
PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY

Physical and Mathematical Sciences 2012, № 1, p. 43–48

I n f o r m a t i c s

ON FUNCTIONAL SYMBOL-FREE LOGIC PROGRAMS

L. A. HAYKAZYAN*

Chair of Programming and Information Technologies, YSU, Armenia

In the present article logic programs (both with and without negation) that do
not use functional symbols are studied. Three algorithmic problems for functional
symbol-free programs are investigated: the existence of a solvable interpreter, the
problem of Δ-equivalence and the problem of logical equivalence. The first two
problems are known to be decidable for functional symbol-free definite programs.
We show that the third one is also decidable for such programs. In contrast, all
three problems are shown to be undedicable for functional symbol-free general
programs.

Keywords: logic programming, functional symbol-free programs, algorithmic
problems.

§ 1. Introduction. For basic definitions in logic programming we refer the

reader to [1]. We study logic programs that do not use functional symbols of arity
 (henceforth referred as FSF programs). For general programs (i.e. programs

with negation) we use Clark’s completion semantics from [2]. In logic program-
ming it is customary to consider only Herbrand interpretation. We follow this
convention and consider only Herbrand interpretations. While for formulas without
built-in predicates (such as definite programs) this does not make a difference, it
makes a difference for formulas with built-in predicates (such as completions of
general programs).

1≥

Some of fundamental algorithmic problems for FSF programs (and indeed
for any class of logic programs) are the following ones.

• Is there a solvable interpreter?
• Is Δ -equivalence decidable? (Two programs are called Δ -equivalent, if

their semantics coincide for each permitted query, see [3]).
• Is logical equivalence (on Herbrand interpretations) of such programs decidable?
The first two problems are known to have positive answers for FSF definite

programs (see [4]). In the present paper we show that the third one also has positive
answer for such programs. We also show that in contrast to this, all three problems
have negative answers for FSF general programs.

Let us introduce some notation that will be used throughout the paper. We
fix a first order language L with a countable set of constant symbols and countable
sets of functional and predicate symbols of each arity. Programs and queries in L
(both definite and general) will be denoted by P and Q respectively (possibly with
some subscripts or superscripts). This will not cause confusion since we study

* E-mail: levon@rock.com

mailto:levon@rock.com

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 1, p. 43–48.

44

definite and general programs in different sections. All programs are assumed to be
functional symbol-free. Occasionally, we will need to refer to the language
consisting of constant, functional and predicate symbols used in some well-formed
formula F. In this case the language in question is denoted by LF.

§ 2. Definite Programs. In this section we study definite programs (i.e.
programs without negation). Definite programs possess some nice properties. In
particular, each definite program P is satisfiable and, moreover, has a least Herbrand
model MP. This model is actually the set of ground atoms that logically follow
from the program. The paper [4] characterizes least Herbrand models of definite
programs through so called templates. Intuitively, a template K of MP is a set of
atoms (with certain minimality properties) such that every atom PA M∈ is an instance
of an atom .B K∈ It is shown in [4], that all templates of the least model of a defi-
nite program are congruent (i.e. can be obtained from one another through variable
renaming). It turns out that least Herbrand models of FSF definite programs have
finite templates (see [4]). The following theorem is a direct consequence of this.

T h e o r e m 2 . 1 . There is an algorithm for deciding, if a definite query
follows from a definite FSF program.

The technique of templates is also applicable to the problem of so called
Δ-equivalence. Two definite programs P1 and P2 are called Δ-equivalent, if every
query is a logical consequence of one program, iff it is a logical consequence of the
other one. It follows that definite programs would be Δ-equivalent, iff the templa-
tes of their least models are congruent. This implies the next theorem.

T h e o r e m 2 . 2 . The problem of Δ-equivalence is decidable for FSF
definite programs (see [4]).

Here we show that logical equivalence of FSF definite programs is also decidable.
T h e o r e m 2 . 3 . There is an algorithm for deciding, if two FSF definite

programs are logically equivalent.
Proof. Let P1 and P2 be FSF definite programs. The formula P1 ↔ P2 is logical-

ly valid, iff so are P1 → P2 and P2 →P1. By symmetry considerations we only show
how to check the validity P1 → P2. The formula P1 → P2 is valid, iff 1 2P P∧¬ is un-
satisfiable. Now, P1 is a universal formula and 2P¬ is equivalent to an existential
formula. Let P1 be 1 1 1,..., (,...,)n nx x F x x∀ and 2P¬ be equivalent to 1 2 1,..., (,...,),m my y F y y∃
where F1 and F2 are quantifier free. We can assume that x1,…,xn are different to

 and then 1,..., ,my y 1 2P P∧¬ is logically equivalent to 1 1 2 1,..., ,..., ((,...,)m n my y x x F y y∃ ∀ ∧

