P Q′ ′= ¬ , iff comp( ) |P Q=  (on Herbrand as 
well as on all interpretations).                                  □ 

Corollary 2 from Theorem 3.2. There is no algorithm that takes as input FSF 
general program P and a general query Q with the following properties: 

• if comp(P) has a Herbrand model and comp( ) |P Q=  holds on Herbrand 
interpretations, then the algorithm halts with the answer “Yes”; 

• if comp(P) has a Herbrand model and Qcomp( ) |P = ¬  holds on Herbrand 
interpretations, then the algorithm halts with the answer “No”; 

• if comp(P) has a Herbrand model and none of the above holds, then the 
algorithm halts with the answer “Undefined”. 

General programs P1 and P2 are called Δ-equivalent, if for every query Q we 
have 1 2comp( ) | comp( ) |P Q P Q= ⇔ =  and 1 2comp( ) | comp( ) |P Q P Q= ¬ ⇔ = ¬  (the 
relation |  is restricted to Herbrand interpretations).  =

Using Theorem 3.2, it is easy to prove that neither Δ-equivalence nor logical 
equivalence of completions (on Herbrand interpretations) is decidable for FSF 
general programs (even for programs, whose completions have Herbrand models). 
Indeed, given a general program P and a general query Q, define programs P1 and 
P2 by adding to P clauses ( )p a ←  and ( )p a Q←  respectively, where p is a new 
predicate symbol and a is a new constant symbol. Clearly,  and comp(P2) 
are consistent, if so is comp(P). It is easy to see that 

1comp( )P
comp( ) |P Q=  on Herbrand 

interpretations, iff comp(P1) and comp(P2) are Δ-equivalent, iff comp(P1) and 
comp(P2) are logically equivalent on Herbrand interpretations. As a corollary we 
have the following two Theorems. 

T h e o r e m  3 . 3 .  There is no algorithm for deciding Δ-equivalence of FSF 
general programs (even for programs, whose completions have Herbrand models). 

T h e o r e m  3 . 4 .  There is no algorithm for deciding logical equivalence (on 
Herbrand interpretations) of completions of FSF general programs (even for 
programs, whose completions have Herbrand models). 
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