Physical and Mathematical Sciences

2012, № 1, p. 60–62

COMMUNICATIONS

Informatics

APPROXIMATION BY POISED SETS OF NODES

G. S. AVAGYAN, L. R. RAFAYELYAN*

Chair of Numerical Analysis and Mathematical Modeling YSU, Armenia

In the present paper it has been shown that nodes of any finite set $X \subset \mathbb{R}^d$ can be made independent by arbitrarily small perturbation, in other words, the set X can be approximated by sets of independent nodes. In the case of $\#X = \dim \prod_n^d$ the set X can be approximated by sets of poised nodes.

Keywords: Lagrange interpolation, independent points, poised sets.

Introduction. Let $\prod_{n=1}^{d}$ be the space of all polynomials in d variables of total degree $\leq n$.

Definition 1. The interpolation problem with a set of nodes $X_s = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$ and \prod_n^d is called poised (unisolvent), if for any data $\{c_1, ..., c_s\}$ there is a unique polynomial $p \in \prod_n^d$ such that $p(\mathbf{x}_i) = c_i$, i = 1, ..., s.

This gives us a system of s linear equations with $\binom{n+d}{d}$ unknowns – the coefficients of polynomial. The poisedness means that this system has a unique solution for any right-hand side values. This implies the following necessary condition of poisedness: $s = N := N_n^d = \dim \prod_n^d = \binom{n+d}{d}$.

Thus, we consider poisedness, only if this condition holds. In the latter case we have: the linear system is unisolvent for arbitrary right-hand side values c_i , i = 1, 2, ..., N, iff the corresponding homogeneous system has no solution except the trivial one. So, we can state the following

Proposition 1. The interpolation problem with a set of nodes $X = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., N\}$ and \prod_n^d is poised, iff $p \in \prod_n^d$, $p(\mathbf{x}_i) = 0$, $i = 1, ..., N \Rightarrow p = 0$.

Consider a set of nodes $X_s = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$. A polynomial p is called a fundamental polynomial for $A := \mathbf{x}_k \in X_s$ and \prod_n^d , if $p \in \prod_n^d$, $p(\mathbf{x}_k) = 1$, $p(\mathbf{x}_i) = 0, \ 1 \le i \le s, \ i \ne k$.

^{*} E-mail: <u>levon.rafayelyan@gmail.com</u>

We denote fundamental polynomial of $A := \mathbf{x}_k \in X_s$ by $p_k^* := P_{\{A,X_k\}}^*$.

Definition 2. The set of nodes $X_s = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$ is called \prod_n^d -independent, if all fundamental polynomials $p_i^* \in \prod_n^d$, i = 1, ..., s, exist. Otherwise, X_s is called dependent for \prod_n^d , i.e. X_s is dependent for \prod_n^d , iff

$$p \in \prod_{n=1}^{d}$$
, $p(\boldsymbol{x}_{i}) = 0$, $1 \le i \le s$, $i \ne i_{0} \Longrightarrow p(\boldsymbol{x}_{i_{0}}) = 0$.

The following statements are evident.

Proposition 2. Assume that a set of nodes X is $\prod_{n=1}^{d}$ -independent. Then:

1. Any nonempty subset $Y \subset X$ is $\prod_{n=1}^{d}$ -independent.

2. $\#X \le N = \dim \prod_n^d$, and if #X = N, then set X is \prod_n^d -poised.

In the sequel we use the following notation. Let us enumerate the monomials in *d* variables and denote them by $\varphi_j(\mathbf{x})$, $\mathbf{x} = (x_1, \dots, x_d)$, $j = 1, 2, \dots$ Numbering is performed such that monomials of the same degree are numbered in arbitrary order, e.g. lexicographical, and the monomials of different degrees are numbered in increasing order. In particular, $\varphi_1(\mathbf{x}) = 1$. For example, if the monomials of the same degree are numbered in lexicographical order, then

$$\varphi_2(\mathbf{x}) = x_1, ..., \quad \varphi_{d+1}(\mathbf{x}) = x_d, \quad \varphi_{d+2}(\mathbf{x}) = x_1^2, \quad \varphi_{d+3}(\mathbf{x}) = x_1 x_2, ...$$

Thus, all monomials in *d* variables of degree not exceeding *n* are $\varphi_j(\mathbf{x})$, j = 1, 2, ..., N.