1 1(,...,)).nF x x∧ But by Skolem’s Theorem the latter is satisfiable, iff so is

1 2 1 1 1,..., ((,...,) (,...,)),n m nx x F c c F x x∀ ∧ where are new constant symbols.
Denote the last formula by G. Now G is a universal formula and, hence, has a Herbrand
model in if satisfiable. But since G does not use functional symbols, the Herbrand
universe of is finite and, hence, there are finitely many Herbrand interpretations. So,
we can check all Herbrand interpretations and see, if any of them satisfies G. □

1,..., nc c

GL

GL

§ 3. General Programs. Theorems 2.1, 2.2 and 2.3 of the previous section
demonstrate that all three algorithmic problems are decidable for FSF definite
programs. This means that definite logic programs become significantly less expres-
sive, if the usage of functional symbols is forbidden. In contrast, first-order logic
does not lose its expressiveness without functional symbols. So, the special form of
definite clauses becomes crucial in the decidability results of the previous section.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 1, p. 43–48.

45

In this section we study the above mentioned algorithmic problems for FSF general
programs. We show that in contrast to definite programs all three problems are
undecidable for FSF general programs.

As stated before, we employ Clark’s completion semantics for general
programs (see [2]). In addition we impose the restriction to Herbrand models of
completion. This means that a query Q (or its negation) is considered to be a
consequence of the completion comp(P) of a general program P, if Q is true in all
Herbrand models of comp(P).

However, for FSF programs the restriction to Herbrand models can be
simplified.

Proposition 3.1. Let F be a first-order formula without functional symbols,
possibly using equality. Then F has a Herbrand model, if it has a countable model,
where each constant symbol is interpreted by a distinct element.

Proof. Let M be a countable model of F. Denote by D the domain of M. Let f
be a bijection between the Herbrand universe of L and D taking the constant
symbols used in F into their interpretations in M. Define a Herbrand interpretation
by assigning to the atom the truth value of 1(,...,)np t t 1((),..., ()).M

np f t f t It is
routine to check that this interpretation is a model of F. □

It is shown in [5], that the expressiveness of general programs is not extended, if
we allow arbitrary formulas in bodies of clauses. To make this precise, recall the way
comp(P) is obtained from First we rewrite each clause in the
general form where

.P 1(,...,)np t t S←

1 1 1 1(,...,) ,..., (...),n m n np x x y y t x t x S←∃ = ∧ ∧ = ∧ 1,..., nx x are
new variables and are the variables of the original clause. If 1,..., my y

p(x1,…,xn) ← E1

p(x1,…,xn) ← Ek
are all the general forms of clauses with p in their heads, then the definition of p
would be the formula 1 1 1,..., ((,...,) ...).n n kx x p x x E E∀ ↔ ∨ ∨ As usual, the empty
disjunction is understood as a logical falsehood. The completion comp(P) of P is
the set of definitions of predicate symbols that occur in P.

This process does not, in any way, depend on the bodies of programs being
conjunctions of literals. It is tempting to generalize general programs even further
by allowing arbitrary formulas in their bodies. However, as shown in [5], given
such a program P, we can construct a general program ,P′ such that comp(P') is a
conservative extension of comp(P). Recall the construction presented in [5]. Let F
be a formula of first-order logic without equality. We can assume that F is built
using and Let A be an atom, whose variables are different to bound
variables of F. Transform the clause A←F using the following rules:

,¬ ∨ .∃

• Replace 1 2A F F← ∨ by two clauses A ← F1 and A ← F2.
• Replace A xF←∃ by A ← F.
• Replace A←¬F by two clauses 1(,...,)nA p x x←¬ and p(x1,…, xn)←F,

where x1,…, xn are the free variables of F and p is a new predicate symbol.
Let P be a program with arbitrary formulas in bodies of clauses, and let P' be

obtained from P by repeatedly applying the above transformation. It is shown in
[5], that each model of comp(P') is a model of comp(P) and further each model of
comp(P') is obtained from a model of comp(P) by uniquely defining interpretations

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 1, p. 43–48.

46

of extra predicate symbols. We will refer to this transformation as Lloyd-Topor
transformation.

It is widely known that completions of general programs may be inconsis-
tent. For example, the completion of the program consisting of the single clause

() ()p x p←¬ x is the formula (() ()),x p x p x∀ ↔¬ which does not have a Herbrand
model (or any other model). Such programs present a little interest, since any query
is a consequence of their completions. The next theorem shows that there is no
algorithm for deciding this property of FSF general programs.

T h e o r e m 3 . 1 . There is no algorithm for deciding, if comp(P) has a
Herbrand model for a given FSF general program P.

Proof. Let F be a closed formula of pure first-order logic (i.e. without
functional and constant symbols and without equality). Let p be a new predicate
symbol and a be a new constant symbol. Denote by P the general program obtained
from q is n-ary predicate symbol
used in F} by Lloyd-Topor transformation. Then comp(P) has a Herbrand model

comp(P) has a countable model (since comp(P) does not use functional and
constant symbols other than a)

1 1{ () ()} { (,...,) (,...,) :np a F p a q x x q x x← ∨¬ ∪ ← n

⇔
⇔ () (())p a F p a↔ ∨¬ has a countable model (by

Lloyd-Topor transformation) ⇔ ()p a F∧ has a countable model (since the latter is
logically equivalent to the former) ⇔ F has a countable model (since F does not
use p and a) F is consistent (by Löwenheim–Skolem Theorem). Thus, by having
an algorithm for deciding, if has a Herbrand model, we can decide pure
first-order logic. But this is not possible by Church’s Theorem. □

⇔
comp()P

This result in itself guaranties that it is algorithmically impossible to decide,
if a query is a consequence of the completion of a FSF general program. Indeed,
comp(P) would have a Herbrand model, iff the query () ()p a p a∧¬ is not a logical
consequence of it. However, this kind of undecidability is not very practical, since
in practice one often writes programs with consistent completions. Thus, one can
pose the question of deciding, if a query (or the negation of a query) is a conesquence
of the completion of FSF general program with an additional assumption that the
completion is consistent. However, this problem also turns out to be undecidable.

T h e o r e m 3 . 2 . There is no algorithm that takes as input FSF general
program P and a general query Q with the following properties:

• if comp(P) has a Herbrand model and comp() |P Q= holds on Herbrand
interpretations, then the algorithm halts with the answer “Yes”;

• if comp(P) has a Herbrand model and comp() |P Q≠ holds on Herbrand
interpretations, then the algorithm halts with the answer “No”.

Proof. Consider Robinson arithmetic [6], which is a finitely axiomatizable
and Σ1-complete∗ subtheory of Peano Arithmetic in the language with equality,
constant symbol 0 and functional symbols s, + and × for the successor, addition
and multiplication respectively. Denote by R the conjunction of axioms of Robinson
arithmetic∗∗. Let F(x) denote the Σ1 formula representing the predicate “the Turing
machine with number x halts on its number”. Since R is Σ1-complete, the Turing

∗ Σ1-completness means that every true Σ1 formula is provable. The formula is called Σ1, if there is

only one unbounded ∃ quantifier. Bounded quantifier are quantifiers of the form x y∃ ≤ and .x y∀ ≤
∗∗ Robinson arithmetic is often denoted by Q, but we have reserved this letter for queries.

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 1, p. 43–48.

47

machine with number n halts on its number, iff R|=F(sn(0)). Now we want to
encode R and F as a functional symbol-free general program.

In Lloyd-Topor transformation bodies of clauses are not allowed to contain
equality. But this is easy to workaround. We substitute atoms t1=t2 with eq(t1,t2),
where eq is a new binary predicate symbol. Later we will add to the program the
clause eq(x,x). Then the completion of the program will contain , ((,)y z eq y z∀ ↔

()),x x y x z↔∃ = ∧ = which means that eq is interpreted as the equality. Next to
get rid of functional symbols we use a well-known technique of substituting
functional symbols with predicate symbols representing their graphs. For an n-ary
functional symbol f we peak a new 1n + -ary predicate symbol pf, which satisfies

1 1,..., ((,..., ,)),n f nx x y p x x y∀ ∃

1 1 1,..., , , ((,..., ,) (,..., ,) (,)).n f n f nx x y z p x x y p x x z eq y z∀ ∧ →
Denote the conjunction of these two formulas as Def ().f Then we can replace atoms

1((,...,))nA f t t with 1((,..., ,) ())f nx p t t x A x∃ ∧ until no functional symbol is left.
Denote by R' and F' the formulas obtained from R and F respectively, by

replacing equality with and functional symbols s, + and eq × with ps, p+ and
Let Def(R) denote the conjunction of Def(ps), Def(p+) and

.p×
Def (p).× Then, the Turing

machine with number n halts on its number, iff Def () , ((,)R R x y eq x y x′ ∧ ∧∀ ↔ =
) |y= 1 1,..., ((0,) ... (,) ()).n s s n n nx x p x p x x F x−= ∃ ∧ ∧ ∧

Let p and q be new unary predicate symbols and P be obtained from
(0) (Def ()) (0)p R R p′← ∧ ∨ ¬ ,