Now let $X = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$ be a set of nodes with $s \le N$. The Vandermonde matrix $V_n(X) = [\varphi_1(\mathbf{x}_i), \varphi_2(\mathbf{x}_i), ..., \varphi_N(\mathbf{x}_i)]_{i=1}^s$ is an $s \times N$ -matrix with s = #X rows and $N = \dim \prod_n^d = \binom{n+d}{d}$ columns. It is easy to see that $V_n(X)$ is of full rank, i.e. rank $V_n(X) = \#X$, iff the points of X are \prod_n^d -independent.

Approximation by Poised Sets of Nodes. In the sequel we use the

following [1]

Lemma. Let $A = [a_{i1}, a_{i2}, ..., a_{is}]_{i=1}^r$, $r \ge 1$ be a matrix of rank r and $\Omega \subset \mathbb{R}^d$ be a set such that for any k = 1, 2, ... it contains points not lying on hypersurface of order k. Then, there exists a point $\mathbf{x}^{(1)} \in \Omega$ such that the rank of matrix

$$\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1s} \\ \vdots & \vdots & \ddots & \vdots \\ a_{r1} & a_{r2} & \cdots & a_{rs} \\ \varphi_1(\mathbf{x}^{(1)}) & \varphi_2(\mathbf{x}^{(1)}) & \cdots & \varphi_s(\mathbf{x}^{(1)}) \end{pmatrix}$$
 is $r+1$.

Let $\varepsilon > 0$, $\mathbf{x}_0 \in \mathbb{R}^d$ and $B(\mathbf{x}_0, \varepsilon)$ be the open ball with center \mathbf{x}_0 and radius ε : $B(\mathbf{x}_0, \varepsilon) := \{\mathbf{x}_0 \in \mathbb{R}^d : || \mathbf{x}_0 - \mathbf{x} || < \varepsilon\}.$

From Lemma we get the following

Proposition 3. Suppose $X = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$ is \prod_n^d -independent set of points. If s < N, then for any $\varepsilon > 0$ and $\mathbf{x}_0 \in \mathbb{R}^d$ there exists a point $\mathbf{x}' \in B(\mathbf{x}_0, \varepsilon)$ such that the set $X \cup \{\mathbf{x}'\}$ is \prod_n^d -independent.

Proof. Consider the Vandermonde matrix $V_n(X)$. From \prod_n^d -independence of X we have that rank $V_n(X) = \#X = s$. Since any hypersurface cannot contain a point with its neighbourhood in \mathbb{R}^d , then the condition of Lemma holds for $\Omega = B(\mathbf{x}_0, \varepsilon)$. Thus, there exists a point $\mathbf{x}' \in \Omega$ such that rank $V_n(X \cup \{\mathbf{x}'\}) = s + 1$. So, the set $X \cup \{\mathbf{x}'\}$ is \prod_n^d -independent.

The following theorem shows that any finite set of nodes $X \subset \mathbb{R}^d$ can be approximated by a set of independent nodes.

Theorem. Let $X_s = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}, s \le N$. For arbitrary $\varepsilon > 0$ there exists a \prod_n^d -independent set $Y_s = \{\mathbf{y}_i \in \mathbb{R}^d : i = 1, 2, ..., s\}$ such that $||\mathbf{x}_i - \mathbf{y}_i|| < \varepsilon, i = 1, 2, ..., s$.

Proof. We shall prove the statement using the method of mathematical induction on s. Clearly, the statement holds for s = 1. Suppose the statement holds for all k, k < s. Consider the set $X_{s-1} = \{\mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., s - 1\}$. The induction hypothesis implies that for arbitrary $\varepsilon > 0$ there exists a \prod_n^d -independent set $Y_{s-1} = \{\mathbf{y}_i \in \mathbb{R}^d : i = 1, 2, ..., s - 1\}$ such that $||\mathbf{x}_i - \mathbf{y}_i|| < \varepsilon$, i = 1, 2, ..., s - 1. By the Proposition 3 there exists a point $\mathbf{y}_s \in B(\mathbf{x}_s, \varepsilon)$ such that the set $Y_s = Y_{s-1} \cup \{\mathbf{y}_s\}$ is \prod_n^d -independent.

Now we readily get the following

Corollary. Consider a set of points $X = \{ \mathbf{x}_i \in \mathbb{R}^d : i = 1, 2, ..., N \}$. For arbitrary $\varepsilon > 0$ there exists a \prod_n^d -poised set $Y = \{ \mathbf{y}_i \in \mathbb{R}^d : i = 1, 2, ..., N \}$ such that $|| \mathbf{x}_i - \mathbf{y}_i || < \varepsilon, i = 1, 2, ..., N$.

Received 24.10.2011

REFERENCES

1. Mysovskikh I.P. Interpolation cubature formulas. M.: Nauka, 1981, p. 33–34 (in Russian).