() ()q x F x′← ,
(,)eq x x ← ,

(,) (,)s sp x y p x y← ,
(, ,) (, ,)p x y z p x y z+ +← ,
(, ,) (, ,)p x y z p x y z× ×←

by Lloyd-Topor transformation. Then comp(P) is a conservative extension of
 It is clear that

comp(P) has a model (natural numbers with appropriate interpretations of predicate
symbols) and even a Herbrand model (since this model is countable and there is
only one constant symbol used). Let Q denote the query

(0) Def () (() ()) , ((,)).p R R x q x F x x y eq x y x y′ ′∧ ∧ ∧∀ ↔ ∧∀ ↔ =

1 1 1,..., ((0,) ... (,) ()).n s s n n nx x p x p x x q x−∃ ∧ ∧ ∧
Now, if the Turing machine with number n halts on its number, then c
on all models and, in particular, on Herbrand models. On the other hand, if the
Turing machine with number n does not halt on its number, then the set of natural
numbers (with appropriate interpretations of predicate symbols) is a model of

. But then

omp() |P Q=

comp()P ∧¬Q Qcomp()P ∧¬ has a Herbrand model, since there is
only one constant symbol used. It follows that having an algorithm with desired
properties we can solve the halting problem, which is impossible. □

Corollary 1 from Theorem 3.2. There is no algorithm that takes as input FSF
general program P and a general query Q with the following properties:

• if comp(P) has a Herbrand model and comp(P) | Q= ¬ holds on Herbrand
interpretations, then the algorithm halts with the answer “Yes”;

Proc. of the Yerevan State Univ. Phys. and Mathem. Sci., 2012, № 1, p. 43–48.

48

• if comp(P) has a Herbrand model and c Qomp() |P ≠ ¬ holds on Herbrand
interpretations, then the algorithm halts with the answer “No”.

Proof. Let P be a FSF general program, whose completion has a Herbrand
model and Q be a general query. Denote by P′ the program obtained from P by
adding the clause () ,p a Q← where p is a new predicate symbol and a is a new
constant symbol. Denote by Q′ the query ().p a¬ It is easy to see that comp(P')
has a Herbrand model and comp() |P Q′ ′= ¬ , iff comp() |P Q= (on Herbrand as
well as on all interpretations). □

Corollary 2 from Theorem 3.2. There is no algorithm that takes as input FSF
general program P and a general query Q with the following properties:

• if comp(P) has a Herbrand model and comp() |P Q= holds on Herbrand
interpretations, then the algorithm halts with the answer “Yes”;

• if comp(P) has a Herbrand model and Qcomp() |P = ¬ holds on Herbrand
interpretations, then the algorithm halts with the answer “No”;

• if comp(P) has a Herbrand model and none of the above holds, then the
algorithm halts with the answer “Undefined”.

General programs P1 and P2 are called Δ-equivalent, if for every query Q we
have 1 2comp() | comp() |P Q P Q= ⇔ = and 1 2comp() | comp() |P Q P Q= ¬ ⇔ = ¬ (the
relation | is restricted to Herbrand interpretations). =

Using Theorem 3.2, it is easy to prove that neither Δ-equivalence nor logical
equivalence of completions (on Herbrand interpretations) is decidable for FSF
general programs (even for programs, whose completions have Herbrand models).
Indeed, given a general program P and a general query Q, define programs P1 and
P2 by adding to P clauses ()p a ← and ()p a Q← respectively, where p is a new
predicate symbol and a is a new constant symbol. Clearly, and comp(P2)
are consistent, if so is comp(P). It is easy to see that

1comp()P
comp() |P Q= on Herbrand

interpretations, iff comp(P1) and comp(P2) are Δ-equivalent, iff comp(P1) and
comp(P2) are logically equivalent on Herbrand interpretations. As a corollary we
have the following two Theorems.

T h e o r e m 3 . 3 . There is no algorithm for deciding Δ-equivalence of FSF
general programs (even for programs, whose completions have Herbrand models).

T h e o r e m 3 . 4 . There is no algorithm for deciding logical equivalence (on
Herbrand interpretations) of completions of FSF general programs (even for
programs, whose completions have Herbrand models).

Received 26.09.2011

R E F E R E N C E S

1. Lloyd J. Foundations of Logic Programming. Springer-Verlag, 1984, 124 p.
2. Clark K.L. Negation as Failure. In Gallaire H. and Minker J. (eds). Logic and Data Bases.

New York: Plenum Press, 1978, p. 292–322.
3. Nigiyan S.A., Khachoyan L.O. // Programming and Computer Software, 1997, v. 23, p. 302–309.
4. Nigiyan S.A., Khachoyan L.O. // Dokladi NAN Armenii, 1999, v. 99, № 2, p. 99–103 (in Russian).
5. Lloyd J., Topor R. // Journal of Logic Programming, 1984, v. 1, p. 225–240.
6. Robinson R.M. Proceedings of International Congress of Mathematics, 1950, p. 729–730.

